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Interaction of metamaterials with optical beams
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Abstract
Wedevelop a general theoretical approach to describing the interaction ofmetamaterials with optical
beams. Themetamaterials are allowed to be anisotropic, chiral, noncentrosymmetric, and spatially
dispersive. Unlike planewaves, beams can change theirfield distributions upon interactionwith
metamaterials, which can reveal new optical effects. Ourmethod is based on a vector formof the
angular spectrum representation and a technique to calculate thewave parameters for all required
directions of wave propagation. Applying themethod to variousmetamaterial designs, we discover a
new optical phenomenon: the conversion of light polarization by spatial dispersion. Because of this
phenomenon, the refractive index and impedance cannot be introduced formanymetamaterial
designs. In such cases, we propose an alternative approach to treating the beam–metamaterial
interaction. This work takes a step forward in describing opticalmetamaterials bymoving from
unphysical planewaves to realistic optical beams.

1. Introduction

Modern computationalmethods and nanofabrication techniques facilitate the design, fabrication, and study of
crystalline opticalmetamaterials with nanostructured unit cells that are smaller than visible-light wavelengths.
Optical waves propagating in suchmaterials are not split by diffraction, and therefore can be considered to be
interactingwith a homogeneousmedium.Materials like these are calledmetamaterials. The nanostructured
artificialmolecules of thesematerials are designed to give thematerial extraordinary optical properties. For
example, if the unit cells are designed to showopticalmagnetism, one can achieve negative refraction, which can
for example be used for near-field focusing and ‘perfect’ imaging [1–6].Other well-known applications
demonstrated and proposed for thesematerials are elements enhancing the optical density of states and energy
transfer [7, 8], as well as optical coherence [9–11], elements allowing aberration-free propagation [12], and a
variety of novel elements composed of temporally dispersive [13], nonlinear [14, 15], and optically
inhomogeneous and anisotropicmaterials [16, 17].

The theoretical basis for the description and design of opticalmetamaterials is still incomplete. For example,
themajority of functional opticalmetamaterials are spatially dispersive, which is connected to their relatively
large unit cells (required, e.g., for obtaining opticalmagnetism [18]). For this reason, thesematerials are
characterized by the so-calledwave parameters, which are the effective refractive index n and impedanceZ
experienced by a planewave and dependent on its propagation direction in thematerial [19]. These plane-wave
parameters are in fact whatmetamaterial designers are usually interested inwhen creating newmetamaterials.
Several effective-medium approaches have been introduced to describe even anisotropic and spatially dispersive
metamaterials in terms of their plane-wave response [20–28]. However, there is a substantial difference between
optical beams—whichwe always deal with in experiments—and planewaves when they interact with such
anisotropic and/or spatially dispersivemetamaterials. For example, due to optical anisotropy and spatial
dispersion, the energyflow and the propagation of thewavefronts, which are determined by the Poynting vector
and thewave vector, respectively, can have different directions. Furthermore, spatial dispersion can affect the
angular spectrumof a beam interactingwith ametamaterial even in the absence of optical anisotropy. In spite of
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this significant difference, a generalmodel for the interaction ofmetamaterials with optical beams has not
previously been introduced.

In this work, we introduce for thefirst time a self-consistent theoretical basis for describing the interaction of
optical beamswithmetamaterials that can be spatially dispersive and anisotropic.We propose treating the
beams in terms of their plane-wave decomposition, known as the angular spectrum representation, written in
the rigorous vector form. Each plane-wave component of the beam is considered separately using, for example,
the values of n andZ corresponding to its propagation direction and polarization. Then, the beamprofile at any
transverse plane is obtained by summing the propagating plane-wave components over thewhole angular
spectrumof the beam. In this way, we obtain a complete description of the interaction of the beamwith the
metamaterial.

By applying our approach to various types ofmetamaterials, we have found that the presence of spatial
dispersion often leads to an inevitable polarization conversion of planewaves propagating in thematerial, even if
thematerial is not chiral and thewave polarization is such that optical anisotropy does not affect it. In such cases,
it is impossible to introduce polarizationmodes for thematerial (thewaves preserving the polarization) and the
parameters n andZ associatedwith them. To solve this problem,we propose an alternative approach to treat the
plane-wave components of optical beams. This approach is based on the transmission and reflectionmatrices,
taking into account the polarization conversion.We also show that formetamaterials with negligible
evanescent-wave coupling betweenmetamolecular layers [20, 21], arbitrarily thickmetamaterial slabs can be
fully characterized by the transmission and reflectionmatrices of a singlemetamolecular layer. The theory
presented in sections 2 and 3 allows us to describe, design, and optimize general polarization-converting
metamaterials and their interactionwith optical beams. Section 4 introduces two particular examples of spatially
dispersivematerials, one of which illustrates thementioned polarization conversion, and the other illustrates the
spatialfiltering of an optical beamby its reflection from ametamaterial slab. Section 5 presents our conclusions.

