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Two- or three-dimensional metals are usually well described by weakly interacting, fermionic
quasiparticles. This concept breaks down in one dimension due to strong Coulomb interactions. There,
low-energy electronic excitations are expected to be bosonic collective modes, which fractionalize into
independent spin- and charge-density waves. Experimental research on one-dimensional metals is still
hampered by their difficult realization, their limited accessibility to measurements, and by competing or
obscuring effects such as Peierls distortions or zero bias anomalies. Here we overcome these difficulties by
constructing a well-isolated, one-dimensional metal of finite length present in MoS2 mirror-twin
boundaries. Using scanning tunneling spectroscopy we measure the single-particle density of the
interacting electron system as a function of energy and position in the 1D box. Comparison to theoretical
modeling provides unambiguous evidence that we are observing spin-charge separation in real space.

DOI: 10.1103/PhysRevX.9.011055 Subject Areas: Condensed Matter Physics, Nanophysics

I. INTRODUCTION

While long thought to remain a theorist’s dream [1,2], a
few realizations of one-dimensional metals suitable for the
investigation of low-energy excitations as described by the
Tomonaga-Luttinger liquid (TLL) theory [1–3] are now
available. Among them are metallic carbon nanotubes
[4,5], GaAs/AlGaAs-based wire devices [6–8], quasi-1D
bulk materials [9,10], and self-assembled atomic wires on
semiconductor surfaces [11–18].
According to TLL theory [1–3], fingerprints of TLL

behavior in 1D metals are power laws for the suppression
of the density of states near the Fermi energy EF
[4,5,9–12,14] and—most significantly—the different
dispersions of spin and charge excitations with velocities

vs and vc [6–8,19]. Their experimental detection is pri-
marily conducted by transport and tunneling transport
measurements [4,6–8], angle-resolved photoemission
electron spectroscopy (ARPES) [5,9,11,12,14,19], and
scanning tunneling spectroscopy (STS) [10,12,19].
The difficulties in pinpointing TLL behavior, specifically

in self-assembled systems, become apparent by considering
the case of self-organized Au wires on Ge(001): From the
1D appearance of the Au adatom chains and power-law
scaling of the density of states observed by STM and
ARPES, TLL behavior was concluded [12]. In subsequent
work [13,17,18] TLL behavior was questioned and even
excluded; e.g., the 1D character of the system was rejected
[13,17] and the suppression of the density of states was
linked to disorder [17].
These remarks make plain that, in order to gain high-

quality data enabling advancement of theory, well-defined
1D systems and new tools to identify TLL behavior are
highly desirable. One such new tool is the use of quantum
simulators to emulate and explore TLL behavior [20]. As
shown below, our approach is the design of an extremely
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well-defined 1D system of finite length giving rise to a
discrete excitation spectrum, accessible by STS.
In recent years an exciting realization of a 1D metal was

discovered, namely, mirror-twin boundaries (MTBs) in
semiconducting transition-metal dichalcogenide mono-
layers. Their structures were unambiguously determined
by transmission electron microscopy [21–23], and density-
functional theory (DFT) invariably predicted the MTBs to
host one-dimensional, metallic states [24–27] that are
protected through the large band gap of approximately
2 eV in the surrounding 2D layer. Intense research yielded
partially conflicting results regarding the electronic struc-
ture of a specific MTB in a monolayer of MoSe2 resting on
a van der Waals substrate [19,28,29], namely, the 4j4P
MTB consisting of fourfold rings sharing a point at the
chalcogene site [24,30]. By using room-temperature as well
as low-temperature (4 K) STM and STS, Liu et al. [28]
found a quantum well state emerging from the finite length
of the interpenetrating MTBs. Barja et al. [29] proposed a
Peierls type charge-density wave (CDW) at 4.5 K, but
disregarded quantization effects in their MTBs of finite
length. By avoiding the CDW regime through room-
temperature ARPES measurements, Ma et al. [19] found
indications of TLL behavior by observing a suppression of
the density of states near EF and by successfully fitting
their spectrum to a Hubbard model with long-ranged
interactions.
We go beyond this work and focus on a structurally

different MTB in a monolayer of MoS2. For this MTB
no CDW transition occurs, thus allowing us to observe
TLL physics down to lowest temperatures. By making 1D
wires well isolated from the environment, of high perfec-
tion and well-defined length, we are able to observe spin-
charge separation in real space through the unique local
spectroscopic capabilities of low-temperature STM and
STS. This technique can directly probe the probability
distribution and energy of discrete TLL excitations in a 1D
box. The interpretation of our data is based on the work of
Fabrizio and Gogolin [31] as well as Anfuso and Eggert
[32], who demonstrated that for a TLL in a box the local
distribution of the single-particle spectral weight—
determining the probability to inject or extract an electron
in a tunneling experiment—visualizes its fundamental
properties.

