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Abstract

Variations in scaling behavior in the flux and emissions of distant astronomical sources with respect to their cosmic
time are important phenomena that can provide valuable information about the dynamics within the sources and
their cosmological evolution with time. Different studies have been applying linear analysis to understand and
model quasars’ light curves. Here, we study the multifractal behavior of selected quasars’ radio emissions in their
observed frame (at 22 and 37 GHz bands) and their rest frame. To this end, we apply the wavelet transform-based
multifractal analysis formalism called wavelet transform modulus maxima. In addition, we verify whether the
autoregressive integrated moving average (ARIMA) models fit our data. In our work, we observe strong
multifractal behavior for all the sources. Additionally, we find that the degree of multifractality is strongly similar
for each source and significantly different between sources at 22 and 37 GHz. This similarity implies that the two
frequencies have the same radiation region and mechanism, whereas the difference indicates that the sources have
intrinsically different dynamics. Furthermore, we show that the degree of multifractality is the same in the observed
and rest frames of the quasars, i.e., multifractality is an intrinsic property of radio quasars. Finally, we show that the
ARIMA models fit the 3C 345 quasar at 22 GHz and partially fit most of the time series, with the exception of the
3C 273 and 3C 279 quasars at 37 GHz, for which the models are found to be inadequate.

Key words: galaxies: active – methods: statistical – quasars: individual (3C 273, 3C 279, 3C 345, 3C 454.3)

1. Introduction

Radio astronomy remains one of the most significant
research areas in astronomy and cosmology to date; this is
because a wide variety of astronomical objects that are not
detectable in the optical wavelengths, as well as thermal and
nonthermal radiation mechanisms and propagation phenomena,
can be studied at radio wavelengths. Radio observations have
played a significant role in the discovery, subsequent observa-
tion, and classification of active galactic nuclei (AGNs), radio
galaxies, and other radio sources (e.g., Greenstein & Schmidt
1964; Reynolds & Begelman 1997; Hota & Saikia 2006;
Brocksopp et al. 2007; Saikia & Jamrozy 2009; Tamhane et al.
2015; Kharb et al. 2016; Singh et al. 2016). Moreover, as an
application of radio astronomy, studying the behavior of the
radio luminosity function (e.g., Dunlop & Peacock 1990;
Willott et al. 2001) plays a significant role in understanding the
formation and evolution of radio galaxies and the cosmological
evolution of radio sources, which in turn help to uncover the
physics of the early universe.

Quasars, an extremely luminous compact region thought to
reside at the center of galaxies, are distant astronomical objects
that belong to a subclass of AGNs (e.g., Courvoisier et al.
1987; Fernandes et al. 2017; Padovani et al. 2017; Patiño-
Álvarez et al. 2017). Flat-spectrum radio quasars, which
include both high- and low-polarization quasars (HPQs and
LPQs, respectively), along with BL Lac objects, form a subset
of AGNs known as blazars. The former are known for their

high luminosity and strong and broad emission features in their
spectra, whereas the latter are known for their low luminosity
and very weak or even absent emission features in their spectra
(Marchã et al. 2001). Radio-loud quasars/blazars show some
of the most violent high-energy phenomena observed in AGNs
to date. They emit radiation across the electromagnetic
spectrum, from the radio to X-rays and/or gamma-rays (e.g.,
Courvoisier et al. 1987; Villata et al. 2009; Fernandes et al.
2017; Padovani et al. 2017; Patiño-Álvarez et al. 2017) and
have the characteristics of very high luminosity, nonthermal
radiation, strong radio emission, and large flux fluctuations and
have been known as highly variable energetic sources across
the electromagnetic spectrum, though most (if not all) of them
are strongly variable in a very short timescale at higher
frequencies (Cotton et al. 1979; Courvoisier et al. 1988; Dondi
& Ghisellini 1995; Netzer et al. 1996; Ulrich et al. 1997;
Wehrle et al. 1998; Lawson et al. 1999); moreover, high and
variable polarization and superluminal motion are character-
istics of blazars. The low-energy blazar emission is thought to
be the result of electron synchrotron radiation, with the peak
frequency reflecting the maximum energy at which electrons
can be accelerated (Petropoulou & Dimitrakoudis 2015).
The timescale variability and other properties of AGNs in

general, and of quasars in particular, have been extensively
studied at several radio frequencies using different time series
analyses approaches. Here, we study the multifractal behavior
of selected radio-loud quasars, such as 3C 273, 3C 279, 3C
345, and 3C 454.3. The flat-spectrum radio-loud quasar 3C 273
is an LPQ (Valtaoja et al. 1991; León-Tavares et al. 2011) at a
distance of z=0.158 (Arp 1995). This radio quasar has been
monitored by Metsähovi Radio Observatory at 22 and 37 GHz
for 24 and 39 yr, respectively, and it is among AGNs whose
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emission has been studied at all wavelengths (Courvoisier et al.
1987, 1990). Particularly, the radio variability of 3C 273 has
been studied by Türler et al. (1999) and Türler et al. (2000).
The HPQ quasar 3C 279 (León-Tavares et al. 2011) at z=
0.536 (Netzer et al. 1996) has been observed by Metsähovi
Radio Observatory at 22 and 37 GHz for 24 and 39 yr,
respectively. The flat-spectrum radio quasar 3C 279 has been
known as one of the brightest quasars at all wavelengths, and
its multiwavelength behavior and jet structure have been
studied by different authors (e.g., Hartman et al. 2001;
Chatterjee et al. 2008; Zheng & Yang 2016). The HPQ quasar
3C 345 (León-Tavares et al. 2011) at a distance of z=0.595
(Burbidge 1965; Moore & Stockman 1984; Netzer et al. 1996)
is one of the most studied radio-loud flat-spectrum quasars
whose radio spectrum is dominated by a flat-spectrum core
(Kollgaard et al. 1989). The quasar 3C 345 has been monitored
by Metsähovi Radio Observatory at 22 and 37 GHz for 24 and
38 yr, respectively. The radio flux observations of 3C 345 have
shown that variations are common in the radio frequency range
(Aller et al. 1985). Vio et al. (1991) indicated that the light
curve of 3C 345 is nonlinear and stochastic. The quasar 3C
454.3 is an HPQ (León-Tavares et al. 2011) at z=0.859
(Netzer et al. 1996) with a flat spectrum that belongs to the
blazar class of AGNs (Villata et al. 2006), which has been
studied across the electromagnetic spectrum (Jorstad et al.
2010) and is known as variable source at all wavelengths. This
quasar has been monitored by Metsähovi Radio Observatory at
22 and 37 GHz for 24 and 38 yr, respectively.

