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Model Selection for Incremental Learning
of Generalizable Movement Primitives

Murtaza Hazara and Ville Kyrki

Abstract— Although motor primitives (MPs) have been stud-
ied extensively, much less attention has been devoted to
studying their generalization to new situations. To cope with
varying conditions, a MP’s policy encoding must support
generalization over task parameters to avoid learning separate
primitives for each condition. Local and linear parameterized
models have been proposed to interpolate over task parame-
ters to provide limited generalization.

In this paper, we present a global parametric motion
primitive which allows generalization beyond local or linear
models. Primitives are modelled using a linear basis function
model with global non-linear basis functions. Using the
global parametric model, we developed an online incremental
learning framework for constructing a database of MPs from
a single human demonstration. Above all, we propose a
model selection method that can choose an optimal model
complexity even with few training samples, which makes it
suitable for online incremental learning. Experiments with
a ball-in-a-cup task with varying string lengths demonstrate
that the global parametric approach can successfully extract
underlying regularities in a database of MPs leading to
enhanced generalization capability of the parametric MPs and
increased speed (convergence rate) of learning. Furthermore,
it significantly excels over locally weighted regression both in
terms of inter- and extrapolation.

I. INTRODUCTION

Learning a skill in a perturbed environment often
requires practising it under various conditions. For example,
to learn to score in basketball, an individual needs to
practice throwing from different locations. Subsequently,
generalizing to a new situation (e.g. location) becomes
easier as the individual learns incrementally the underlying
regularities of the task. Incremental learning has been
studied [1] in the context of iterative learning control
(ILC) where a desired trajectory is adapted to a known
reference trajectory in an online incrementally manner.
However, in this paper, we propose incremental learning
in the context of reinforcement learning (RL) where such
a reference trajectory is unknown. In fact, finding the
reference trajectory for the new perturbed environment is
our objective.

In this paper, we propose a new global parametric
learning from demonstration (LfD) approach for gener-
alizing an imitated task to new unseen situations. We
selected the ball-in-a-cup task to assess how effective our
method is in generalizing from initial demonstration with
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Fig. 1: (a) Ball-in-a-cup game with two different string
lengths. (b) Models fit to 7 points of a non-linear function.
Only the second order model captures the global pattern,
while the GPR model tends to the mean when extrapolating,
and the linear model is either (when trained with all
samples) leaning toward the mean, or finds only the local
pattern when fit to only two points marked by the green
color.

certain string length to changed lengths. We demonstrate
that our approach is capable of interpolation (new string
length in the range of training set) and extrapolation
(string length outside the range of training set). The
kinematics of the initial demonstration are encoded using
a Dynamic Movement Primitive (DMP). Afterwards, the
shape parameters of the DMP are optimized using PoWER
[2] for a new task parameter (string length) and added to a
database (DB) of MPs. The global model is updated in an
online fashion and its complexity is controlled as new MPs
are added to the database. The global model can provide
RL with a good initial policy boosting up the learning
process, and in return RL provides the global model with
more training data leading to an enhanced prediction of
policies for new unseen task parameters.

The main contribution of this paper is providing an
incremental learning framework in the context of RL for
constructing a DB of MPs. The underlying regularities of
this DB are extracted online using a novel global parametric
model generalizing task parameters to policy parameters.
Above all, we propose a novel penalized log-likelihood
based model selection for controlling the complexity of
the global model as new MPs are added to the DB. We also
show that this model selection works even with few training
samples indicating its superiority for online incremental
learning over traditional model selection methods such as
Akaike information criterion (AIC), Bayesian information



criterion (BIC), and leave-one-out cross validation. Our
experiments demonstrate also that our global parametric
approach generalizes significantly better than LWR in terms
of both inter- and extrapolation.

II. RELATED WORK

To adapt LfD models to new environments, the model
parameters need to be adjusted according to parameters
characterizing the new environment or task. Existing gener-
alizable LfD models can be categorized as (i) generalization
by design where the parameters are explicit in the model
structure such as the goal of a DMP; (ii) generalization
based on interpolation which uses a weighted combination
of training models; and (iii) generalization by global linear
models where the model parameters depend linearly on
the environment/task parameters.

Kober et al. [3] utilized a cost regularized kernel regres-
sion (based on Gaussian process regression) for learning
the mapping of new situations to meta-parameters includ-
ing the initial position, goal, amplitude and the duration of
the MPs; they model the automatic adjustment of the meta-
parameters as a RL problem. The approach allows then
adjusting these designed aspects of motion based on the
task but does not enable modifying other characteristics
of the trajectory (policy), making the approach suitable
for learning tasks where the DMPs are adapted spatially
and temporally without changing the overall shape of the
motion, but unsuitable for tasks where the dynamics during
motion are changed such as in this paper.

Researchers have recently shown interest also in general-
izing DMP shape parameters to new situations [4], [5], [6],
[7], [8], [9]. The approaches are primarily based on local
regression methods. For example, Da Silva et al. [4] extract
lower dimensional manifolds (latent space) from learned
policies using ISOMAP algorithm; they achieve a general-
izable policy by mapping the manifolds (representing task
parameters) to DMPs shape parameters. Support Vector
Machines with local Gaussian kernels are used for learning
the mapping. Similarly, Forte et al. [5] utilize Gaussian
process regression (GPR) to learn the mapping of task
parameters to DMP shape parameters. Ude et al. [6] and
Nemec et al. [8] utilize Locally Weighted Regression (LWR)
and kernels with positive weights for learning the mapping.
Stulp et al. [7] learn the original shape parameters and
generalize it with one single regression using Gaussian
kernels. Mülling et al. [9] propose a linear mixture of MPs
for generalization and refine the generalized behavior using
RL.