II. RESULTS

A. Design of a 1D box in MoS2
and quantization effects

To construct our 1D box we grow MoS2 islands
epitaxially on the van der Waals substrate graphene on
Ir(111) [33]; see Appendix A. The lower C3 symmetry of
MoS2 compared to the C6 symmetry of the substrate leads
to two equivalent mirror orientations of MoS2 islands
despite epitaxial alignment. These islands coalescence

and reshape during synthesis, resulting in straight MTBs.
A white arrow highlights such a MTB in the STM topo-
graph shown in Fig. 1(a). It appears higher than its
surroundings when the bias voltage is set close to or within
the band gap of MoS2 [33], consistent with an electronic
structure markedly different from the MoS2 layer. All
MTBs have well-defined lengths, as they terminate at
the island edges. Atomic resolution topographs of MTBs
are provided in Appendix A.
Two types of MTBs are found in our experiments. As

shown in Fig. 1(b), one type displays two parallel lines
(double line) of dots in an empty state STS map, as has
been observed in previous work on MTBs in MoSe2.
This MTB has been identified as a 4j4P MTB
[19,28,29]. Depending on the preparation conditions, the
4j4P MTBs make up 5%–30% of all MTBs. Their
frequency of occurrence reduces with increasing growth
temperature, and they are often pinned to defects. This
indicates that they are energetically less favorable than the
second type of MTB, which is predominant in our MoS2
samples. This second type of MTB displays in a STS map a
single line of dots as visualized in Fig. 1(c). The dot
periodicity along the line scatters fromMTB to MTB, but is
close to 3a for the double line and close to 2a for the single
line MTB, where a ¼ 3.15 Å is the lattice parameter of
MoS2. In the present paper, we focus on the single line
MTB, while the double line MTB is discussed in
Appendixes A and B, where it is shown to be in fact of
4j4P structure.
The local density of states (LDOS) AðE; xÞ present along

MTBs is directly accessible with STS, since dI=dV ∝
AðE; xÞ. Figure 1(d) shows dI=dV as a function of the bias
voltage V (converted to an energy E ¼ eV), measured at
the position marked by a red dot in Fig. 1(c). The spectrum
reveals a finite density of states throughout the measured
energy range, except for a narrow gap Egap of the order of
100 meV located at EF (E ¼ 0). All states visible in the
spectrum lie within the 2.5 eV band gap of the surrouding
MoS2 [33], and hence, are strongly confined within
the MTB.
Figure 1(e) displays a STM topograph of a single line

MTB of 20-nm length with terminations formed by the
MoS2 island edges, whereas Figs. 1(f) and 1(g) are
corresponding constant-height STS maps of the dashed
box in Fig. 1(e). Both maps are measured at the peak
energies of the lowest unoccupied and highest occupied
state, respectively. As follows from the careful comparison
of the two patterns, the number of maxima increases by one
when moving from the lowest unoccupied state to the
highest occupied state. The uniform spacing of the maxima
and their in-phase relation at the box edges imply an
antiphase relation in the middle of the MTB, as seen best in
the corresponding line scans shown in Fig. 1(h).
This pattern is exactly what is expected for noninteract-

ing particles (holes) in a box of size L: the wave number
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k of the highest occupied and lowest unoccupied state
differs by π=L, leading to an extra maximum in the
resulting probability distribution AðE; xÞ ∼ sin2ðkxÞ. In
the following, we first show that DFT calculations repro-
duce both the shape and phase relation of the bound-state
wave functions near EF. Then we discuss the role of
interaction effects which are mandatory to accurately
reproduce our findings.

B. Density-functional theory calculations

We propose the single line MTB to possess the 4j4E
structure, i.e., to consist of fourfold rings which share
an edge, as schematically depicted in the ball-and-stick
model of Fig. 2(a). The DFT calculated band structure
for the ribbon geometry of Fig. 2(a) is displayed in
Fig. 2(b). Apparent is a holelike band localized at the
4j4E MTB, with its maximum at k ¼ 0 and crossing EF at