Using the structure function, the discrete correlation, and
Lomb-Scargle periodogram analysis approach, Hovatta et al.
(2007) have studied the variability timescales of a sample of
AGNs, including our candidates at several frequencies between
4.8 and 230 GHz, have shown that the slopes between
frequencies were different, and did not find a significant
difference between most of the sources. Similarly, Valtaoja
et al. (1992b) studied variability timescales of a sample of AGNs
including our sources at 22 and 37 GHz and found that the
spectral and variability characteristics between most of the
sources were very similar, except for the difference observed
between HPQs and LPQs. Additionally, Hovatta et al. (2008)
have studied the variability behavior of 80 AGNs including our
candidates at 22, 37, and 90 GHz using wavelet analysis and have
shown that the timescales at 22 and 37 GHz did not differ
significantly from source to source. Using the structure function
analysis, Wang & Yang (2010) studied the variability character-
istics of 3C 273 and 3C 345 at 22 and 37 GHz and found that
each source has similar slopes at these two frequencies, indicating
that, for both sources, the two frequencies have the same region
and mechanism. Moreover, Valtaoja et al. (1992a) studied the
flux variations of extragalactic radio sources at 37, 22, 14.5, 8,
and 4.8 GHz and suggested that all outbursts in AGNs have
similar evolutionary tracks, defined by the motion of the turnover
peak of the shock spectrum in time, and most of the observed
differences result from variations of the frequency at which the
outburst reaches its maximum development. Similarly, Valtaoja
et al. (1999) studied the total flux density variations of a group of
AGNs at 22 and 37 GHz and have shown that the variations were
adequately decomposed into flares having an exponential rise.

See Zhang et al. (2018), Berton et al. (2018), Gupta et al.
(2017), Jorstad et al. (2013), Bachev et al. (2011), Dong et al.
(2010), Schinzel et al. (2010), Villata et al. (2009), Chatterjee
et al. (2008), Raiteri et al. (2008), Hovatta et al. (2007),

Lindfors et al. (2006, 2005), Lawson et al. (1999), Valtaoja
et al. (1991, 1992a, 1999), Wehrle et al. (1998), Stevens et al.
(1994), and Courvoisier et al. (1990, 1987) for more studies on
the variability timescale and other physical properties of our
candidates across the electromagnetic spectrum.
Most (if not all) of the approaches used in the aforemen-

tioned works were linear analyses. Here, we apply a nonlinear
analysis approach to reveal the nonlinear characteristics about
the sources considered, and this is the main motivation for
investigating the new methods and emphasizes the importance
of the present work. In this work, we apply a wavelet
transform-based multifractality analysis approach called wave-
let transform modulus maxima (WTMM) and study the
multiscaling or multifractal behavior of the quasars 3C 273,
3C 279, 3C 345, and 3C 454.3 radio observations at 22 and 37
GHz. Why multifractality analysis? Most astrophysical objects
are possibly associated with continuous nonlinear stochastic
systems because of their complexity in nature. A fractal
behavior can be observed in the time series of complex systems
(Maruyama 2016). It has been shown that quasars, in general,
are among complex systems that have nonlinear time series
characterized by fractal behavior (Vio et al. 1991) and also by
sudden bursts of very large amplitude (Kidger 1989; Barbieri
et al. 1990), which implies that the dynamical evolution of
quasars is nonlinear (i.e., described by nonlinear stochastic
differential equations) (Vio et al. 1991). Additionally, there is a
suggestion that extragalactic radio sources are intermittent on
timescales of ∼104–105 yr (Reynolds & Begelman 1997).
Traditionally, different classical approaches, such as power
spectrum function, structure function, power spectrum-period-
ogram, covariance analyses, and others, which are suitable only
for addressing the signals characteristic of linear systems (Vio
et al. 1992), have been used to analyze and study nonlinear
signals because of the unavailability of better approaches that
are necessary to gain detailed information about the dynamics
of complex systems. The multifractal formalism was intro-
duced in the mid-1980s to provide a statistical description of
the fluctuations of regularity of singular measures found in
chaotic dynamical systems (Halsey et al. 1986). Currently,
multifractal analysis is being used in several fields of science to
characterize nonlinearity or detect singularity in various types
of signals from complex systems and to study correlations
between different physical parameters (Trevino & Dal Negro
2012). Currently, the multifractal analysis approach has been
applied to a large number of empirical, as well as theoretical,
studies of a wide variety of problems. As an example, using
multifractality analysis, it has been shown that the X-ray light
curve of the BL Lac object PKS 2155-304 is monofractal, and
the optical light curve of the quasar 3C 345 has a multifractal
nature—nonlinear behavior (Vio et al. 1992). In addition, using
multifractality analysis, it has been shown that the distribution
of The Infrared Astronomical Satellite galaxies is homoge-
neous at the large scale (Pan & Coles 2000), which is in
agreement with the cosmological principle. Additionally,
Bewketu Belete et al. (2018) have studied the fractal nature of
the light curves of 3C 273 at specific frequencies across its
electromagnetic spectrum and have shown that most of the light
curves have presented a multifractal signature, confirming the
nonlinear and intermittent nature of the source. For more studies
on multifractality analysis by different authors in different science
cases, see Maruyama et al. (2017), Maruyama (2016), Kasde
et al. (2016), Agarwal et al. (2016), de Freitas et al. (2016),
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Aliouane & Ouadfeul (2013), Jagtap et al. (2012), Ouahabi &
Femmam (2011), Nurujjaman et al. (2009), Lin & Sharif (2007),
and Degaudenzi & Arizmendi (1998).

The aims of our work are as follows: (i) to study the
multifractal behavior (if any) of selected radio-loud quasars
located at different redshifts, (ii) to verify how fractal
signatures of each source, and between sources, behave at 22
and 37 GHz (any similarity or difference? If yes/no, what can
we learn about them?), and (iii) to determine any possible
correlation between multifractal behavior and redshift at those
two frequencies, i.e., how the fractal signature of these
radiations change with redshift (the cosmological evolution of
quasars’ radio emissions from the view of multifractality
analysis). The first aim helps to draw a conclusion regarding
whether radio-loud quasars are multifractal/intermittent and
nonlinear systems. From the second aim, we can roughly
understand whether the selected radio frequencies have the same
radiation region and mechanism. Furthermore, knowledge of the
correlation between multifractal behavior and redshift is essential
not only for robustly understanding the cosmological evolution
of quasars’ multifractal signature at specific radio frequencies
and for interpretation of the behavior of the relativistic plasma
and nonthermal radiation associated with the jet outflowing from
the black hole/accretion disk systems but also for supporting the
claim that quasars’ redshift is cosmological in nature. In all our
discussions, a flat ΛCDM cosmology with Ωλ=0.70, Ωm=
0.3, and = -H 70 kmso

1 Mpc−1 is used, unless otherwise
specified. Our work is structured as follows: in Section 2, we
present the light curves of the data used, the method, and
procedures. The results obtained and a discussion are presented
in Section 3, and the summary and conclusions are included in
Section 4.

