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Abstract. The present work considers the evolution of the crack tip plasticity ahead of the crack-like 

notches with varying the loading condition and the thickness of laser stake-welded T-joints. A general 

procedure is described for the fatigue assessment of the joints under different loading conditions and made 

of different thicknesses. The new method is based on the analyses of the first order plastic radius (according 

to Irwin) for pure mode I, and it is generalized to mixed mode (I+II) by using the Minimum Plastic Zone 

Radius (MPZR) criterion. The method is validated, in the end, with a case study and explains why the 

fatigue slope m varies for joints loaded under bending/tension and when the thickness is reduced. The 

results prove that the procedure gives an excellent estimation of the fatigue life. 

1 Introduction  

Research, development, and production of laser stake-

welded joints have been pushed and supported by the 

demand of light and safe structures in different fields. 

Indeed, weight reduction is a very important aspect. In 

marine design, for instance, thin sandwich panels have 

been employed to replace thick plates and reduce the 

overall weight. The panel consists of thin plates 

assembled together by using laser welding process and 

by realizing laser stake-welded T-joints (see Fig. 4). 

From the first reports published in the late ‘90s [1–3], 

laser stake-welded T-joints showed an unexplained 

difference in fatigue behaviour (slope of the fatigue 

curve) when the loading condition (tension VS bending) 

and the thickness of the plates connected (thin VS thick 

structures) are varied. These results were later found and 

confirmed by other authors [4–7]. Few studies have tried 

recently to explain why the slope of the fatigue 

resistance curve changes with the loading conditions and 

the thickness of the plate. Fundamental contributions 

have been provided by Frank and collaborators [8–11] 

that re-analysed the slope variations by employing a 

stress gradient defined by the authors, at the crack tip. 

This parameter showed a higher gradient of elastic 

stresses in bending than in tension and in thin than thick 

plates (similar findings were reported in [12]). The stress 

field analysis ahead of the crack tip also proved that the 

mixed-mode ratio is strongly influenced by the face plate 

thickness. Recently, Gallo et al. [13,14] showed that the 

difference in the fatigue slope of laser stake-welded T-

joints was explained by analysing the stress distribution 

and plastic zone ahead of the crack tip. 

Thus, the short literature review reported above 

shows that the fatigue strength is affected by the plate 

thickness and the loading mode. Based on these 

observations, the method proposed in this work is based 

on the first-order plastic zone size ry according to Irwin 

combined with the Minimum Plastic Zone Radius 

(MPZR) criterion: two joints with the same ry in the 

MPZR direction are compared, and the stress gradient 

over ry (along the MPZR direction) is evaluated by finite 

element (FE) analyses. The first-order plastic zone, 

indeed, permits a fast evaluation of a so-called crack 

driving force and a direct comparison of the stress 

gradient between joints of different geometries and load 

configurations. The MPZR criterion, instead, permits to 

evaluate the direction of the crack initiation rapidly and 

therefore to define the correct orientation under mixed-

mode (I+II) loading condition. The methods initially 

formulated by Gallo et al. separately for thick joints 

(only for tension and bending loads) [13], and later for 

joints of different thicknesses [14], is reformulated here 

in a unified formulation that applies indistinctly to all 

configuration of loads and/or thicknesses. The method is 

then verified with experiments taken from the literature 

[8,9]. 

2 Analytical frame  

2.1. Generalized definition of the representative 
crack driving force ratio  

The quantification of the size of the crack tip yielding 

zone was first proposed by Irwin in the 1960s [15,16]. 

He combined a mode I singular stress field (in the crack 

plane) with a yielding criterion, i.e. σyy = √3σYS for plane 

strain and σyy = σYS for plane stress, and assumed an 

elastic perfectly plastic behaviour of the material. He 

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
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then derived the so-called first-order estimation of the 

plastic zone size ry (see Fig. 1) and, by simple force 

balance within the forces F1 and F2 depicted in Fig. 1b, 

the second-order estimation of the plastic zone size rp 

[17]: 
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Fig. 1. a) Example of the first-order ry and second-order rp 

plastic radius, and b) stress redistribution and force 

equilibrium; plane strain. 