2. Angular-spectrum representation of optical beams interactingwithmetamaterial slabs

The optical properties ofmetamaterials are often described in terms of effective plane-wave parameters, such as
refractive index n and impedanceZ, which depend not only on thewave frequency and polarization, but also on
the direction of thewave vector k . These parameters are connected to and, as a rule, are also evaluated from the
plane-wave transmission and reflection coefficients kt ( ) and kr ( )of a slab of themetamaterial in question [29–
32]. In the following, using the fact that optical beams are fully characterized by the properties of their plane-
wave components, we introduce a general technique to treat the interaction of arbitrary optical beamswith
metamaterial slabs.

Our approach is based on the vector angular-spectrum representation [33]. Let us consider an optical beam
that is incident on ametamaterial slab characterized by knownplane-wave parameters kn ( ) and kZ ( ), or
equivalently, kt ( ) and kr ( ). To obtain the field distributions in the reflected and transmitted beams, we apply
the following three-step procedure. In the first step, the incident beam is decomposed into planewaves by
calculating the angular spectrumof the beam at the entrance facet of the slab. Then, each planewave is allowed to
interact with the slab and split into the transmitted and reflectedwaves. The complex amplitudes of thesewaves
are found bymultiplying the incident-wave amplitudes with the corresponding coefficients, kt ( ) and kr ( ).
Finally, the transmitted and reflected beams are found by combining the plane-wave components obtained in
the previous step. This Fourier optics based approach has not yet been applied to opticalmetamaterials.

The plane-wave decomposition of the incident beam can bewritten in the formof the following two-
dimensional inverse Fourier transform [33]

( )E Ex y z k k z k k( , ; ) ˆ , ; e d d , (1)x y
k x k y

x yi i
i ix y∫ ∫=

−∞

∞

−∞

∞
+

where the plane-wave amplitudes are E Ek k z k kˆ ( , ; ) ˆ ( , ; 0)ex y x y
k z

i i
i z= . The slab entrance and exit surfaces can

be assumed to be located at z=0 and z=D, respectively, inwhich case (1) describes the beam at z 0< . The
amplitudes E k k zˆ ( , ; )x yi are found from the known electric field, E x y z( , ; )i , of the beamusing the Fourier
integral

( ) ( )E Ek k z x y z x yˆ , ;
1

4
( , ; )e d d (2)x y

k x k y
i 2 i

i ix y∫ ∫
π

=
−∞

∞

−∞

∞
− +

that reveals the angular spectrum. To treat the reflection and transmission of the obtained planewaves by the
slab, it is necessary to split thesewaves into their s- and p-polarized components, respectively. Only then can
their amplitudes bemultipliedwith the corresponding transmission and reflection coefficients. The vector Êi

can bewritten in terms of the s- and p-components using the followingmatrix equation

2
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where ks ( )j and kp ( )j are Cartesian components of the polarization vectors s k( ) and p k( ); j x y z( , , )∈ . From
nowon, we denote an ordinarymatrix product of â and b̂ with abˆ ˆ and assume all the vectors to be column
vectors.Whenever we use notation a b· , wemean a dot product of vectors a and b.

In general, the polarization of each s- or p-polarized plane-wave component can change upon reflection and
transmission by the slab. It is therefore necessary to introduce transmission and reflectionmatrices, instead of
scalar coefficients, such that

( ) ( ) ( )E Ek k D k k k ktˆ , ; ˆ , ˆ , ; 0 , (4)x y x y x yt i=

( ) ( ) ( )E Ek k k k k krˆ , ; 0 ˆ , ˆ , ; 0 . (5)x y x y x yr i=

The reflectionmatrix, k kr̂( , )x y , in (5) includes the directional change of the p-polarization upon the reflection
that takes place even if thematerial is isotropic.

Next, the fields E k k Dˆ ( , ; )x yt and E k kˆ ( , ; 0)x yr are inverse Fourier transformed, as in (1), which results in
thefinal expressions for the transmitted and reflected beams, respectively:

( ) ( )E Ex y z k k k kt( , ; ) ˆ ˆ , ; 0 e d d , (6)k r z
x y

D
x yt i

i · ˆ∫ ∫=
−∞

∞

−∞

∞
−

( )E Ex y z k k k kr( , ; ) ˆ ˆ , ; 0 e d d . (7)k r
x y x yr i

i ·∫ ∫=
−∞

∞

−∞

∞

In these integrals, the vectors E k kt̂ ˆ ( , ; 0)x yi and E k kr̂ ˆ ( , ; 0)x yi are written in terms of their Cartesian vector

components. Equation (6) contains an exponential factor, ik Dexp( )z− , because the transmission coefficient t̂ is
defined in accordancewith (4). Equation (6) is valid for z D> , while equation (7) is valid for z 0< . These
equations include both propagating and evanescent plane-wave components and allow one to study the action
of ametamaterial slab on an optical beam, as long as thematrices t̂ and r̂ are known. In the following section, we
showhow thesematrices can be evaluated.