2. Data Collection, Method, and Procedures

2.1. Data Collection: Light Curves

We have collected the radio flux data of the sources 3C 273,
3C 279, 3C 345, and 3C 454.3, at 22 and 37 GHz frequencies,
from Aalto University Metsähovi Radio Observatory in
Finland. We have full light curves for 37 GHz and only up
to 2004 for 22 GHz. Some of the most recent data have not
been published yet, and the light curves up to 2004 are
published in Teräsranta et al. (2005). Our selection of these two
frequencies takes advantage of the very long history of radio
flux observations of those quasars at these bands. The light
curves of the sources in the observation and rest frames
are given in Figures 1 and 2, respectively. We have corrected
our data as = * +( )f f z1 ,rest obs = +( )t t z1 ,rest obs and

= + a+( )( )S S Z1 ,rest obs
1 where f is frequency, t is time, S is

flux, z is redshift, and α is the spectral index. In the radio
domain, we assume that α=0 as the spectrum is more or
less flat.

For all our candidates, we have an unequal length of data
streams at both frequencies (Table 1). In WTMM-based
multifractaltiy analysis, though the choice of the scale
parameter is dependent on the length of a time series, it mainly
depends on the absence and presence of local maxima lines
(LcMx) at the scale considered, i.e., whether the scale at which
the calculated wavelet coefficients hold maxima lines. At
different scales, we can have different numbers of LcMx that

carry local information about any singularity contained in that
part of the time series. In general, the data length determines
the choice of scale parameter. It is one of the parameters we use
to calculate wavelet coefficients, from which we calculate the
LcMx that we use in the multifractality analysis part.
Obviously, the scale parameters at which we obtain wavelet
coefficients that hold maxima lines for the current light curves
change when the length of the time series changes, which, in
turn, affects the multifractality strength to be calculated. For
our case, we have chosen the most informative scale parameter,
i.e., the scale parameter at which we have better maxima lines,
at each frequency for all the time series, and therefore, our
discussion of results takes this into consideration.

2.2. Method and Procedures

Signals can be efficiently represented by decomposing them
in different frequencies using the Fourier analysis method.
However, the most valuable information in a complex system
signal is contained by its irregular structures and transient
phenomena called singularities, and particularly in physics, it is
important to analyze irregular structures in a signal to deduce
properties about the underlying physical phenomena (Mandelbrot
& Whitrow 1983; Arneodo et al. 1988), which is beyond the
capability of Fourier analysis because it only decomposes a
signal into its frequency domain. Therefore, the Fourier
transform is not powerful and preferable for multifractality
analysis, which requires a special technique of decomposing a
signal into time and frequency domains. The continuous wavelet
transform is an excellent tool for mapping the changing
properties of nonstationary signals. Because of its capability of
decomposing a signal into small fractions that are well localized
in time and frequency and of detecting local regularities of a
signal (areas on the signal where a particular derivative is not
continuous) such as nonstationarity, oscillatory behavior, break-
down, discontinuity in higher derivatives, the presence of long-
range dependence, and other trends, wavelet analysis remains
one of the most preferable signal analysis techniques to date
(Puckovs & Matvejevs 2012; Maruyama 2016). These strengths
of wavelet transform make it preferable to other traditional
singularity analysis techniques, and there is a claim that it is
suitable for multifractal analysis and allows for reliable multi-
fractal analysis to be performed (Muzy & Arneodo 1991).
Therefore, for these and other reasons not mentioned here, we
have chosen to apply a multifractality analysis approach that
requires the continuous wavelet transform known as the wavelet
transform modulus maxima. The WTMM was originally
introduced by Muzy & Arneodo (1991). Basically, WTMM-
based multifractality analysis consists of two statistically
connected parts: the wavelet transform part and multifractality
analysis part. Each part is discussed below.
I. Wavelet transform formalism
A. Continuous wavelet transform. The direct continuous

wavelet transform of a given signal X(t) can be represented by:

ò= Y
-⎜ ⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟( ) ( ) ( )W s a

s

t a

s
X t dt,

1
. 1

T

0

where W are the wavelet coefficients, Ψ(s, a, t) are the mother
wavelet function, s is the scaling parameter, a is the shift
parameter, X is the signal, t is the time at which the signal is
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recorded, and T is the maximal time value or signal length. The
analyzing wavelet Ψ(t) is generally chosen to be well localized
in space and frequency. Usually, Ψ(t) is only required to be

of zero mean, but in addition to these requirements, for
the particular purpose of multifractal analysis, Ψ(t) is also
required to be orthogonal to some low-order polynomials,

Figure 1. Light curves of the sources 3C 273, 3C 279, 3C 345, and 3C 454.3 at 22 GHz (black) and 37 GHz (red) in the observation frame.

Figure 2. Light curves of the sources 3C 273 at 25.4760 GHz (black) and 42.8460 GHz (red), 3C 279 at 33.7920 GHz (black) and 56.8320 GHz (red), 3C 345 at
35.0900 GHz (black) and 59.0150 GHz (red), and 3C 454.3 at 40.8980 GHz (black) and 68.7830 GHz (red) in the rest frame.
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up to the degree n-1 (i.e., to have n vanishing moments;
Enescu et al. 2006):

 ò Y = "
-¥

+¥
( ) ( )t t dt m m n0, , 0 . 2m

A class of commonly used real-valued analyzing wavelets,
which satisfies the condition given by Equation (2), is given by
the successive derivatives of the Gaussian function (Enescu
et al. 2006).

Y = -( ) ( )( ) t
d

dt
e , 3N

N

N

t2
2

for which n=N. Our analyzing wavelet is the Mexican Hat
wavelet (second-order Gaussian wavelet), which is one of the
wavelets that has been applied for WTMM-based analysis, and
represented by the relation:

Y = - -( ) ( ) ( )t t e1 . 42 t2
2

where Ψ(t) is the mother wavelet function, and t is the time at
which the signal is recorded. At lower scales s≈0, the number
of LcMx tends to infinity. Because it is the maxima line that
points toward each regularity or carries information about any
singularity or nonlinearity in a signal (Mallat & Hwang 1992;
Mallat & Zhong 1992; Muzy et al. 1994), it is unnecessary to
calculate wavelet coefficients that do not contain maxima line
(s). Though there is a suggestion that the scaling parameter s
used in the WTMM approach is limited to s�[128], it should
be in the interval ⎡⎣ ⎤⎦1, T

2
and can also be in the interval ⎡⎣ ⎤⎦1, T

4
,

which is still informative, mainly to reduce computation time
(Puckovs & Matvejevs 2012). The shifting parameter a cannot
be greater than the signal length T, and therefore, a�T.