k ¼ kF ≈ ðπ=2aÞ. The wave functions related to this band
at k ¼ ðπ=2aÞ are illustrated by the partial charge-density
isosurface plots in Fig. 2(a), and show clear localization to
Mo and S atoms around the MTB. Furthermore, the angular
momentum projections evidence that they have purely
Mo-d and S-p character, as illustrated in the projected
DOS in Fig. 2(c). From the partial charge-density plots in
Fig. 2(a), it is also obvious that the tunneling current stems
primarily form the S-p orbitals localized at the S atoms, as
these orbitals extend farthest into the vacuum. We note that
DFT calculations including spin-orbit coupling show the
metallic MTB band unchanged and spin degenerate. For an
inversion domain supercell bounded by three 4j4E MTB
segments, as shown in Fig. 2(d), the simulated LDOS maps
for the lowest unoccupied [Fig. 2(e)] and highest occupied
[Fig. 2(f)] states match in appearance and periodicity
precisely with the dI=dV maps in Figs. 1(c), 1(f), and 1(g).
It is noteworthy that also the number of LDOS maxima
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FIG. 1. 1D states in MoS2 mirror-twin boundaries. (a) Constant-current STM topograph (U ¼ 0.9 V, I ¼ 0.03 nA, scale bar 10 nm)
of a partial MoS2 monolayer grown by reactive molecular beam epitaxy on graphene. The latter is fully covering and conformal to the
Ir(111) substrate. The MoS2 layer islands extend over several substrate steps and carry small hexagonally shaped second layer MoS2
islands. In consequence of island coalescence and reshaping during the annealing step of the synthesis, straight MTBs are formed along
the three dense-packed directions of MoS2. They are visible as bright lines, of which one is highlighted by a white arrow. (b) Constant-
height STS map of a double line 4j4P MTB (U ¼ 0.1 V, scale bar 0.5 nm). (c) Constant-height STS map of a single line MTB
(U ¼ 0.1 V, scale bar 0.5 nm). (d) dI=dV spectrum measured at the red dot position in (c) (Ustab ¼ 0.5 V, Istab ¼ 0.1 nA). (e) STM
topograph of a single line MTB (U ¼ 0.5 V, I ¼ 0.1 nA, scale bar 2 nm). (f) Constant-height STS map of the dashed box area in (e) at
the energy of the lowest unoccupied state (U ¼ 0.033 V). (g) Constant-height STS map of the dashed box area in (e) at the energy of the
highest occupied state (U ¼ −0.048 V). The dots marking the maxima in the LDOS patterns make plain that there is one maximum less
in the lowest unoccupied state of the MTB. From the thin vertical lines in (f) and (g) it becomes apparent that the LDOS maxima are in
phase at the edges of the 1D box, but in antiphase in the center. (h) Line profiles along the MTB, showing the entire phase relation
between lowest occupied and highest unoccupied state.
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increases by one upon moving from the lowest unoccupied
to the highest occupied state. Our assignment of the single
line being a 4j4E MTB is backed up by the fact that DFT
calculations also reproduce STS maps of the 4j4P double
line MTB as documented in Appendix B.

C. Failure of the free particle in a 1D box picture

While our DFT calculations seem to suggest a free
particle (hole) in a 1D box picture, as schematically
sketched on the left-hand side of Fig. 3(a), this model
fails in reproducing the quantized electronic structure in
our spectra. A sequence of STS spectra along the 4j4E
MTB (measurement path is indicated by a dotted line)
shown in Fig. 3(b) reveals in the color plot of Fig. 3(c) the
presence of additional, well-separated quantized states
above the lowest unoccupied state and below the highest
occupied state.
In Fig. 3(d), we show the corresponding pattern expected

for noninteracting holes confined to a 1D box of the

same length using the band structure from DFT. Several
discrepancies are present compared to Fig. 3(c): In the
experiment (i) the energy gap Egap between the highest
occupied and the lowest unoccupied state is much larger
compared to the neighboring energy level spacings;
(ii) there is a higher number of energy levels and the level
spacing is not approximately equidistant; (iii) most striking,
some states adjacent in energy display the same number
of maxima, and hence, are in phase throughout the entire
MTB [compare states highlighted by arrows in Fig. 3(c)].
In the following, we argue that these observations can be
explained by the TLL theory.

D. Tomonaga-Luttinger liquid in a 1D box

TLL theory is an effective field theory describing the
low-energy excitations of an interacting 1D metal. The
low-energy excitations are not Fermi liquid quasiparticles
but instead spin- and charge-density waves which travel
with two different velocities, vs and vc, giving rise to two
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FIG. 2. DFT calculations for 4j4Emirror-twin boundaries in MoS2. (a) Top and side view of a ball-and-stick model. Mo atoms, green;
S atoms, yellow (top layer) and cyan (bottom layer). (b) Band structure calculated for the ribbon geometry of (a) with periodic boundary
conditions in the direction along the MTB. Horizontal dashed line denotes the position of EF at E ¼ 0. The holelike band present at the
4j4EMTB is colored orange and crosses EF at k ≈ ðπ=2aÞ. The partial charge density of the MTB band wave functions at k ¼ π=ð2aÞ is
shown in (a) with two different isosurface values in red and light red. Bulk bands are colored black and bands located at the ribbon edges
specific to the finite-sized supercell are colored green. (c) Projected density of states (orange) of the atoms around the MTB within the
red dashed box in (a) corresponding to the metallic MTB band in (b), and its Mo-d (dark red) and S-p (light blue) contributions.
(d) Geometry of triangular inversion domain enclosed by three 4j4E MTB segments. (e),(f) LDOS maps (simulated STS maps) for the
supercell shown in (d) at a height of 2.8 Å. Discrete states with wave vector just below [above] kF corresponding to lowest unoccupied
[highest occupied] state are shown in (e) [(f)]. EF was adjusted to match kF ¼ ðπ=2aÞ. From comparison of (e) and (f) it is apparent that
the number of maxima on a 4j4EMTB segment increases by one when moving from the lowest unoccupied state to the highest occupied
state. Note that the features in the corners of the LDOS maps in (e) and (f) are due to the interactions of the triangle corners in the
DFT supercell.
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different dispersions, as schematically sketched in Fig. 3(a).
When an electron is injected into the system, it fraction-
alizes: it creates a multitude of spin and charge excitations.
In a finite-size system these excitations are standing waves
with discrete energies which provide characteristic finger-
prints in a STM experiment.
At low energies, the Hamiltonian of the Luttinger liquid