3. Transmission and reflectionmatrices

Essentially all opticalmetamaterials demonstrated so far are both spatially dispersive and anisotropic. Hence, for
them, thematrices t̂ and r̂ must be calculated at each angle of incidence separately, even if t̂ and r̂ can be
expressed through the effective wave parameters, such as the refractive index and impedance. Sometimes,
however, these parameters areworthless or impossible to introduce. For example, in the presence of a strong
evanescent-wave coupling betweenmetamolecular layers in a slab, the refractive index and impedance can
depend on the slab thickness (D), so that their evaluation at each value ofD does notmakemuch sense. Also, the
wave parameters cannot be introduced if thematerial does not support any polarizationmodes (e.g., if the
polarization of an arbitrarily polarized planewavewill change upon thewave propagation).

If the interlayer evanescent-wave coupling is strong, the Cartesian elements of thematrices t̂ and r̂ defined
by (4) and (5) and used in (6) and (7)must be evaluated directly for thewholemetamaterial slab. Thewave
parameters, such as n andZ, should not be used because theywill depend on the slab thickness. If, on the other
hand, the evanescent-wave coupling is weak, themetamaterial can be considered to be homogenizable [21]. As a
consequence, thematrices t̂ and r̂ can bewritten for an arbitrarily thickmetamaterial slab in an analytical form
in terms of the transmission and reflectionmatrices of a singlemetamolecular layer (τ̂ and ρ̂, respectively). In
addition, if thewave parameters can be introduced, theywill not depend on the thickness of the slab andwill
therefore characterize thematerial itself [21].We also emphasize that usually both the near- and far-field
interactions between themetamolecules in each layer are strong, but owing to this interaction, the evanescent-
wave decay length of the layer is short compared to that of a singlemetamolecule; it is, in fact, shorter than the
lattice period [21], while for a single dipole the near-field decay length is on the order of λ.

To evaluate t̂ and r̂ for a given homogenizablemetamaterial slab, wefirst find themonolayermatrices τ̂ and
ρ̂ (e.g., numerically). Thesematrices are evaluated by considering the layer as an infinitely thin sheet located in
themiddle of the layer and surrounded by the hostmedium [20, 21]. Themonolayermatrices have the form

ˆ , (8)
ss sp

ps pp

⎛
⎝⎜

⎞
⎠⎟τ

τ τ
τ τ=
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ˆ . (9)
ss sp

ps pp

⎛
⎝⎜

⎞
⎠⎟ρ

ρ ρ
ρ ρ=

In (8), eachmatrix element, ,ijτ is defined as thefield ratio of the transmitted i-polarized planewave to the
incident j-polarizedwave, and each ijρ in (9) is analogously defined for the reflectedwaves. In numerical

calculations, onemust therefore consider both s- and p-polarizations. Having evaluated τ̂ and ρ̂, one can
proceed to the calculation of t̂ and r̂. Belowwe present two alternativemethods to do this. Thefirstmethod
(section 3.1) is based on a generalized transfer-matrix formalism, and the secondmethod (appendix)makes use
of recursivematrix relations and the Z-transform. In both of themethods, the following phase-shifted
transmission and reflectionmatrices are used

f̂ ˆe , (10)ki z zτ= Λ

ĝ ˆ e . (11)ki z zρ= Λ

The quantity zΛ in these equations is the lattice constant of themetamaterial along the slab normal.
Section 3.2 describes the conditions for the existence of the polarizationmodes and also presents amethod

for evaluating the effective wave parameters, n andZ, for thesemodes.

3.1. Transfermatrixmethod
Weassume that themonolayer transmissionmatrices, f̂+ and f̂ ,− and the reflectionmatrices, ĝ+ and ĝ ,− for the
planewaves propagating in the positive (+) and negative (−) z-directions are already known. The propagation
angles of thesewaves are, respectively, θ and 180 – θ° , with θ evaluatedwith respect to the z-axis. Considering the
waves propagating at these angles between some adjacentmetamolecular layers n and n 1+ in thematerial, we
canwrite the following relations for the Jones vectors J n( )

+ and J n( )
− of thesewaves:

J J Jf gˆ ˆ , (12)n n n( 1) ( ) ( 1)= ++
+

+ + − −
+

J J Jf gˆ ˆ . (13)n n n( ) ( 1) ( )= +− − −
+

+ +

Thesematrix equations are similar to equations (1) and (2) of [21]. They reflect the fact that, at any point in the
material, thewave is a sumof twowaves: a forward propagating wave transmitted by the previousmolecular
layer and a backward propagatingwave reflected in the forward direction by the same layer. These two equations
can bewritten as a singlematrix equation in the form

J

J

J

J
T̂ , (14)

n

n
n

n

n

( )

( )

( 1)

( 1)

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟=+

−

+
+

−
+

where

T
f f g

g f f g f g

ˆ
ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ
(15)n

1 1

1 1

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟=

−

−

+
−

+
−

−

+ +
−

− + +
−

−

is a 4 × 4 transfermatrix corresponding to layer n. This transfermatrix is a blockmatrix that is also valid for
materials for which polarizationmodes do not exist, unlike transfermatrices conventionally introduced for
photonic crystals and other periodic scattering structures [34–36]. The correspondingmatrix of an arbitrarily
thickN-layermetamaterial slab is then given by

T Tˆ ˆ . (16)n
N=

Since T̂n is diagonalizable, the elements of T̂ are easy to obtain analytically in terms of f̂± and ĝ±. Then, in
analogywith (15), one canwrite the transfermatrix as

T T

T T

t t r

r t t r t r

ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ
. (17)

11 12

21 22

1 1

1 1

⎛
⎝
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⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟=

−

−
+
−

+
−

−

+ +
−

− + +
−

−

This immediately yields the following set of equations for the slab transmission and reflectionmatrices:

t Tˆ ˆ , (18)11
1=+

−

r T tˆ ˆ ˆ , (19)21=+ +

r t Tˆ ˆ ˆ , (20)12= −− +

t T r t rˆ ˆ ˆ ˆ ˆ , (21)22
1= +− + +

−
−
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The obtainedmatrices can be used in (6) and (7) to treat the interaction of an optical beamwith an arbitrary
polarization-convertingmetamaterial slab.