 

In the method proposed in the present work, same 

first-order plastic radius ry along θ0, as depicted in Fig. 2, 

is assumed as a condition to compare two joints. The 

force F1 depicted in Fig. 2 is assumed as the crack 

driving force, and can be used to quantify the stress 

gradient variation between joints of different loading 

conditions or thicknesses [13,14]. 

 

 
 
Fig. 2. Schematic representation of the crack driving force F1 

and first-order plastic zone size ry in the MPZR direction. 

 

The crack initiation angle θ0 is evaluated by using the 

Minimum Plastic Zone Radius (MPZR) criterion and 

defined as the minimum distance to the crack tip, i.e., in 

the direction of a relative MPZR where the 

circumferential stress is tensile according to Refs. 

[14,18,19]. The elastic-plastic boundary, instead, is 

defined according to the von Mises yield criterion. It is 

verified in [14] that the crack initiation angle θ0 that is 

obtained is close to the direction reported experimentally 

in the literature [11]. Being the plastic shape affected by 

the loading modes, the crack driving force evaluated 

over ry, but in the θ0 direction (see Fig. 2), permits the 

implicit consideration of the mixed-mode effect. Table 1 

lists the values of 0 for different face plate thicknesses. 

Theoretically, θ0 can be obtained by minimizing the 

equation of the elastic-plastic boundary (radius of the 

core region) r of Eq. (4), i.e.: 
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Table 1. Mixed-mode ratios achieved and crack initiation 

direction (see Figures 2 and 4). 
 

Specimen 0 0 exp. [11] 

 (deg) (deg) 

tf = 2.5 mm 55 45-50 

tf = 8 mm 20 30 

tf = 16 mm 7 - 

 
The crack driving force is theoretically defined as 

assuming a plane strain condition by the following 

integral: 

1

0

dr 3   
yr

YS y
F r                                                (5) 

where σθθ is the generic tensile elastic stress distribution, 

in polar coordinates. For pure mode I and large 

thicknesses, the angle θ0 becomes 0. The ratio between 

the force F1 of two generic joints A and b, assuming the 

same ry along the MPZR direction, is defined as the 

representative crack driving force ratio, FR: 

1 b

1 A


R

F
F

F
                                                                      (6) 

The crack driving force ratio is then used as a 

correction parameter to define an effective J-integral √Jeff 

in the next section.
 

The definition above, based on Irwin’s monotonic 

plastic zone, neglects any contribution of the cyclic 

plasticity. However, the reversed plastic zone is 

approximately ¼ of the size of the monotonic plastic 

zone and therefore very small in the cases considered 

here. Additionally, its contribution to high fatigue load 

levels becomes even less relevant [21]. 

2.2 Estimation model 

The present authors assume that the fatigue curve of two 

generic joints with different fatigue slopes can be 

derived from each other if the slope effect due to the 

stress gradient is considered through the crack driving 

force ratio FR. On the basis of these assumptions, the 

fatigue curves of two generic series of joints (A and b), 

in terms of the square root of the J-Integral, are defined 

by these Wӧhler equations [8,10] (for load ratio R=0): 
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Where √J is a generic load, m is the slope of the 

curve, Nf is the number of cycles to failure, and C is a 

constant. In order to take into account the slope effect 

and the relationship between the fatigue resistance 

curves, the fatigue curve of an arbitrary joint b is 

expressed as a function of the parameters of the curves 

of the joints A through the effective J-integral, defined as 

follows [13]: 

 

 eff R
J J F                                                               (9) 

As a consequence, Eq. (8) is rewritten as follows: 

  , 
Am

eff f b A
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The equation shows that if the effective J-integral is 

employed in the fatigue curve of the generic joints A, the 

number of cycles to failure of the joints b is easily 

derived. 