in the finite system of length L can be written as

H ¼ ðN − N0Þ2
2cL

þ πvsS2z
KsL

þ
X
m>0

ðvsqmb†s;mbs;m þ vcqmb
†
c;mbc;mÞ; ð1Þ

where b†s;m and b†c;m are the creation operators of a spin and
charge excitation with quantum number m ∈ N and c the
capacitance per length of the wire. Because of the finite size

of the system, the excitations have discrete energies vsqm
and vcqm, where qm ¼ ðπ=LÞm is the discrete momentum
which is defined to be positive. The relation of the bosonic
field to the fermionic operators depends on two Luttinger
parameters, Ks and Kc, which encode the effects of
interactions. Note that in the finite-size system, positive
and negative momenta (and left and right movers) are
always coupled by the boundary conditions.
An important ingredient of the Luttinger liquid theory is

the first two terms in Eq. (1), which describe the so-called
zero modes. The first term is simply the charging energy,
N is the total charge in the box, and N0 is a background
charge parametrizing the chemical potential. This
Coulomb-blockade barrier determines Egap. It contains
contributions from the finite-size level spacing, the local
interaction, and the long-ranged Coulomb interaction. In
standard TLL (a theory with purely local interactions), the
capacitance per length c is fixed by the Luttinger liquid
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FIG. 3. Confined quasiparticles in MoS2 MTBs. (a) Sketch of the TLL model. The holelike band of the 4j4E MTB is first linearized,
then quantized. Filled states are occupied. Including electron-electron interactions increases the gap at the chemical potential and lifts the
degeneracy of the charge and spin quasiparticles. (b) STM topograph of a 4j4E MTB (U ¼ 1 V, I ¼ 0.2 nA, scale bar 2 nm). Dotted
line shows the path of the tip during STS data acquisition. (c) Corresponding dI=dV signal as a function of energy and position
(Ustab ¼ 0.8 V, Istab ¼ 1 nA). Arrows denote states which have the same number of maxima and are in phase throughout the MTB.
Color scale ranges from dark blue for zero dI=dV signal to red for maximum dI=dV. Same color scale is used in (d)–(f) for the simulated
LDOS. (d) Simulated LDOS assuming noninteracting holes confined to a 1D box using the band structure from DFT. (e) Simulated
LDOS using the TLL model (vc ¼ 0.38 nm eV, vs ¼ 0.25 nm eV, Kc ¼ 0.5). First spin and charge excitations with velocities vs and vc
are highlighted by arrows. They display identical number of maxima and in-phase behavior over the entire MTB length, as observed
experimentally. (f) Simulated LDOS assuming a CDW with an interaction strength matched to fit the experimentally observed gap.
(g) Dependence of Egap as a function of 4j4E MTB length L, supporting our TLL interpretation.
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parameter Kc, c ¼ 2Kc=ðπvcÞ. We consider the capaci-
tance of the grain boundary as an independent fitting
parameter arising from the long-ranged Coulomb interac-
tion [34]. The second term is a similar contribution in the
spin sector, where we assume that the ground state has zero
spin. In our calculations we set Ks ¼ 1 (assuming spin-
rotation invariance).
In order to compare to experiment we calculate the

LDOS of the Luttinger liquid:

AðE; xÞ ¼
X
σ

Z
∞

−∞

dt
2π

eiEthfΨσðx; tÞ;Ψ†
σðx; 0Þgi; ð2Þ

where Ψσ are the fermionic field operators. f·; ·g denotes
the anticommutator, and h� � �i is the expectation with
respect to the N0-fermion ground state, i.e., a state without
bosonic excitations; see Appendix C for details.
The spectrum predicted by TLL is shown as a color plot

in Fig. 3(e) for parameters matching the experimental
findings in Fig. 3(c). Our Luttinger liquid in a box over-
comes all discrepancies mentioned above, yielding (i) the
proper Egap, (ii) the increased number of levels with
nonequidistant spacings, and (iii) adjacent states with the
same number of maxima and an in-phase relation of the
maxima throughout the entire MTB length. These states,
highlighted by arrows in Fig. 3(e), result from the different
velocities vs and vc of the first spin and charge excitations,
which are well separated in energy.

E. Absence of a Peierls-type charge-density wave

Our data cannot be explained by a Peierls-type CDW
suggested for the 4j4P MTB in MoSe2 [19,29]. A calcu-
lated spectrum for the MTB with a CDW matched to
reproduce Egap is represented in Fig. 3(f) (see Appendix D).
It is obvious that the discrepancies (ii) and (iii) remain.
Moreover, we find that Egap decreases with 1=L consistent
with TLL theory, where Egap ¼ ½ð1=cÞ þ ðπvs=2Þ�ð1=LÞ,
but not with a CDW scenario, where Egap ¼ const. A fit to
EgapðLÞ ¼ A=Lþ B [Fig. 3(g)] leads to a tiny extrapolated
gap Egapð∞Þ ¼ ð10� 6Þ meV. Assumption of a Peierls-
type CDW gap would be inconsistent with our room-
temperature observation of the beating pattern; see
Appendix D. The value of A ¼ ð1.37� 0.07Þ eV nm is
consistent with the estimate A ¼ ðπvs=2Þ þ ðπvc=2KcÞ ¼
ð1.6� 0.3Þ eV nm; see Sec. II D.