Thematrices t̂± and r̂± can be obtained in an alternative waywith the help of a recursivematrix relation
method, which is presented in the appendix. This alternative approach can in some cases bemore convenient.
Also, it can be used to check the validity of (18)–(21).

3.2. Polarizationmodes
It is not always possible to introduce polarizationmodes for a givenmetamaterial. In this section, we obtain the
conditions under which themodes can be introduced, and consequently, their effective refractive index, n, and
impedance,Z, can be calculated. Introducing themodes provides physical insight into the interaction of the
metamaterial with light, helps in designingmetamaterials for prescribed applications, and allows one to
analytically obtain themode transmission and reflection coefficients, in terms of n andZ, valid for anymedia
surrounding thematerial.

The polarizationmodesmust preserve their polarization state and have the periodicity of the lattice. Hence,
for such amodewe canwrite

J J e , (22)n n( 1) ( ) i z z,= γ Λ
±

+
± ±

where z,γ ± is the effective propagation constant of themode. Suppose that the slab hasNmetamolecular layers.
Then, for the last layer, we can use (13) andwrite

J Jĝ . (23)N N( ) ( )=− + +

Herewe have used the fact that J 0N( 1) =−
+ . By inserting (22) and the expression J Jen N n N( ) i( ) ( )z z,= γ Λ

+
− −

++ into
(13), we obtain

J J Jf ge ˆ e ˆ . (24)n n N n N( ) i ( ) i( ) ( )z z z z, ,= +γ Λ γ Λ
− − −

− −
+ +− +

Using (23) and the fact that J JeN N n n( ) i( ) ( )z z,= γ Λ
−

−
−− , we find

J J Jfe ˆ e . (25)n n N n n( ) i ( ) i( )( ) ( )z z z z z, , ,= +γ Λ γ γ Λ
− − −

− − −
−− + −

This equation implies that J n( )
− must be an eigenvector of the transmissionmatrix, f̂ −. Analogously, one can use

(22) and (12) and show that J n( )
+ must be an eigenvector of f̂+. This result reflects the fact that themode’s

polarization is not affected by transmission of themode through the layers.
Next, wewrite (12) in the form

J J Jf ge ˆ ˆ , (26)n n n( ) i ( ) ( )z z,= +γ Λ
+

−
+ + − −+

fromwhich it follows that

J J Jf g ge ˆ e ˆ ˆ . (27)n n N n n( ) i ( ) i( )( ) ( )z z z z z, , ,= +γ Λ γ γ Λ
+

−
+ +

− −
− + ++ + −

Since J n( )
+ is an eigenvector of f̂+, (27) shows that J n( )

+ must also be an eigenvector of the double reflection

matrix, g gˆ ˆ− +. Similarly, it can be shown that J n( )
− is an eigenvector of thematrix g gˆ ˆ+ −. Physically this result

expresses the fact that eachmode reproduces its polarization after two reflections. Tofind themodes, one should
therefore diagonalize thematrices f̂± and g gˆ ˆ∓ ± simultaneously andfind their common eigenvectors.

Once the eigenmodes are found, one can calculate the effective refractive index and impedance for them.
Combining (22) and (A.1), wewrite

( )J Jˆ e ˆ e . (28)n ni2 i ( ) ( )z z, z , zβ α− + =γ Λ γ Λ
± ± ± ±± ±

In the following, we consider a symmetricmetamaterial with ĝ∓ and ĝ± , which have common eigenvectors. For
thesemetamaterials, eigenvectors of the double reflectionmatrix g gˆ ˆ∓ ± are also the eigenvectors of the single

reflectionmatrices, ĝ∓. Hence, thesematrices are diagonal, which leads to diagonalmatrices α̂± and β̂± obtained

from (A.2) and (A.3), assuming that f̂± is also diagonal. Equation (28) then yields

( )( )z z z z 0, (29)2
1, 1,

2
2, 2,α β α β− + − + =± ± ± ± ± ± ± ±

where i,α ± and i,β ± are the diagonal elements ofmatrices α̂± and β̂± and z e i z z,= γ Λ
±

− ± . Subindices 1 and 2 refer
tomodes 1 and 2 of thematerial. In fact, (29) follows directly from (A.14). The solution of (29) is of the form

mi
ln

2 4

1 2
, (30)z

z z
,

2

2

1 2⎡

⎣
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⎛
⎝
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⎤