On the basis of the FR concept introduced earlier, the 

following procedure can be used to derive the number of 

cycles to failure of the considered joints [13,14]:  

1. At first, the crack initiation direction, 0,A  for 

joint type A and 0,b for joints type b, should be 

derived by using finite element analysis and 

according to the MPZR criterion; 

2. once the desired √J is selected, the 

corresponding force F1 A and first-order plastic 

radius ry in the 0,A direction (see Fig. 2) should 

be calculated through finite element analysis; 

0,A tends to 0 for large thicknesses under 

tension loads; 

3. through finite element analysis, evaluation of 

the equivalent force F1 b for the joints of type b 

in the 0,b direction, assuming the same first-

order plastic radius as evaluated in the previous 

step (the external load is determined by trial and 

error until the target ry is obtained); 

4. evaluation of FR as defined by Eq. (6); 

5. evaluation of the effective √Jeff according to Eq. 

(9); 

6. the new effective J-Integral is then used as the 

input parameter in the fatigue curve equation of 

the joints A and the number of cycles to failure 

of the joints b is obtained; Eq. (10). 

A simple diagram summarizing the procedure is 

proposed in Fig. 3. 

 

 
 

Fig. 3. Diagram of the procedure proposed for the 

determination of the number of cycles to failure, R=0. 

 

The procedure is valid until the crossing 

point/endurance limit of the two curves is reached (i.e., 

two million cycles) after which run-out specimens were 

obtained for all the considered joints [8,11]. Indeed, the 

difference in the plasticity at the crack tip of two joints 

vanishes at the endurance limit. As a consequence, the 

difference between the crack driving forces becomes 

also negligible.  

3 Case study 

The model is verified against data taken from [8]. Two 

configurations have been considered: (i) Joints loaded 

under tension were compared to joints loaded under 

bending by keeping the same geometry (tf =8 mm, tw = 8 

mm, see Table 2 and Fig. 4); (ii) The joints were loaded 

only under tension and the thicknesses were varied. The 

selected geometries are represented in Fig. 4 and listed in 

Table 2. The mechanical properties are the same for all 

the considered joints: E = 206 GPa, σYS = 235 MPa, σUTS 

= 400 MPa. 

The joints were modeled by means of the ANSYS® 

APDL15.0 finite element software package and several 

numerical simulations under linear elastic conditions 

were carried out. The 2D 8-node element type 

PLANE183 was employed with unit thickness, while 

plane strain condition was assumed. Mechanical 

properties are reported in Table 2. With respect to a real 

T-joint, the symmetry along the web plate axis was 

assumed, and the web-face gap was neglected since 

being on average only 9 μm [8]. In addition, the contact 

and the gap between the crack surfaces are not modeled 

since the very low effect on the final results as observed 

in [4,22]. Several FE simulations were carried and are 

listed in Table 3 and 4 together with the corresponding 

numerical J-integrals. These are in agreement with the 

theoretical elastic J-integrals [23,24].  

 

 
 

Fig. 4. Case study: a) laser stake-welded T-joint geometry and 

b) example of the application of constraints and loads. 

 

 
Table 2. Mechanical properties and geometry of the joints. 

σYS=235 MPa, σUTS=400 MPa, E=206 GPa. 
 

tf lf tw lw a D1 D2 

mm mm mm mm mm mm mm 

2.5 100 4 60 1.27 4.8 44 

8 100 8 60 2.50 3.2 44 

16 100 14 60 4.25 0 44 

 
 

 

a) b) 
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Table 3. Load levels, corresponding numerical J-integral and 

applied nominal loads for the joint loaded under tension and 

bending (tf =8 mm, tw = 8 mm, see Table 2); σnom refers to the 

gross area. 
 