F. Spin-charge separation in reciprocal space

Additional insight and support for the TLL picture
is provided by the analysis of the dI=dV spectra taken
along longer 4j4E MTBs. Figures 4(a) and 4(b) present a
color plot of the MTB of Fig. 1(d) together with its Fourier
transform (FT). The latter is considerably more instructive,
since it directly reveals the dispersion of the confined states
[35]. Corresponding simulations using TLL theory are
shown in Figs. 4(c) and 4(d).
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The strongest peaks in the simulated FT of Fig. 4(d)
are located at the energies �ðEgap=2Þ of the highest
occupied and lowest unoccupied states. Their correspond-
ing momenta are 2k∓F , where k−F is the momentum of the
highest occupied state and kþF ¼ k−F þ ðπ=LÞ is the momen-
tum of the lowest unoccupied state. They describe excita-
tions where only the fermion number (zero modes of
the TLL) changes and no spin or charge modes are excited.
A series of prominent peaks is located at momenta
2ðk�F � qmÞ, qm ¼ ðπ=LÞm, m > 0, with energies
∓ ½ðEgap=2Þ þ vsqm�, ∓ ½ðEgap=2Þ þ vcqm� describing a
situation where the injected electron produces a pure spin
or a pure charge excitation. Fitting these peaks can be used
to determine the charge and spin velocities, vc and vs,
assuming that vs < vc, as expected for repulsive inter-
actions. This situation is depicted in Fig. 3(a).
It is also possible that spin and charge excitations

are present simultaneously. When several modes with
momenta q1; q2;…; qn > 0 are excited, this leads to peaks
at the momenta 2ðk�F �P

iσiqiÞ with arbitrary signs
σi ¼ �1. The associated energies are ∓ ½ðEgap=2Þ þP

i vνqiν �, with ν ¼ c; s for a charge or spin excitation,
respectively. These extra peaks are, however, only activated
when one of the Luttinger liquid parameters Kc and Ks
deviates from 1, where 1 corresponds to the noninteracting
case. In our simulations,Kc ¼ 0.5 andKs ¼ 1. The smaller
the Luttinger parameters are, the more weight is transferred
from the primary peaks to the side peaks giving rise to a
more symmetrical spectrum with an accumulation of
weight below and above the two strongest peaks. Our data
do not allow a determination of Kc with high precision; we
estimate Kc ¼ 0.5� 0.1 (see Appendix E for spectra with
different values of Kc).
Comparing the simulated FT plot of Fig. 4(d) to the

corresponding experimental FT plot of Fig. 4(b) makes
plain that in the experimental data, though more blurred,
the spectral weight is not only aligned along a simple curve
vFk, in contrast to the noninteracting case. Clear indica-
tions for the presence of a second velocity are visible.
Furthermore, extra weight is accumulated above and below
the central peaks, in coincidence with the theoretical
modeling.

III. DISCUSSION AND CONCLUSIONS

While we find a good qualitative agreement between
experiment and theory, there are also discrepancies. Most
prominently, the theory is by construction exactly particle-
hole symmetric, while in the experiment both the position
of the peaks and their width differ for positive and negative
energies. In Fig. 3(c), the peaks at positive energies are
strongly broadened. The coupling to electrons in the
substrate is the prime candidate for this effect. One further
effect has been neglected in our theoretical analysis:
backscattering in the spin channel, which cannot be treated

exactly within TLL theory. While backscattering is for-
mally irrelevant and vanishes for L → ∞, it is only
logarithmically suppressed as function of L for spin-
rotation symmetry. It is therefore expected to affect the
finite-size spectrum, possibly explaining some of the
discrepancies in peak positions.
The insight obtained here for the 4j4E MTBs in MoS2

also sheds some light on the controversial results for the
4j4P MTB in MoSe2. Quantum confinement effects, as
detected by Liu et al. [28], are a necessary consequence
of a finite MTB wire length. Thus, for a finite length MTB
with a metallic band crossing EF around k ¼ π=3a (as for
the 4j4P MTB in MoSe2 [30]), the observations of a gap
around EF, of an approximate period tripling, and an
antiphase relation between the highest occupied and lowest
unoccupied state in the center of the wire are to be
expected, and do not constitute evidence for the presence
of a CDW as proposed by Barja et al. [29]. Based on the
similarity of the 4j4P and 4j4E MTBs and our clear-cut
evidence for the presence of a TLL in the 4j4E MTB in
MoS2, it appears likely that indeed a TLL is also present in
the 4j4P MTB in the monolayer of MoSe2, as proposed
by Ma et al. [19].
When comparing previous results on the 4j4P MTB in