⎦
⎥⎥γ

Λ
α
β

α
β β

π
Λ

= − ± − +±
±

±

±

± ±

5

New J. Phys. 17 (2015) 063019 VKivijärvi et al



which is identical to the expression given in [19] and [21];m is an integer. The effective refractive index is then
found from

n k k k . (31)x y z
2

0
2 2 2

,
2γ= + +± ±

The impedance is obtained as the ratio of the electric andmagnetic fields. For example, the impedance of s- and
p-polarized eigenmodes is given by the expression [19, 21]

( )
( )

Z Z
k

k

g f

g f

1 1 exp i

1 1 exp i
, (32)

z

z

p
z z

z z

host
,

1
,

1
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γ

γ Λ

γ Λ
=

+ − −

− − −
±

±

±

∓
−

± ±

∓
−

± ±

where p is equal to 1 for s-polarization and−1 for p-polarization. Note that themetamaterial in question can be
spatially dispersive, anisotropic, noncentrosymmetric, and internally twisted.

For aflat boundary between two spatially dispersivemetamaterials with known z,γ ± and Z±, one can obtain
the following generalized Fresnel coefficients [19, 21]:

( ) ( )
( ) ( )

Z Z
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Z

Z
, (33)

z
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where subindices i, t, and r refer to the incident, transmitted, and reflectedwave, respectively. The coefficients
above can be used to calculate the Fabry–Perot transmission and reflection coefficients for ametamaterial slab in
a standardway, and by using (6) and (7), one can evaluate the field distributions in optical beams transmitted
and reflected by the slab.

4. Examples ofmetamaterial slabs interactingwith optical beams

In this section, we apply the developed theoreticalmethods to particular examples of interaction of spatially
dispersive and polarization-convertingmetamaterials with optical beams. Thefirst example demonstrates that
even in the case of highly symmetricmetamolecules such as silver discs, themetamaterial can exhibit significant
polarization conversion, and the polarizationmodes for it can be impossible to introduce for all relevant
incidence angles. Thismeans that formanymetamaterials, the beam-propagation characteristics can be
obtained only by taking into account the polarization conversion of the beamplane-wave components. The
calculations in such casesmust be accomplished using the describedmatrix approachwithout resorting to the
concepts of the effective refractive index and impedance. In the second example, a spatially dispersive
metamaterial that acts as a reflective spatial filter for a focused laser beam is introduced. It consists of disc pairs
aligned in the crystal lattice such that the polarizationmodes of thematerial are the s- and p-polarized plane
waves.We evaluate the effective refractive index and impedance for thesemodes and, using them,we calculate
the intensity profiles and polarizations of optical beams transmitted and reflected by a slab of this spatially
filteringmetamaterial.

4.1. A silver-discmetamaterial
Consider ametamaterial slab consisting of a three-dimensional array of silver nanodiscs embedded in glass. The
discs form a tetragonal lattice with transverse periods 120x yΛ Λ= = nmand a longitudinal period of

180zΛ = nm. The discs have a 30 nm radius and are 20 nm thick. Their normals are aligned in the xy-plane at an
angle of 45° to the x-axis, whichmakes the discs perpendicular to the entrance and exit facets of the slab. A
‘monomolecular’ layer of thematerial is shown infigure 1.

Tofind the polarizationmodes of thismetamaterial and, for example, calculate the refractive index and
impedance associatedwith thesemodes, we numerically evaluate the transmission and reflectionmatrices, τ̂
and ρ̂, of a single layer of suchmetamolecules in glass.We do this for various angles and planes of incidence at
thewavelength of 633 nmof aHeNe laser. The calculations were donewith the help of COMSOLMultiphysics
[37] computer software. The optical characteristics of silver are taken from [38]. As an example, figures 2 and 3
show the polar plots of thematrix elements (absolute values and phases, respectively) of the calculated τ̂ and ρ̂
as functions of the incidence angle θ for the plane of incidence coinciding with the xz-plane. The full three-
dimensional surface plots for the elements of τ̂ and ρ̂ are also shown together with the corresponding cross
sections. The basis vectors are the s- and p-polarization vectors, as explained in section 3. The off-diagonal
elements of thematrices are not negligible, which implies that the s- and p-polarizations are not conserved upon
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their transmission and reflection by the layer. Therefore, the s- and p-polarizedwaves are not themodes of the
material. For each plane of incidence, it can be found that the eigenvectors of thematrices τ̂ and ρ̂ are the same
only at θ=0 and θ=180°, inwhich case themodes have the electric-field vectors perpendicular and parallel to
the discs. At other incidence angles, themodes are not possible tofind, primarily because of the difference
between the diagonal elements of the reflectionmatrix. This differencemakes its eigenvectors differ from those

Figure 1.A single layer of silver-discmetamolecules. Here, 120x yΛ Λ= = nm. Themetamaterial is composed ofmany such layers,
separated by 180zΛ = nm in the z-direction.