The calculated wavelet coefficients Ws, a can be written in a
matrix form given by Puckovs & Matvejevs (2012):

= Î  Î  Î( )∣( ) ( [ ]) ( [ ])
( )

W W s a s a N s s a T, , 1, 1, ,
5

s a, max

where Ws a, are the wavelet coefficients, smax is the maximal
scaling parameter, sis the scaling parameter, a is the shifting
parameter, and T is the signal length. Additionally, one can
calculate the absolute wavelet coefficients in matrix form as:

= Î  Î
 Î
( ( )) ∣( ) ( [ ])

( [ ]) ( )
W W s a s a N s s

a T

, , 1,

1, , 6
s a,
sq 2

max

where Wsq is the squared wavelet coefficients matrix. Other
parameters are as explained above. In the wavelet transform

output plot, wavelet coefficients are colored by their absolute
values.
B. Skeleton function construction. The skeleton function is

nothing but a collection of maxima lines at each scale of the
calculated wavelet coefficient matrix, i.e., it is a scope of all
LcMx that exist on each scale s. In other words, the skeleton
matrix construction is a technique of excluding coefficients in
the absolute wavelet coefficients matrix that are not maximal.
As a result, in the skeleton matrix, only absolute wavelet
coefficients that belong to LcMx exist. The need to collect all
the maxima lines at each scale together in matrix form, the
skeleton function, is from the fact that it is the maxima lines
that carry valuable information about the signals, i.e., maxima
lines point toward regularity in the signal. We construct the
skeleton function as follows (Puckovs & Matvejevs 2012):

=
¶

¶
=


¶

¶
=

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

( ( ))

( ( )) ( )

W s a

a

W s a

a

LcMx 1
,

0,

0
,

0 7

s a,

2

2

under the conditions (s, aäN)∧(s ä [1, smax])∧(a ä [1, T]),
where LcMx is the wavelet skeleton function, W(s, a) are the
wavelet coefficients, s is the scaling parameter, smax is the
maximal scaling parameter, a is the shift parameter, and T is
the signal length. The wavelet skeleton function can also be
calculated from squared wavelet coefficients matrix and
expressed in a matrix form as follows:

= ( ) ( )s aLcMx LcMx , 8s a,

under the same conditions as Equation (7). Because wavelet
coefficients on corners provide little or no information, and
consequently, LcMx on corners also provide no significant
information about the singularity in the signal, we therefore
take the edge effect into consideration by removing the LcMx
on corners using the following formula (Puckovs & Matvejevs
2012) :

 

=
¶

¶
=  < < -


¶

¶
=  - 

⎪

⎧⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( ( )) ( )

( ( )) ( ) ( )

( )

W s a

a
s a T s

W s a

a
T s a a s

LcMx 1
,

0 ,

0
,

0

9

s a,

2

2

the skeleton function is a logical function that has only two
variables, 0 and 1; one is used if the skeleton matrix element is
a local maximum, and zero is used otherwise.
There is one problem in WTMM-based multifractality

analysis: the skeleton function does not contain LcMx as
required for fractal analysis but has disconnected broken lines,
gaps, and single points in the LcMx matrix. Therefore, it is
mandatory to apply some technique to fix these limitations. To
that end, we applied an algorithm called the supremum
algorithm, which consists of the following steps (Puckovs &
Matvejevs 2012): (1) define matches (relations between single
local maxima points), (2) define match conflicting (one cell to
more) and nonconflicting cases, (3) create chains from pairs,
(4) chain interpolation (to fill missing wavelet coefficients
on WTMM line), (5) add points to LcMx map (on line gaps),

Table 1
The Time Range of Observation and Number of Data Points for Each Source at

22 and 37 GHz

Source Name Frequency Time Range Number of Data Points

22 GHz 1980–2004 938
3C 273 37 GHz 1979–2018 1954

22 GHz 1980–2004 757
3C 279 37 GHz 1979–2018 1961

22 GHz 1980–2004 805
3C 345 37 GHz 1980–2018 1660

22 GHz 1980–2004 760
3C 454.3 37 GHz 1980–2018 2292

5
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(6) add single points to LcMx map, and (7) change variables (at
the end).

II. Multifractality analysis part
C. Fractal partition function estimation. At this time, the

multifractality analysis starts. Using the wavelet modulus
maxima coefficients obtained in the wavelet transform part, we
calculate the thermodynamic partition function, a function that
connects the wavelet transform and multifractality analysis
part. Muzy & Arneodo (1991) defined the thermodynamic
partition function Zq(s) as the sum of the qth powers of the
local maxima of the modulus to avoid division by zero:

å= =
=

-

( ) ( ( ) ) ∣( ) ( )Zq s C s .WTMM LcMx 1 , 10
a

T
q

s a
1

1

,

where Zq(s) is the thermodynamic partition function, WTMM is
the wavelet modulus maxima coefficient, C(s) is the constant
depending on the scaling parameter s, s is the scaling parameter, q
is the moment, which takes any interval with zero mean, for our
case qä[−5, 5], and LcMx is the wavelet skeleton function
(aggregate of LcMx in matrix form). The thermodynamic partition
function is a function of two arguments—the scaling parameter s
and the power argument q. The moment q discovers different
regions of the singularity measurement in the signal, it indicates the
presence of wavelet modulus maxima coefficients of different
values. The condition =LcMx 1s a, is to inform that only modulus
maxima coefficients are used. The thermodynamic partition
function is finite if the wavelet modulus maxima coefficients are
not equal to zero ( ¹WTMM 0s a, ). To satisfy the condition, all
zero coefficients should be neglected in the wavelet modulus
maxima matrix WTMM. The origin of zero coefficients in wavelet
modulus maxima matrix is in the LcMx wavelet skeleton function
—all elements in the skeleton matrix that are not local maxima are
zero-valued elements. What is important here is the relationship
between the Zq(s) and s, which determines the scalability of the
signal under consideration. We investigate the changes of Zq(s) in
the time series at a different scales s for each q. A plot of the
logarithm of Zq(s) against the logarithm of the timescale s was
created. This plot shows how Zq(s) scales with s and reveals the
strength and nature of local fluctuations at each scale in the signal.
In the WTMM approach, the wavelet transform maxima are used
to define a partition function whose power-law behavior is used for
an estimation of the local exponents. At small scales, the following
relation is expected:

~ t( ) ( )( )Zq s s , 11q

where τ(q) is the scaling exponent function, which is the slope
of the linear fitted line on the log–log plot of Zq(s) and s for
each q.