MoSe2 to ours on the 4j4E MTB in MoS2, it turns out that
the Luttinger parameter Kc in the range of 0.20–0.21
obtained by Ma et al. [19] is much lower than our estimate
Kc ¼ 0.5� 0.1. One possible reason for this discrepancy is
that Ma et al. deduce Kc from a power-law fit to the density
of states near EF by averaging over a dense network of 1D
subsystems. This analysis does not take into account the
finite wire length between crossing points (of the order of
10 nm). The finite wire length implies an extra suppression
of the density of states both due to finite-size gaps [see our
Fig. 3(g)] and due to an extra suppression of the density of
states close to defects and walls predicted by Luttinger
liquid theory [36]. This extra suppression of the density of
states may lead to an estimate of Kc which is systematically
too small.
In conclusion, STS spectral maps along MTBs and their

FTs show clear evidence for spin-charge separation, char-
acteristic for a quantum confined TLL. We envision that
higher resolution data could be obtained by further decou-
pling the 1D metal from its environment and by lowering
the temperature, enabling a quantitative comparison to TLL
theory. Moreover, chemical gating and defect engineering
of the MTBs might enable one to modify the correlation
strength in the TLL or even create new exotic phases.
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APPENDIX A: EXPERIMENTAL METHODS AND
HIGH-RESOLUTION IMAGES OF MoS2

1. Sample preparation

The synthesis of MoS2 on the substrate graphene on
Ir(111) is conducted in a two-step process [33]. During
the first step, Mo is evaporated from a rod with a rate of
0.125 monolayers=min on the graphene surface at room
temperature in a S pressure of p ≈ 5 × 10−9 mbar.
During the second step, the sample is annealed for 5 min

at T ¼ 1050 K in a S pressure of p ≈ 5 × 10−9 mbar. This
leads to large, flat monolayer MoS2 islands with small
second layer islands on top.

2. Scanning tunneling microscopy

All STM and STS experiments were conducted at
T ¼ 5 K. For STS, we measure the dI=dV signal using
the lock-in technique (modulation voltage Vmod ¼ 4 mV,
frequency f ¼ 777 Hz). For our color plots, we use a linear
interpolation of the discrete data.

3. Identifying mirror-twin boundaries

Atomically resolved STM images of MTBs in mono-
layer MoS2=graphene=Irð111Þ are shown in Fig. 5. In
Fig. 5(a), one finds two islands separated by a line defect.
The dense-packed rows in both islands have the same

orientation—visualized with white lines in Fig. 5(a).
Hence, this line defect must be a MTB. Together with
its electronic signatures, which are described in the main
text, the MTB can be attributed to a 4j4E MTB.
Another atomically resolved STM image is shown in

Fig. 5(b). It displays a boundary containing two different
line defects which meet at an angle. One has a single line
structure as in Fig. 5(a), while the other exhibits a double
structure. It is this double line feature, together with a
periodic beating of approximately 3a (not visible here),
which clearly distinguishes this boundary. The orientation
of the atomic rows on both sides of the double line is
identical. Hence, both boundaries must be MTBs. The
MTB with double lines is attributed to a 4j4P MTB.

APPENDIX B: DENSITY-FUNCTIONAL THEORY

1. Density-functional theory calculations

All density-functional theory calculations were carried
out within the plane-wave basis and the projector aug-
mented wave framework as implemented in VASP [37,38].
The exchange-correlation effects are treated with the func-
tional proposed by Perdew, Burke, and Ernzerhof [39]. The
atomic models in the ribbon calculations consist of tetrago-
nal cells with sizes of about 6

ffiffiffiffiffiffiffið3Þp
× 1 × 1 and periodic

only along the MTB with vacuum claddings in the other
two directions. The 4j4E or 4j4P MTB are located
symmetrically in the middle, while the ribbon edges are
of the S2-passivated Mo-zigzag type. The k-point sampling
of 1 × 12 × 1 and the plane-wave cutoff of 500 eV guar-
antee converged total energies. For MTBs of finite length,
we adopted models where triangular MTB loops are
embedded within a 16 × 16 supercell. In this case, Γ-point
sampling and reduced plane-wave cutoff are adopted. The
STS images are obtained within the Tersoff-Hamann
approximation [40].

2. 4j4P mirror-twin boundaries

We propose that the double line MTB possesses the
4j4P structure, i.e., consists of fourfold rings which share
a point, as schematically depicted in the ball-and-stick
model of Fig. 6(a). The DFT calculated band structure for
the ribbon geometry of Fig. 6(a) is displayed in Fig. 6(b).
Apparent is an electronlike band localized at the 4j4P
MTB, with its minimum at k ¼ 0 and crossing EF at
k ¼ kF ≈ π=ð3aÞ. For an inversion domain supercell
bounded by three 4j4P MTB segments as shown in
Fig. 6(c), the simulated LDOS maps for the lowest
unoccupied [Fig. 6(d)] and highest occupied [Fig. 6(e)]
state match in appearance and periodicity precisely with
the STS maps of the 4j4P MTBs. Also to be noted is that
the number of LDOS maxima decreases by one upon
moving from the lowest unoccupied to the highest
occupied state. Our assignment of the double line being
a 4j4P MTB is in agreement with literature [19,28,29].