Figure 2.The polar plots show the absolute values of thematrix elements (a) ssτ and ssρ , (b) spτ and spρ , (c) psτ and psρ , and (d) ppτ and

,ppρ calculated for a single layer of discmetamolecules embedded in glass (n=1.5) as functions of the incidence angle θ for 633λ =
nm. The plane of incidence coincides with the xz-plane. The polar plots are the cross sections of the complete three-dimensional
surface plots for thematrix elements of τ̂ and ρ̂ shown together with the polar plots.

7

New J. Phys. 17 (2015) 063019 VKivijärvi et al



of τ̂ .We alsowant to emphasize that the off-diagonal elements of τ̂ are nearly equal, in both the amplitude and
the phase, to those of ρ̂. This is as it should be, because the transmitted and reflectedwaves polarized
orthogonally to the incident wave are thewaves radiated in the forward and backward directions primarily by the
excited dipolemoments in the discs. The abrupt changes of the phase observed for the off-diagonal elements of τ̂
and ρ̂ in the three-dimensional plots offigures 3(b) and (c) are purely geometrical, and they are connected to the
symmetry planes of the discs and the direction of the electric field vector of the incident s-polarizedwave that
ignores this symmetry. Returning to the polarizationmodes, we find that they can be introduced for all incidence
angles corresponding to two particular planes of incidence, one parallel and the other normal to the discs. For all
other planes of incidence, the polarizationmodes do not exist.

In spite of the fact that themodes and the related refractive index and impedance cannot be used to
characterize themetamaterial, its interactionwith optical beams can be comprehensively studied by using the
transfer-matrix formalismof section 3 (or the recursive-relations based approach) and the angular spectrum
representation of section 2. First, the plane-wave transmission and reflectionmatrices, t̂ and r̂, of the slab are
calculated for all relevant angles of incidence, using (18)–(21) or (A.4) and (A.5).We have verified that the two
approaches give the same results. Then, using (2) and (3) the incident beam is split into its s- and p-polarized
angular-spectrum components. Each of them ismultipliedwith the correspondingmatrix to obtain the plane
waves after their interactionwith the slab [see (4) and (5)]. Finally, the obtained planewaves are superimposed
by Fourier integration in (6) and (7) into the transmitted and reflected beams. Applying this procedure to a 15-
layer slab that interacts with a three-dimensional Gaussian beam,we obtain the intensity profiles shown in
figure 4. The beam is focused onto the slab surface at normal incidence and has a divergence angle of 30°. It is
linearly polarized, such that the tangential component of its electric-field vector is everywhere on the slab surface
directed along the disc normals. In this case, the optical anisotropy of thematerial cannot change the beam
polarization. Figure 4(a) shows the total intensity distribution of both the incident and transmitted beams, and
figure 4(b) illustrates the intensity of the reflected beam. Thematerial is seen to be quite transparent. However,
an orthogonal polarization component is revealed in both the transmitted and reflected beams. The intensity
profiles of this additional component are shown infigures 4(d) and (e), respectively. Their transverse cross
sections evaluated at a distance of 6 mμ from the slab are illustrated infigures 4(c) and (f). The beams resemble

Figure 3.The polar plots show the phases of thematrix elements (a) ssτ and ssρ , (b) spτ and spρ , (c) psτ and psρ , and (d) ppτ and ,ppρ
calculated for a single layer of discmetamolecules embedded in glass (n=1.5) as functions of the incidence angle θ for 633λ = nm.
The plane of incidence coincides with the xz-plane. The polar plots are the cross sections of the complete three-dimensional surface
plots for thematrix elements of τ̂ and ρ̂ shown together with the polar plots.
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higher-ordermodeswith an intensityminimumat the center. The orthogonal component originates from
polarization conversion of planewaves that do not propagate in the symmetry planes of the discs. The
conversion takes place independently of the initial polarization state of each of thewaves and is caused by spatial
dispersion. The total power converted to the orthogonal polarization comprises 7%of the incident-beampower.
This new phenomenonwould be impossible to reveal without ourmatrix approach taking into account the
polarization conversion by spatial dispersion.

Ourmethods are also perfectly suitable formetamaterials exhibiting strong polarization conversion due to
suchwell-known effects as optical chirality and anisotropy. For example, we have calculated that if the beam in
the above examplewas polarized at an angle of 45°with respect to the disc-orientation direction—say, along the
x-axis—the power conversion efficiency to the orthogonal y-polarizationwould be 9%as a result of optical
anisotropy.

4.2. A silver-dimermetamaterial
In our second example, themetamaterial is composed of silver-dimermetamolecules arranged in a cubic lattice
in glass. The dimers are composed of two discs that share a common axis and are separated by a gap. The discs
have radii of 20 nmand 10 nm, and the gap is 40 nmwide. Both discs are 10 nm thick. The lattice constants are

175x y zΛ Λ Λ= = = nm. The z-axis coincides with the normal of the exit surface of the slab, as in the previous
example. The dimer axes are oriented normal to the slab surface, and such that the incident light faces the
smaller disc first. A single layer of themetamaterial is illustrated infigure 5. These dimermetamolecules exhibit
pronounced higher-ordermultipole resonances [39–41]. As a result, they can form a bifacialmetamaterial [20],
inwhich counterpropagating waves have different impedances.