D. The scaling exponent function τ(q). This is a function of
one argument q that is determined from the slope of the linear
fitted line on the log–log plot of Zq(s) against the logarithm of
the timescale s for each q, which means that the behavior of the
scaling function τ(q) is completely dependent on the nature of
the thermodynamic partition function, or in other words, the
behavior of τ(q) is dependent on the scaling relationship
between Zq(s) and s. The mathematical relation of calculating

τ(q) is given by the relation:

t =


( ) ( ( ))
( )

( )q
Zq s

a
lim

ln

ln
, 12

s 0

where Zq(s) is the thermodynamic partition function, τ is the
local scaling exponent, s is the scaling parameter, and q is
the moment. The condition τ(q=0)+ 1=0 is important for
the multifractal spectrum calculation (Puckovs & Matvejevs
2012). We define monofractal and multifractal as follows: the time
series is said to be monofractal if τ(q) is linear with respect to q,
and if τ(q) is nonlinear with respect to q, then the time series
considered is classified as multifractal (Parisi & Frish 1985).
E. The multifractal spectrum function, f(α). Once we

determine the scaling function τ(q), it is necessary to estimate
the multifractal spectrum f (α) to be able to fully draw
conclusions about the multifractal behavior of the signal
considered. Using the calculated scaling function, we estimate
the multifractal function via Legendre transformation as
(Halsey et al. 1986):

a a
t

= =
¶
¶

( ) ( ) ( )q
q

q
, 13

where α is the singularity exponent or Holder exponent:

a a t= -( ) ( ) ( )f q q. , 14

where f (α) is the multifractal spectrum function. We extract
two important items of information from f (α) against the α

plot: the width (Δα=αmax−αmin) and the symmetry in the
shape of α defined as a a a a= - -( ) ( )A max 0 0 min , where
α0 is the value of α when f (α) assumes its maximum value.
Ashkenazy et al. (2003) and Shimizu et al. (2002) have
proposed that the width of a multifractal spectrum is the
measure of the degree of multifractality. Smaller values of Δα

(i.e., Δα becomes close to zero) indicate the monofractal limit,
whereas larger values indicate the strength of the multifractal
behavior in the signal (Telesca et al. 2004). For the symmetry
in the shape of α, the asymmetry presents three shapes:
asymmetry to the right-truncated (A>1), left-truncated
(0<A<1), or symmetric (A= 1). Ihlen (2012) presented
that the symmetric spectrum originated from the leveling of the
qth-order generalized Hurst exponent for both positive and
negative q values. The leveling of qth-order Hurst exponent
reflects that the qth-order fluctuation is insensitive to the
magnitude of the local fluctuation. When the multifractal
structure is sensitive to the small-scale fluctuation with large
magnitudes, the spectrum will be found with a right truncation,
whereas the multifractal spectrum will be found with left-side
truncation when the time series has a multifractal structure that
is sensitive to the local fluctuations with small magnitudes.
Therefore, the width and shape of a multifractal spectrum are
able to classify small and large magnitude (intermittency)
fluctuations and determine the degree of the multifractality
signature in a given signal.

2.2.1. Autoregressive Integrated Moving Average (ARIMA) Model

Quasars are known to be extremely variable in a short
timescale from hours to months because of the rapid change in
their accretion rate (e.g., Quirrenbach 1993; Wagner & Witzel
1995). Thus, a time series model that is suitable for a
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Figure 3. Wavelet map and skeleton function (left to right) at 22 GHz for the sources 3C 273, 3C 279, 3C 345, and 3C 454.3 (top to bottom).
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Figure 4. Wavelet map and skeleton function (left to right) at 37 GHz for the sources 3C 273, 3C 279, 3C 345, and 3C 454.3 (top to bottom), respectively.
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nonstationary time series with short memory may be preferable
to model a quasar time series. The ARIMA model is the
extension of autoregressive moving average model, which in
turn is a combination of autoregressive (AR) and moving
average (MA) linear time series models. The AR, MA, and
autoregressive moving average models are applied for only
stationary time series, whereas ARIMA includes nonstationarity
cases as well. In addition, ARIMA models are capable of
describing short-memory autocorrelations that exist in a time
series. The ARIMA model is one of the autoregressive time series
models rarely used to understand the nature of astronomical times
series (Feigelson et al. 2018). Here, we apply the ARIMA model
for the light curves in Figure 1. The aim is only to check whether
ARIMA fits our data, from which we can learn the type of
correlations that exist in quasars’ time series and their behavior.
Because seasonality is not common in quasar time series but
trends are, we use the nonseasonal ARIMA(p, d, q) model
discussed in Hyndman & Athanasopoulos (2014):

f f q e q e e¢ = + ¢ + + ¢ + + + +- - - -

( )
y c y y... ... ,

15
t t p t p t q t q t1 1 1 1

where ¢yt is the differenced time series, p is the order of the
autoregressive part AR(p), q is the order of the moving average
part MA(q), and et is white noise. The ARIMA(p, d, q) model
contains two predictors: a linear combination of lagged values
of the variable AR(p) and the linear combination of lagged

errors MA(q) model. The reference used for this model can be
used to understand the details.
In fitting the model, we follow the procedures discussed in

Hyndman & Athanasopoulos (2014): (1) we check for
stationarity; if the model is nonstationary, we apply differen-
cing; usually the autocorrelation function (ACF) of a time
series decays exponentially to zero if it is stationary and slowly
to zero if it is nonstationary; (2) we plot the ACF and partial
autocorrelation function (PACF) of the already differenced
time series; (3) we first estimate the parameters p and q on the
basis of ACF and PACF as outlined in step (2); (4) we fit the
model ARIMA(p, d, q) using the p and q estimated in step (3);
and (5) we calculate and plot the corresponding residuals. We
accept the model only if its residual is white noise. If the
residual of the fitted model is not white noise, we repeat
the steps from 3 to 5. In estimating the parameters p and q, we
use the function auto.arima() that provides us with a better
model, though not always.