(a) (b)

FIG. 5. MTBs in monolayer MoS2. (a) Constant-current STM
image of a 4j4E MTB in MoS2=graphene=Irð111Þ [U ¼ 0.9 V,
I ¼ 0.5 nA, image size ð12 × 12Þ nm2]. The white lines show
that both grains are perfectly aligned. (b) Constant-current STM
image of a grain boundary forming both a 4j4E and a 4j4P MTB
[U ¼ 0.4 V, I ¼ 1 nA, image size ð15 × 15Þ nm2].
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APPENDIX C: TOMONAGA-LUTTINGER LIQUID
THEORY IN A 1D BOX

To describe a Luttinger liquid in a system of finite length
[31,32], the electron operator is first split into a left-moving
and a right-moving part:

ΨσðxÞ ¼ e−ikFxΨσ;LðxÞ þ eikFxΨσ;RðxÞ: ðC1Þ

At the two boundaries, a right-moving electron is
scattered into a left-moving one. It is therefore useful to
define a new field Ψ̃σðxÞ, which is Ψσ;RðxÞ for 0 ≤ x ≤ L
and −Ψσ;Lð−xÞ for −L ≤ x ≤ 0. This new field has simple
periodic boundary conditions Ψ̃σð−LÞ ¼ Ψ̃σðLÞ and natu-
rally incorporates the physics at the boundary.
The electron operator is obtained from the bosonization

identity:

Ψ̃σðx; tÞ ¼
Fσðx; tÞffiffiffiffiffiffiffiffi

2πa
p eiΦcðx;tÞeiσΦsðx;tÞ; ðC2Þ

Φνðx; tÞ ¼
X∞
m¼1

1ffiffiffiffi
m

p ½χν;mðxÞe−ivνqmtbν;m þ H:c:�; ðC3Þ

Fσðx; tÞ ¼ FσeiðEgap=2Þtei½ðπ=LÞx−Egapt�ðNσ−N0;σÞ; ðC4Þ

with Klein factors Fσ and χν;kðxÞ ¼ ðανeiqmνx −
βνe−iqmνxÞ= ffiffiffi

2
p

and αν ¼ ðK1=2
ν þ K−1=2

ν Þ=2, βν ¼ ðK1=2
ν −

K−1=2
ν Þ=2 (ν ¼ c, s).
In order to evaluate the LDOS [Eq. (2)], we use the

bosonization identity Eq. (C2) and obtain

AðE; xÞ ¼
X
�

X
mc;ms>0

Að�Þ
mc;msðxÞδðE ∓ ωmc;ms

Þ; ðC5Þ

with the spectrum of charge and spin excitations,

ωmc;ms
¼ Egap

2
þ vcqmc

þ vsqms
; ðC6Þ

and the spectral weights,

Að�Þ
mc;msðxÞ ¼ C

���� sin
�
π

L
x

�����
−
P

ν
ανβν�

2Ix;−xmc;ms − ei2k
�
F xI�x;�x

mc;ms − e−i2k
�
F xI∓x;∓x

mc;ms

�
: ðC7Þ

The remaining integrations,

Ix;ymc;ms ¼
X
ν¼c;s

Z
Tν

0

dt
Tν

eivνqmν texp

�Xmν

k¼1

χν;kðxÞχν;kðyÞe−ivνqkt
	
;

ðC8Þ

are performed numerically. Here, Tν ¼ 2L=vν is the travel
time of charge- and spin-density waves. C is a cutoff-
dependent prefactor.

APPENDIX D: CHARGE-DENSITY WAVE

1. Charge-density wave model

To calculate the LDOS for a CDW we use standard
mean-field theory assuming a local interaction U in a
continuum model. We solve the Schrödinger equation in a
box self-consistently,

½−ivF∂x þUnðxÞ�ψnðxÞ ¼ EnψnðxÞ; ðD1Þ

with the Fermi velocity vF and the electron density,

4|4P

1
2

3
4

1

2

3

(a) (b)

MTB
Bulk
Edge

k
π /(2a) π /a0

E
(e

V
)

1

-1

0

(c) (d) (e)

FIG. 6. DFT calculations for 4j4P mirror-twin boundaries in
MoS2. (a) Top and side view of a ball-and-stick model. Mo
atoms, green; S atoms, yellow (top layer) and cyan (bottom
layer). (b) Band structure calculated for the ribbon geometry of
(a) with periodic boundary conditions in direction along MTB.
Horizontal dashed line denotes the position of EF at E ¼ 0. The
electronlike band present at the 4j4P MTB is colored orange
and crosses EF at k ≈ π=ð3aÞ. A second band appears above EF.
Bulk bands are colored black and bands located at the ribbon
edges specific to the finite-sized supercell are colored green.
(c) Geometry of triangular inversion domain enclosed by three
4j4PMTB segments. (d),(e) LDOS maps (simulated STS maps)
for the supercell shown in (c) at a height of 2.8 Å. Discrete
states with wave vector just above [below] kF corresponding to
lowest unoccupied [highest occupied] state are shown in
(d) [(e)]. EF was adjusted to match kF ¼ π=ð3aÞ.
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nðxÞ ¼
XN0

n¼1

jψnðxÞj2: ðD2Þ

The LDOS of the interacting electrons is then given by

AðE; xÞ ¼
X
n∈N

jψnðxÞj2δðE − EnÞ: ðD3Þ

The CDW gap opens between the highest occupied EN0
and

the lowest empty hole state EN0þ1 for attractive interactions
U < 0. To produce Fig. 3(f) we take the value of vF from
the DFT calculation and we fit the interaction constantU to
the experimental size of the gap Egap. Note that a negative
U is needed to obtain a CDW. The attractive interaction
mimics the effect of optical phonons giving rise to an
attractive interaction at momenta 2kF.