Numerical calculation of the single-layer transmission and reflectionmatrices, τ̂ and ˆ ,ρ reveals that the
conversion between the s- and p-polarizations is absent for all planes and angles of incidence. Therefore, the
matrices α̂± and β̂± in (28) are diagonal in the basis of s- and p-polarizations, andwe can use (30)–(32) to

Figure 4. Interaction of a focused laser beam ( 633λ = nm)with a polarization-convertingmetamaterial slab. The intensity
distribution of the incident and transmitted beams is shown in (a), while that of the reflected beam is shown in (b). The intensity
profiles of a new, orthogonal polarization component in the transmitted and reflected beams are shown in (d) and (e), respectively.
The transverse intensity profiles of this polarization component in the transmitted and reflected beams at a distance of 6 mμ from the
slab are shown in (c) and (f).

9

New J. Phys. 17 (2015) 063019 VKivijärvi et al



calculate the propagation constant, refractive index, and impedance for the s- and p-polarized eigenmodes. The
results of these calculations are shown infigure 6. The polar plots of n andZ presented in thisfigure as functions
of the incidence angle θ correspond to s-polarizedwaves; the curves for p-polarizedwaves are not shown,
because they essentially overlapwith the illustrated curves. The calculations were performed for λ=525 nm. The
refractive index is seen to be nearly equal to that of glass at all values of θ. It has a remarkably small imaginary
part, especially at large angles of incidence, which implies that the absorption loss is low. Furthermore, the
impedance of thematerial is close to that of glass at all values of θ larger than about 20°. This implies that plane
waves incident onto thematerial fromglass will be transmitted by the glass-material interface, rather than being
reflected from it at these angles. At small angles of incidence, on the other hand, thewave impedance of the
material significantly deviates from the impedance of glass and has a large imaginary part. As a result, thewaves
are expected to be efficiently reflected from thematerial.

The discussed spatially dispersive plane-wave reflection can be used to create ametamaterial-based spatial
filter for optical beams. Assume that an optical beam is incident onto a slab of the describedmetamaterial. As the
parameters n andZhave already been calculated, we can evaluate the Fresnel coefficients, τ and ρ, given by (33)
and (34) and insert them into the following (Fabry–Perot) expressions for the transmission and reflection
coefficients of the slab [20]

Figure 5.A single layer of silver-dimermetamolecules. Themetamaterial is composed ofmany such layers, separated by
175z x yΛ Λ Λ= = = nm in the z-direction.

Figure 6.Real (dotted lines) and imaginary (solid lines) parts of (a) refractive index n and (b) impedanceZ as functions of incidence
angle θ of planewaves at 525λ = nm; n andZ of glass are shownwith dashed lines. The impedance is normalizedwith respect to the
impedance of glass. The imaginary part of the refractive index/impedance ismultiplied/divided by 10 tomake these quantities
comparable with the real parts.
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Here, 1ρ and 2ρ are the reflectivities of the entrance and exit surfaces of the slab. The symmetry of thematerial
implies that z z z, ,γ γ γ= ≡+ − . These plane-wave characteristics allow us to treat the interaction of the slabwith
optical beams. Let the slab be 5 mμ thick and the incident beambe created by focusing a planewavewith a high-
numerical-aperture lens, such that the beamdivergence angle is equal to 60°. Exactly as in the previous example,
wefirst split the beam into its plane-wave components. Then each of these components ismultipliedwith the
corresponding coefficient t, and separately with r, and eventually thewaves are superimposed to yield the beams
transmitted and reflected by the slab. Figure 7 shows the results of these calculations. The longitudinal cross
sections of the incident and transmitted (three-dimensional) beams in the yz-plane are presented in (a) and the
cross section of the reflected beam in (b). The divergence of the reflected beam is seen to be about three times
smaller than that of the incident beam, because of low reflectivity of the beam’s high-spatial-frequency
components. These components propagate through the slab and form a hollow optical beam at the exit. This
demonstrates that the designed spatial dispersion can be used not only for reflective, but also for transmissive
spatialfiltering. Since thematerial is not centrosymmetric, we have considered the reflection of the beam from
the opposite surface of the slab and obtained a slightly lower divergence of the reflected beam (seefigure 7(c)).
Even though the difference is small, it clearly demonstrates the bifacial nature of thematerial.

Spatial filteringwith a spatially dispersivemetamaterial slab fundamentally differs from conventional
pinhole-based filtering. In contrast to pinhole-based devices,metamaterial filters act independently of both the
lateral and longitudinal location of the beam focal spot.