3. Results and Discussion

In our work, we apply WTMM-based multifractality analysis
and study the multifractal or nonlinear behavior of radio
emissions of selected radio-loud quasars 3C 273, 3C 279, 3C
345, and 3C 454.3 in the observation frame (at 22 and 37 GHz)
and in the rest frames ( = * +( )f f z1rest obs ). The aim is to
search for the presence of a multifractal signature in the light
curves of the sources at each band and verify whether there is
any similarity or difference in the degree of multifractaltiy

Figure 5. Upper panel: the thermodynamic partition functions at 22 GHz for the sources 3C 273 (left) and 3C 279 (right). Lower panel: the thermodynamic partition
functions at 22 GHz for the sources 3C 345 (left) and 3C 454.3 (right).
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between the bands and between the sources both in their
observed and rest frames.

3.1. Analysis of Light Curves in the Observation Frame

Here, we analyze the multifractal behavior of the light curves
in the observed frame at 22 and 37 GHz, Figure 1. The scenario
emerging for each light curve is discussed separately as
follows. In Figures 3 and 4, we present the continuous wavelet
transform maps and the constructed skeleton functions for all
sources at 22 and 37 GHz, respectively. The wavelet maps
present the calculated wavelet coefficients in their absolute
values and colored as dark and light in accordance with the
color map given. The dark and light colors show lower and
higher absolute wavelet coefficients, respectively. From the
wavelet coefficient matrix, we select LcMx, or maxima points
at each scale. The collection of all LcMx, or maxima points, at
each scale forms a function called the skeleton function. The
need to construct the skeleton function is to consider only
LcMx at each scale and simplify the multifractality analysis. In
Figures 5 and 6, we present the 3D plots of the thermodynamic
partition functions, a function of two arguments—scaling
parameter s and moment q—at 22 and 37 GHz, respectively,
for all the light curves to show how the thermodynamic
function Zq(s), the moment q, and the scaling parameter s
behave together. It is the thermodynamic partition function that
connects the wavelet formalism to the multifractal formalism.
To clearly see the scaling behavior between Zq(s) and s, the
scalability of the signals, we have created the log–log plots of

Zq(s) and s using Equation (12) for all the light curves and
represented the calculated slope by the scaling exponent
function τ(q) plots as shown in Figures 7 and 8. The observed
nonlinearity between the scaling exponent τ(q) versus the
moment q at both bands reveals the presence of nonlinear
scaling behavior between the thermodynamic partition function
Zq(s) and the scale s for all the light curves. Furthermore, the
observed nonlinearity between τ(q) and q, which is the slope of
log(Zq(s)) against log(s) plots, clearly indicates the presence
of multifractal behavior in all the light curves though the degree
of nonlinearity that varies between sources at both bands.
On the basis of the scaling exponent function τ(q), Figures 7

and 8, we can see the similarity and difference in the degree of
nonlinearity at the two bands for each source, Figure 9, and
between the sources, Figures 7 and 8. After observing the
presence of the multifractal signature according to the nonlinear
scaling exponent function, the degree of multifractality is
determined (i.e., how strong is the observed multifractal
signature) at each band for all the sources. To this end, we
estimate the multifractal spectrum function f (α) and calculate
the width (Δα=αmax−αmin) using Equations (13) and (14).
The broader the spectrum (the larger the value of Δα), the
richer the multifractality is. The width value tells us how
strong the observed multifractal signature is, which is an
additional parameter one can use to see the difference in the
degree of nonlinearity, or multifractality between signals. The
calculated width Δα values for 3C 273, 3C 279, 3C 345, and
3C 454.3 at 22 and 37 GHz are 1.5961/0.9763/0.9745/0.8951
and 1.5854/0.9653/0.9633/8432, respectively (Table 2).

Figure 6. Upper panel: the thermodynamic partition functions at 37 GHz for the sources 3C 273 (left) and 3C 279 (right). Lower panel: the thermodynamic partition
functions at 37 GHz for the sources 3C 345 (left) and 3C 454.3 (right).
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Therefore, for all the sources considered, the width Δα value is
not near zero at both frequencies, indicating the multifractal
and intermittent nature of the sources at both bands, which is in
agreement with the conclusion based on the nonlinear scaling
exponent function in Figures 7 and 8. Additionally, the
similarity and difference in the degree of the nonlinearity
observed at 22 and 37 GHz in the scaling exponent function for
each source and between the sources are further confirmed by
the calculated width values of the multifractal spectrum
function given in the same figures.

We have tested the stability of Δα by applying different
fluctuations in the range of errors recorded for each observation
to the original time series and found that our Δα values are
stable with uncertainty <10%. The observed multifractality
could be due to different physical mechanisms. It is the
variation in the flux that results in the multifractal structure in a
time series; therefore, the observed multifractal signature could
be due to turbulence in the radio radiation region (the blobs that
propagate in the jet) because turbulent dynamics create
multifractal and intermittent structures (Yordanova et al.
2004; Leonardis et al. 2013). Additionally, it has been indicated
that a higher magnetic field strength will increase both
Compton and synchrotron losses in blazars, which could result
in an increase in variability at millimeter and longer

wavelengths. Additionally, it has been shown that the change
in Doppler factor resulting from the change in shock orientation
could result in rapid flux variation (Stevens et al. 1994), which
may culminate in a multifractal structure.
The similarity and difference observed in the degree of

nonlinearity at 22 and 37 GHz for each source and between the
sources, respectively, provide us with valuable information
about the radiation region and mechanisms of the sources
considered. The similarity in the slope at those frequencies tells
us that the signals of each source at 22 and 37 GHz fluctuate in a
similar fashion. The difference in the behavior of the light curves
between the sources at both frequencies is clearly visible, and,
therefore, our finding of different degrees of nonlinearity or
multifractality between the sources is somewhat expected.
Indeed, the scale parameter for a time series of given length

changes if the length of the time series changes, i.e., the choice
of the scale parameter is dependent on the length of the time
series. As seen from the calculated width values for each light
curve at both bands, we found that the multifractality
(nonlinearity) strength at 22 and 37 GHz is strongly similar,
though not the same, for each source and differs from source to
source. The similarity in the slope indicates that the sources
have the same radiation region and radiation mechanism at the
two frequencies as indicated by Wang & Yang (2010) for

Figure 7. Scaling exponent (left) and multifractal spectrum (right) at 22 GHz for the sources 3C 273, 3C 279, 3C 345, and 3C 454.3.