2. Room-temperature STM measurements

Our room-temperature measurements of 4j4E MTBs
(Fig. 7) reveal that the characteristic beating pattern
observed at low temperature persists also at room temper-
ature. Based on the fit of Fig. 3(g), a CDW gap could only
be of the order of 10 meV. For a Peierls-type CDW this
would result in a transition temperature TC ¼ 33 K [41],
inconsistent with our room-temperature observation. Note
that the observation of the beating pattern does not imply
the presence of a TLL at room temperature, but it does
imply that at least quantization effects resulting from
the finite length of the metallic wire persist up to room
temperature.

APPENDIX E: FOURIER SPECTRA OF THE
LOCAL DENSITY OF STATES

1. Fourier transformation of experimental
and theoretical spectra

We apply a standard Fourier transformation to our
experimental and theoretical spectra and calculate the
modulus of the Fourier mode. This procedure leads to
discrete peaks at momenta 2πn=L. Note, however, that the
resulting picture depends on the precise choice of the width
L of the real-space window used for the Fourier transform.
As L determines the discretization in momentum space, this
potentially leads to an error of the order of �2π=L in the
position and width of the peaks. We have included only
spectra in our Fourier transformation which show a signal
clearly associated to theMTB. For our plots, we use a linear
interpolation of the discrete data.

2. Comparison of Fourier spectra of different TLL
parameters Kc and of a charge-density wave

In the generic interacting case, Kc < 1, Fourier modes at
2ðkþF � qnÞ and 2ðk−F � qnÞ with 0 ≤ n ≤ mc contribute at
a given energy level labeled by the quantum number mc.
From this selection rule alone, one could expect a sym-
metric distribution of intensity centered around 2k�F . The
weights of the Fourier modes, however, are determined by
the TLL parameter Kc. We discuss their dependence on Kc
for a wire containing the same number of holes as in Fig. 4
(main text). In Fig. 8(a) we show the real-space image of
the LDOS for Kc ¼ 0.5. Its Fourier transform Fig. 8(b)
reveals which Fourier modes are activated by Kc, and to
what extent.
In order to make the effect of Kc < 1 more transparent,

we also show the Fourier spectra for the nominally
noninteracting case, Kc ¼ 1 [see Fig. 8(c)], and for strong
interactions, Kc ¼ 0.2 [see Fig. 8(d)]. Note that we use a
fixed ratio vs=vc ¼ 0.6 and a fixed value of Egap ¼
0.08 eV in all plots, as our main goal is to demonstrate
the role of matrix elements controlled by Kc. In reality, a
noninteracting system is characterized by vs=vc ¼ 1 and
the ratio generically shrinks when interactions get
stronger. For Kc ¼ 1, only Fourier modes 2½k�F � ðqmc

þ
qms

Þ� with quantum numbers ðmc;msÞ have nonzero
weight. As a consequence, the Fourier spectrum displays
the linear dispersion of charge and spin excita-
tions, ∓ ½ðEgap=2Þ þ vcðk�F � qmc

Þ þ vsðk�F � qms
Þ�.

The most pronounced peaks in Fig. 8(c) correspond to
“pure” excitations, e.g., ðmc ¼ 1; ms ¼ 0Þ. The remaining
intensity is distributed among “mixed” excitations, e.g.,
ðmc ¼ 1; ms ¼ 1Þ. For strong interactions (Kc ¼ 0.2), a
larger number of Fourier modes is activated and the charge
peaks are transformed to a more symmetric distribution
(as expected from the selection rule). In this scenario, the
most pronounced peaks are found at 2k�F . (The number of

FIG. 7. Room-temperature STM measurements of a MTB in
MoS2 crossing a substrate step. STM image of a 4j4E MTB
[U ¼ −0.51 V, I ¼ 0.056 nA, image size ð20 × 18Þ nm2]. The
periodic beating pattern of approximately 2a is observed best
close to the ends of the MTB.
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pure spin peaks does not change since we set Ks ¼ 1.)
Comparison between experimental and theoretical Fourier
spectra allows us to roughly estimate Kc from the number
of activated Fourier modes and from the presence or
absence of symmetry in the distribution.
In Fig. 8(e) we show the LDOS of the wire in a CDW

state [with the same number of holes and the same value of
Egap as used for the TLL plots, Figs. 8(a)–8(d)]. There are
three clear differences when compared to the TLL Fourier
spectra, Figs. 8(b)–8(d). (i) The main peaks in its Fourier
spectrum Fig. 8(f) form a single dispersing band since there
is no spin-charge separation. (ii) The side peaks are only
located at 2k−F. These indicate the 2k

−
F scattering processes

which lead to the opening of the gap. (iii) The band slightly
curves in the vicinity of the gap while in TLL the bands are
strictly linear.
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