Load ry J tension J bending σnom P 

Level mm kJ/m2 kJ/m2 MPa N/mm 

1 0.010 0.0159 0.0163 16.875 1.65 

2 0.075 0.1133 0.1269 45 4.60 

3 0.152 0.2141 0.2733 61.875 6.75 

4 0.231 0.3146 0.4711 75 8.75 

5 0.306 0.4053 0.6996 85.125 10.80 

 

 
Table 4. Tension loads applied to the joints with thicknesses 

variation; σnom,net refers to the actual cross-section area of the 

weld (2b in Fig. 4). 
 

  

tf = 2.5 mm tf = 8 mm tf = 16 mm 

Load ry J σnom,net J σnom,net J σnom,net 

Level mm kJ/m2 kJ/m2 kJ/m2 MPa MPa MPa 

1 0.051 0.1647 136 0.2171 154 0.2309 153 

2 0.082 0.2752 175 0.3481 195 0.3682 193 

3 0.104 0.3600 201 0.4431 220 0.4739 219 

4 0.135 0.4862 233 0.5721 250 0.6091 249 

5 0.171 0.6414 268 0.7177 280 0.7568 277 

 

4 Results and discussion 

4.1 Joints loaded under tension and bending 

 
Table 5 summarizes the results by comparing the 

estimated and experimental [8] number of cycles to 

failure of the joints under bending loads. The method 

gives an excellent estimation with a maximum 

discrepancy of 16%. 

 
 

Table 5. Comparison between estimated and expected number 

of cycles to failure for bending load. * fatigue slope m =4.2; ** 

fatigue slope m =7; fatigue strength at two million cycles is 

0.37 kJ0.5/m for all the curves [8]. 
 

Load 

Level FR ratio √J √Jeff Nf bending Nf bending ∆% 

 

bend./ten. kJ0.5/m kJ0.5/m Estim.* Exp.** 

 
1 1 0.1263 0.1263 >2.00E+06 >2.00E+06 - 

2 1.07≈1 0.3365 0.3365 >2.00E+06 >2.00E+06 - 

3 1.17 0.4627 0.5417 4.04E+05 4.18E+05 -3% 

4 1.28 0.5609 0.7179 1.24E+05 1.09E+05 14% 

5 1.39 0.6366 0.8827 5.19E+04 4.48E+04 16% 

4.2 Joints loaded under tension with a variation 
of the thickness 

Table 6 and Table 7 compares the estimated and 

experimental [8] number of cycles to failure of joints of 

different thicknesses. The maximum discrepancy is only 

19% and therefore the results are in good agreement with 

experiments.  

 
Table 6. Estimated and expected number of cycles to failure 

for thin joints, evaluated from FE analyses of the thick joints tf 

= 8 mm; FR= F1 tf=2.5 mm/F1 tf=8 mm. 
 

Load  

Level FR √J √J eff Nf estimated Nf exp. Δ% 

tf =8 mm 

 

kJ/m2 kJ/m2 tf =2.5 mm tf =2.5 mm 

 1 1.033 0.4659 0.4813 7.44E+05 7.54E+05 -1% 

2 1.066 0.5900 0.6289 2.72E+05 2.78E+05 -2% 

3 1.086 0.6656 0.7228 1.61E+05 1.67E+05 -3% 

4 1.121 0.7564 0.8477 8.86E+04 9.71E+04 -9% 

5 1.159 0.8472 0.9822 5.09E+04 6.01E+04 -15% 

 

Table 7. Estimated and expected number of cycles to failure 

for the thin joints evaluated from FE analysis of the thick joints 

tf = 16 mm; FR= F1 tf=2.5 mm/F1 tf=16 mm. 
 