Figure 8. Scaling exponent (left) and multifractal spectrum (right) at 22 GHz for the sources 3C 273, 3C 279, 3C 345, and 3C 454.3.
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Figure 9. Scaling exponent (left) and multifractal spectrum (right) at 22 and 37 GHz for the sources 3C 273, 3C 279, 3C 345, and 3C 454.3 (top to bottom),
respectively.
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different light curves of 3C 273 and 3C 345. However, the
data streams currently at hand are not of identical length, and
the similarity observed at 22 and 37 GHz for each source
might be affected by the difference in the data length at these
two frequencies. Importantly, when we have full light curves
(large data points) at 22 GHz, the scale parameters that we
used to obtain better maxima lines for the present data may
change according to the change in the singularity behavior of
the light curves in time. Consequently, we may have different
LcMx that affect the current relationship between the scaling
exponent function τ(q) and the moment q. This, in turn,
affects the behavior of the multifractality spectrum function
f (α). Of course, still, there is difference in nonlinearity at 22
and 37 GHz for all the sources, though not strong, and this
could be due to the difference in the number of data points.
For the difference in nonlinearity between the sources at both
bands, for example, we analyzed the light curves of the
sources 3C 273 and 3C 279 at 37 GHz, where there are only
seven data points’ difference between them using the same
scale parameter, and found strongly different results. For the
time being, because we are considering scale parameters that
give us better maxima lines, informative scale parameters,
it is somewhat logical to perform a comparison between
the sources in terms of the degree of multifractality at the two
frequencies on the basis of what we have on hand. In general,
despite the difference in the number of data points (time series
length) between the sources, all their light curves at 22 GHz

span from 1980 to 2004 and from 1979/1980 to 2018 at
37 GHz, and, therefore, the results obtained using the chosen
informative scale parameters could inform us at least about
how the multifractal (nonlinear) behavior of the light curves at
the two radio bands behave throughout these observation
periods.

3.2. Analysis of Light Curves in the Rest Frame

Following the same procedures as applied for light curves in
the observation frame, we have repeated the same multi-
fractality analysis for the corresponding light curves in the rest
frame, as shown in Figure 2. We obtained the same results as
shown in Figures 7 and 8 for all the light curves. The similarity
in the degree of multifractality (nonlinearity), Δαobs=Δαrest,
of the light curves in the observation and rest frames implies
that redshift correction does not affect the multifractal behavior
of quasars’ radio emissions, indicating that multifractality is an
intrinsic behavior of quasars’ radio emissions. The redshift
versus multifractality strength is given in Figure 10.

3.3. Analysis of the ARIMA(p, d, q) Models

In this section, the light curves shown in Figure 1 are
analyzed using the ARIMA model. The scenario regarding the
ARIMA model analysis of each light curve is discussed
hereafter. The first step is verifying whether the time series are
stationary. A visual inspection of the light curves shows that
they are not stationary, but one cannot be sure whether a time
series is stationary through visual inspection only. There are
different techniques to test for stationarity, such as the
augmented Dickey–Fuller unit root test. Though our light
curves are shown to be nonstationary in the first subsection of
Section 3, we have checked the nonstationarity of each light
curve according to their ACF plots, which are not included
here. The ACF plot of a nonstationary time series decays
slowly to zero, whereas stationary time series decay exponen-
tially to zero. As a first step of our analysis, we have plotted
ACF for all the time series considered here and found that all of
them decay very slowly to zero, implying the presence of
nonstationarity. Therefore, we proceed to our analysis directly
by differencing, first differencing (d=1), the time series. The
differenced time series and corresponding ACF and PACF

Figure 10. Degree of multifractality Δα in the observed, 22 GHz (left) and 37 GHz (right), and rest frames for 3C 273 (z=0.158), 3C 279 (z=0.536), 3C 345
(z=0.595), and 3C 454.3 (z=0.859).

Table 2
The Calculated Multifractal Spectrum Width (Δα) for Each Source at 22 and

37 GHz

Source Name Redshift (z) Observation Frame Frequency Δα

22 GHz 1.5961
3C 273 0.158 37 GHz 1.5854

22 GHz 0.9763
3C 279 0.536 37 GHz 0.9653

22 GHz 0.9745
3C 345 0.595 37 GHz 0.9633

22 GHz 0.8951
3C 454.3 0.859 37 GHz 0.8432
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plots are given in Figures 11–14 for 3C 273, 3C 279, 3C 345,
and 3C 454.3, respectively.

As seen from the differenced time series plots, the
differencing operator reduces the long-memory autocorrela-
tions, although it left a few significant lags behind in most of
the light curves except for 3C 273, where it does not reduce the
autocorrelations that much. The next step is model selection
and fitting. As a first attempt of best model selection, we
estimate the parameters p and q on the basis of the ACF and

PACF of the differenced time series. Using estimated values of
p and q, we fit the time series to the ARIMA(p, d, q) model.
The value of d is already known, d=1, because we
differenced the time series only once. Additionally, we use
the auto.arima() function in our best model selection. We select
a model with the lowest log likelihood and the Akaike
information criteria. If the models obtained on the basis of the
ACF and PACF plots and using auto.arima() do not fit our data,
we try another model by changing the values of the parameters

Figure 11. Time plot of the differenced time series and its ACF and PACF plots (on the left of the first and second panels, respectively) and the corresponding residual
plots (on the right of the first and second panels) for 3C 273 at 22 GHz. Similarly, time plot of the differenced time series and its ACF and PACF plots (on the left of
the third and fourth panels, respectively) and the corresponding residual plots (on the right of the third and fourth panels) for 3C 273 at 37 GHz.
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p and q and fit them to the ARIMA(p, d, q) model until we
obtain the best one. The last step, in our case, is checking the
diagnostic test to determine whether the residuals of the fitted
models are white noise. We accept or reject the model selected
according to two criteria: we accept the model if p>0.05 for
the Ljung–Box test and the residual is white noise (randomly
distributed), indicating no significant lags outside of the 95%
limit, and we reject the model if these conditions are not
satisfied. For the second condition, the residual should be white

noise, and if it is not satisfied for all possible combinations of p
and q, we take the one that nearly provides a white noise
residual and p>0.05. Our interest here is not to forecast but
only to determine whether ARIMA(p, d, q) models fit our data.
Except for 3C 273 and 3C 279 at 37 GHz, where the fit to
ARIMA models does not reduce the autocorrelations left
behind by more than two significant autocorrelations outside
the 95% limit, the ARIMA models fit sufficiently to reduce
most of the autocorrelations for the rest of the time series.