5. Conclusions

In this work, we introduce an approach to treating the interaction of optical beamswith realistic, spatially
dispersivemetamaterials. Themethod allows us to describe the interaction of any continuous-wave beamwith
various crystalline opticalmetamaterials that can, for example, be optically anisotropic or chiral. Formany
metamaterials, spatial dispersionmakes it impossible to introduce the polarizationmodes, which are thewaves
conserving the polarization state upon interactionwith thematerial. In such cases, thewave parameters such as
the refractive index and impedance, are also impossible to introduce. In order to still be able to describe the
interaction of optical beamswith suchmetamaterials, we have developed an approach based on transmission
and reflectionmatrices that takes into account the possible polarization conversion of the beam’s plane-wave
components. Formetamaterials with negligible evanescent-wave coupling betweenmetamolecular layers, we

Figure 7. Interaction of a focused optical beamwith ametamaterial slab. The intensity distributions of (a) the incident and transmitted
beams and (b) the reflected beam show the effect of spatial filtering imposed on the beamby the slab. The red lines show the radial
intensity profiles of the beams at the distance of 10 mμ from the slab surface. The intensity distributions of the beam reflected from the
opposite side of the slab are shown in (c). They differ from those in (b), because themetamaterial is bifacial.
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have introduced an efficient semianalyticalmethod to fully characterize thematerial in terms of the reflection
and transmissionmatrices of a singlemetamolecular layer.

We have applied ourmethods to two particular examples of spatially dispersivemetamaterials. Thefirst
example, dealingwith highly symmetricmetamolecules, underlines the importance of our newmatrix-based
approach that correctly describes all polarization-convertingmetamaterials. The second example illustrates the
effect of spatial filtering imposed by a spatially dispersivemetamaterial slab on a beam reflecting from the slab
surface. The effect is completely insensitive to the coordinate of the focal spot of the incident beam,which
cannot be achievedwith conventional pinhole-based spatial filters.

The developments presented in this work take a significant step forward in describing the interaction of light
with opticalmetamaterials bymoving fromplanewaves to realistic optical beams and beam-likefields. Since the
model presented in this paper is currently the only one that can properly treat this interaction, we anticipate that
it will attract significant attention from the scientific community and lead to useful applications. In principle, it
can also be adapted to radio-frequency beams and even acoustic beams interactingwith anisotropic and spatially
dispersive periodic structures.
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Appendix. Recursivematrix-relationmethod

In section 3.1, we determined thematrices t̂± and r̂± using a transfer-matrixmethod.Herewe show that t̂± and
r̂± can also be obtained in an alternative way by drawing a connection between the Jones vectors at a
metamolecular layer n and the two adjacent layers n 1− and n 1+ . A similar approachwas used in [21] to
describemetamaterials in terms of their s- and p-polarized eigenmodes. The approach here is also suitable for
metamaterials that do not support these or other polarizationmodes.

We start by combining (12) and (13) to obtain

J J J 0ˆ ˆ , (A.1)n n n( 1) ( 1) ( )β α+ − =± ±
+

±
−

± ±

where

f g f gˆ ˆ ˆ ˆ ˆ (A.2)
1 1β =± ±

−
∓ ∓ ∓

−

and

( )( )f g g g f g fˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ . (A.3)
1 1 1α = − − −± ±

−
∓ ± ∓

−
∓ ∓

−
±

Equation (A.1) relates thewaves propagating in a certain positive (upper subscript) or negative (lower subscript)
direction through three adjacentmetamolecular layers. Therefore, one can calculate the Jones vector at the
output of anN-layermetamaterial slab, starting from the incident Jones vector. This allows us towrite the
transmission and reflectionmatrices in terms of f̂± and ĝ± as

t fˆ ˆ ˆ , (A.4)1χ=± ± ±
−

r K gˆ ˆ ˆ ˆ , (A.5)
N( ) 1χ=± ± ± ±

−

where

G G fˆ ˆ ˆ ˆ ˆ , (A.6)
N N( ) ( 1)χ β= −± ± ±

−
± ±

G K 0ˆ ˆ ˆ , (A.7)
(0) (0)= =± ±

G K Iˆ ˆ ˆ, (A.8)
(1) (1)= =± ±

G G Gˆ ˆ ˆ ˆ ˆ , (A.9)
N N N( ) ( 1) ( 2)α β= −± ± ±

−
± ±

−

( )K K Kˆ ˆ ˆ ˆ ˆ . (A.10)
N N N( ) 1 ( 1) ( 2)β α= −± ∓

−
∓ ±

−
±

−

These expressions formatrices t̂± and r̂± can either be used to check the validity of (18)–(21) or directly inserted
in (6) and (7) to calculate thefields of transmitted and reflected optical beams.
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Matrices Ĝ
N( )

± (as well as K̂
N( )

± ) can be found in amore efficient way than recursion by using the Z-transform
[42]

{ } ( )Z z z z zG Hˆ ˆ ( ) ˆ ˆ , (A.11)
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written in accordance with the recurrence relation in (A.9). In fact, zĤ ( )± is a ‘spectral’ representation of theN:

thmatrix of the series as a function of ‘frequency’ z. The inverse Z-transformof zĤ ( )± then yields the following

analytical expression for Ĝ
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Here, ijδ is the Kronecker delta,αij and ijβ are the elements of α̂± and β̂±, and zk are the four roots

(k 1, 2, 3, 4= ) of the algebraic equation
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Equations (A.13) and (A.14)may seem complicated, but are not particularly computationally demanding.

Matrices K̂
N( )

± in (A.10) are solved in exactly the samemanner as Ĝ
N( )

± , using the Z-transform and α̂± and β̂±

replacedwith ˆ ˆ
1

β α∓
−

∓ and ˆ 1
β∓

−
, respectively.
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