Load  

Level FR √J √J eff Nf estimated Nf exp. Δ% 

tf = 16 mm 

 

kJ/m2 kJ/m2 tf = 2.5 mm tf = 2.5 mm 

 1 1.043 0.4815 0.5020 6.35E+05 6.57E+05 -3% 

2 1.077 0.6087 0.6557 2.33E+05 2.44E+05 -4% 

3 1.097 0.6862 0.7531 1.38E+05 1.47E+05 -6% 

4 1.134 0.7789 0.8830 7.60E+04 8.58E+04 -11% 

5 1.178 0.8700 1.0246 4.34E+04 5.38E+04 -19% 

4.3 Slopes variations 

By considering the joints with different thicknesses as an 

example, the more significant crack driving force F1 of 

the thin joints generates a higher level of damage in the 

representative fatigue volume, which results in a lower 

number of cycles to failure. The physical meaning of this 

statement is shown in Fig. 5. The label 1 represents a 

high number of cycles (low load levels), while the label 

2 represents the low number of cycles situation (high 

load levels). In case 1, approaching the fatigue limit, the 

thin and thick joints have the same stress redistribution; 

for the case 2, the crack driving force F1 of the thin 

plates (F1,t blu area) is higher than the thick case (F1,T 

black area). Same identical comments can be made if 

joints loaded under tension and bending are compared 

instead. Therefore, for a chosen number of cycles to 

failure, this phenomenon is considered by a lower value 

of √J for the thin joints needed to generate the same 

amount of damage. The parameter FR defined by Eq. (6) 

estimates correctly the ratio within √J for the thin and 

thick joints and for the bending and tension joints, at the 

same number of cycles to failure. This gives the 

possibility to evaluate the number of cycle to failure of 

thin plates on the basis of the thick joints fatigue curve 

(more easy to obtain experimentally). Similarly, joints 

loaded under bending can be assessed by considering the 

fatigue curve of the joints loaded under tension. 
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Fig. 5. High load-level (2) and low load-level (1) crack driving 

force, and matching with fatigue curves taken from [8]; the 

subscript T stands for thick, t stands for thin. 

The results show, in addition, that the plastic radius 

develops faster for the thin joints than for the thick joints 

and therefore the first order plastic radius in the MPZR 

direction is subjected to a bigger crack driving force. 

Fig. 6 reproduces an example of the plastic radius of the 

thin joints for the highest load levels (therefore the worst 

scenario with the largest plastic zone). The picture has 

been realized by keeping real ratio between dimensions 

and it gives an idea of the size of the plastic radius 

compared to the thicknesses involved. The figure proves 

that the plastic radius is effectively rotated (55 deg), and 

that its size is relatively small compared to the 

thicknesses. This result additionally confirms that the 

Irwin’s approach is reasonable since small scale yielding 

condition is verified. Same results are obtained when 

thick joints loaded under tension and bending are 

considered. With the difference that the plastic ratio has 

a smaller or negligible rotation. 

 

Fig. 6. Representation of the largest plastic radius for the thin 

joints loaded under tension (load level 5 in Table 4). 

 

5 Conclusions 

The influence of local plasticity due to thickness 

variation and loading conditions on the fatigue behaviour 

of laser stake-welded T-joints was investigated in this 

contribution. A generalized new model for the fatigue 

life estimation was also presented.  

The results show that the difference in the slope of 

the fatigue resistance curve is related to the stress 

gradient at the crack tip. By considering this effect, the 

proposed model permits to evaluate the number of cycles 

to failure of the “thin” joints from the fatigue curve of 

the “thick” joints. Similarly, the method permits to 

evaluate the number of cycles to failure of the joints 

loaded under bending from the fatigue curve of the joints 

loaded under tension. The results are all verified with 

experimental evidence. The method presents clear 

limitation when the fatigue mechanisms are not related 

to the stress gradient, or when the stress gradient effect is 

too low to be meaningful. In those cases, the specific 

fatigue mechanisms should be correctly identified and 

analytical/numerical methods applied coherently. 

Nevertheless, it is interesting to note that for laser welds, 

especially of reduced thickness, the gradient effect seems 

to be always relevant (as summarised in the 

introduction).  

As a future development, a more precise 

characterization of the plasticity at the crack tip should 

be carried out experimentally; in addition, new 

experiments considering other thicknesses and loading 

conditions would be relevant.  
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