Figure 12. Time plot of the differenced time series and its ACF and PACF plots (one the left of the first and second panels, respectively) and the corresponding
residual plots (on the right of the first and second panels) for 3C 279 at 22 GHz. Similarly, time plot of the differenced time series and its ACF and PACF plots (one
the left of the third and fourth panels, respectively) and the corresponding residual plots (on the right of the third and fourth panels) for 3C 279 at 37 GHz.
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However, the models require a different number of coefficients,
and as a result, the residuals of the ARIMA model fits are nearly
white noise, leaving behind no more than two significant lags
outside the 95% limit, as shown from Figures 11–14 for 3C 273,
3C 279, 3C 345, and 3C 454.3, respectively. Except for 3C 345 at
22 GHz, the ARIMA(4, 1, 4) model fit reduces all significant
autocorrelations leaving behind a white noise residual, indicating
no single significant autocorrelation outside the 95% limit, as
shown in Figure 13. Note that the ARIMA(p, d, q) models capture

only short-memory components, and the observed failure could be
due to the presence of long-memory components and/or nonlinear
signatures in the time series that cannot be captured by the ARIMA
models. The parametric autoregressive model, called the auto-
regressive fractionally integrated moving average model, where the
differencing operator d is a real number, is preferable to model
time series with long-memory components. Of course, multi-
fractality analyses as applied in this work are also capable of
detecting both short- and long-memory trends.

Figure 13. Time plot of the differenced time series and its ACF and PACF plots (on the left of the first and second panels, respectively) and the corresponding residual
plots (on the right of the first and second panels) for 3C 345 at 22 GHz. Similarly, time plot of the differenced time series and its ACF and PACF plots (on the left of
the third and fourth panels, respectively) and the corresponding residual plots (on the right of the third and fourth panels) for 3C 345 at 37 GHz.
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4. Summary and Conclusions

In this study, we analyze the multiscaling signatures in the
radio emissions of selected radio-loud quasars 3C 273, 3C 279,
3C 345, and 3C 454.3 in both the observed frame (at 22 and
37 GHz passbands) and the rest frame ( = * +( )f f z1rest obs )
using a WTMM-based multifractality analysis approach. In
addition,we fit the light curves of the sources to the ARIMA
models. In our work, we first calculate the wavelet coefficients
using a continuous wavelet transform and form a matrix of

maxima lines (construct the skeleton function) by aggregating
the absolute wavelet coefficients that only hold maxima lines.
Second, using the collected LcMx and the constructed skeleton
function, we determine the thermodynamics partition function.
Third, by creating the log–log plots of the thermodynamics
function Zq(s) and the scale s, we estimate the slope using the
least-squares fitting method. The behaviors of the estimated
slopes are presented by the scaling exponent τ(q) versus q plots
in Figures 3 and 7 for each source in the observed frame at 22
and 37 GHz, respectively. Finally, we estimate the multifractal

Figure 14. Time plot of the differenced time series and its ACF and PACF plots (on the left of the first and second panels, respectively) and the corresponding residual
plots (on the right of the first and second panels) for 3C 454.3 at 22 GHz. Similarly, time plot of the differenced time series and its ACF and PACF plots (one the left
of the third and fourth panels, respectively) and the corresponding residual plots (on the right of the third and fourth panels) for 3C 454.3 at 37 GHz.
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spectrum functions at each band for all the light curves and
calculate the multifractality strength from the width Δα of the
spectrum. Additionally, we analyze the corresponding light
curves in the rest of the frame following the same procedures.
Finally, we fit the time series in the observed frame to the
ARIMA models. Our main conclusions are as follows. In this
work, we have shown that (i) the scaling nature of quasars’
radio emissions at 22 and 37 GHz is strongly multifractal and
intermittent, (ii) the degree of nonlinearity or multifractality is
similar for each source and strongly different between sources
at both frequencies, (iii) the redshift correction does not affect
the nonlinear or multifractal behavior of quasars’ radio
emission, and (iv) the ARIMA models fit most of the time
series partially, except for 3C 345 at 22 GHz, where the
ARIMA(4,1,4) model fit obtains a white noise residual, and for
3C 273 and 3C 279 at 37 GHz, where the models are shown to
be inadequate. The strong multifractal signature observed in
quasars’ radio emission further supports what has been
previously posited: that quasars are intrinsically multifractal
and complex systems that have nonlinear time series
characterized by fractal behavior (Vio et al. 1991; Bewketu
Belete et al. 2018). It is the physical mechanism that causes
variation in the flux of radio emissions that possibly presents
the detected multifractal signatures. It has been explained that
the low-frequency emissions in general and radio emissions
from radio-loud quasars/blazars in particular are due to
synchrotron emissions from nonthermal electrons in a relati-
vistic jet (Courvoisier et al. 1988; Robson et al. 1993; Türler
et al. 2000; Singal et al. 2011). This means that any physical
process that causes a change in the dynamics of relativistic jets
and presents variations in the flux of quasars’ radio emissions is
likely responsible for the existence of multifractal signatures in
the radio observations of quasars. Therefore, our results play a
significant role in providing valuable information for those
working to develop models to better understand emissions in
terms of synchrotron radiation from shocks propagating along
relativistic jets and the dynamics of relativistic jets coming out
from the center of radio-loud quasars, which, in turn, helps to
constrain some physical properties of quasars in relation to the
dynamics of their relativistic jets.

The observed similarity in the slope (degree of nonlinearity)
or multifractality strength at 22 and 37 GHz for all the sources
considered further supports the claim that the radiations of the
sources at 22 and 37 GHz have the same emission region and
mechanism, at least for 3C 273 and 3C 345 (Wang & Yang
2010). Despite the fact that all our sources are flat-spectrum
radio-loud quasars, the difference in the degree of multi-
fractality (nonlinearity) between them at those radio bands
provides very useful information about the physics of the
sources of relativistic jets. This difference could be due to the
different nature of turbulence in the accretion rate, internal
shocks in the relativistic jets of the sources, fluctuations in the
local magnetic fields and particle density, variation in the
activity of the central engine, the difference in their black hole
mass because it determines the mass accretion rate, which in
turn affects the radio emissions, or due to the difference in any
other variability mechanism not mentioned here. The other
result we have found is that the degree of multifractality
(nonlinearity) is the same in both the observed and rest frames
of the sources, providing physically important information that
multifractality is an intrinsic behavior of quasars’ radio
emissions. This finding further supports the conclusion that

most of the long-term variations of quasars, in general, are
intrinsic to the quasars themselves (de Vries et al. 2005). In our
recent work (Bewketu Belete et al. 2019), we have shown that
extrinsic variations in relation to gravitational lensing, mainly
microlensing effects, affect the multifractal behavior of quasars,
and the microlensing effect increases the degree of multi-
fractality. Therefore, the results obtained in this work, the
sameness in the degree of multifractality in the observation and
rest frames, possibly indicate the absence of extrinsic
variations, mainly due to microlensing, in the light curves of
the sources. A possible reason why the ARIMA(p, d, q) models
do not fit most of the time series well could be the presence of
memories and/or trends that cannot be easily captured by the
models. This work provides valuable information mainly to
model relativistic jet dynamics in particular and to understand
the interior of quasars in general.
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