Although the local regression approaches might interpo-
late within the range of demonstrations, their extrapolation
capability is not guaranteed, which is mainly because of the
kernels learning the local structure; thus they typically tend
towards the mean of training data when extrapolating. This
problem is illustrated using a simple example in Fig. 1b
which shows local (GPR) and global (linear, second order)
models fit to a set of points. When a line is fit to two points
close to each other, it learns the local pattern allowing

interpolation and extrapolation in a small neighborhood. If
the line fit is made using all points, the fit tends to become
poor everywhere. A local regression such as GPR performs
well in interpolation, but not in extrapolation. When a well
fitting higher order global model can be found, it typically
outperforms the others in extrapolation.

Carrera et al. [10] developed a parametric MPs model
based on a mixture of several DMPs. First, they record
multiple demonstrations. A DMP model is fit to each
demonstration, and a parametric value is assigned to it
representing the task environment in which the demon-
stration was recorded. Then, they calculate the influence
of each model using a distance function between the
model parameters and the parametric value describing the
current environment perturbation. Using the influence of
each model as its mixing coefficient, the mixture of models
is computed at the acceleration level. Since it is a linear
combination with positive coefficients, the mixture model
is not expected to be capable of extrapolation. Calinon
et al. [11] proposed an MPs model based on a Gaussian
mixture model and generalize it to new situations using
expectation maximization. Although their model is capable
of linear extrapolation, it is only applicable when the task
parameters can be represented in the form of coordinate
systems. All things considered, few researchers [12] have
considered the extrapolation capability in generalizing task
parameters to model parameters, which is the main focus
of this paper.

III. METHOD

In this section, we review dynamic movement primi-
tives (DMPs). After that, we clarify our global parametric
dynamic movement primitives (GPDMPs) method which
incorporates both linear and non-linear parametric mod-
els. Besides that, we review traditional model selection
approaches and then explain our penalized log-likelihood
based model selection method.

A. Dynamic Movement Primitives

DMPs encode a policy for a one-dimensional system
using two differential equations. The first differential
equation

ż =−ταz z (1)

formulates a canonical system where z denotes the phase
of a movement; τ= 1

T represents the time constant where
T is the duration of a demonstrated motion, and αz is
a constant controlling the speed of the canonical system.
This first order system resembles an adjustable clock
driving the transform system

1

τ
ẍ =αx (βx (g −x)− ẋ)+ f (z;w) (2)

consisting of a simple linear dynamical system acting like
a spring damper perturbed by a non-linear component
(forcing function) f (z;w). x denotes the state of the system,
and g represents the goal. The linear system is critically



damped by setting the gains as αx = 1
4βx . The forcing

function
f (z;w) = wT g (3)

controls the trajectory of the system using a time-
parameterized kernel vector g and a modifiable policy
parameter vector (shape parameters) w. Each element of
the kernel vector

[g]n = ψn(z)z∑N
i=1ψ

i (z)
(g −x0) (4)

is determined by a normalized basis function ψn(z)
multiplied by the phase variable z and the scaling factor
(g − x0) allowing for the spatial scaling of the resulting
trajectory. Normally, a radial basis function (RBF) kernel

ψn(z) = exp(−hn(z − cn)2) (5)

is selected as the basis function. The centres of kernels
(cn) are usually equispaced in time spanning the whole
demonstrated trajectory. It is also a common practice to
choose the same temporal width (hn = 2

3 |cn −cn−1|) for all
kernels. Furthermore, the contribution of the non-linear
component (3) decays exponentially by including the phase
variable z in the kernels. Hence, the transform system (2)
converges to the goal g .

The shape parameter vector w can be learned using
weighted linear regression [13]; firstly, the nominal forcing
function f r e f is retrieved by integrating the transform
system (2) with respect a human demonstration xdemo ;
next, the shape parameter for every kernel is estimated
using

[w]n = (ZTΨZ)−1ZTΨfr e f (6)

where [fr e f ]t = f r e f
t , [Z]t = zt , and Ψ =

diag(ψn
1 , ...,ψn

t , ...,ψn
T ).

B. Global Parametric Dynamic Movement Primitives

Using DMPs, a task can be imitated from a human
demonstration; however, the reproduced task cannot be
adapted to different environment conditions. To overcome
this limitation, we have integrated a parametric model
to DMPs capturing the variability of a task from multiple
demonstrations. We transform the basic forcing function
(3) into a parametric forcing function

f (z, l;w) = w(l)T g (7)

where the kernel weight vector w is parametrized using a
parameter vector l of measurable environment factors.

We model the dependency of the weights with respect
to parameters as a linear combination of J basis vectors vi

with coefficients depending on parameters in a non-linear
fashion,

w(l) =
J∑

i=0
φi (l)vi = VTφ(l) (8)

where V s a J ×N matrix of parameters with N referring to
the number of kernels g. φ(l) is a J dimensional column
vector with elements φ j (l). The non-linear basis φ j (l) for
a polynomial model in one parameter is φ j (l ) = l j .

The formulation captures linear models such as [12]
as a special case. Considering a single parameter l for
presentational simplicity, the linear model can be written

w(l ) = l v1 +v0. (9)

For a chosen non-linear basis (known functions φi ),
the basis vectors can be calculated by minimizing the
difference between modelled and initial non-parametric
DMP shape parameters,

argmin
V

K∑
k=1

‖w(lk )−wk‖2 (10)

where wk denotes the initial weight vector of a non-
parametric DMP optimized for parameter values lk . The
initial weights can be merely imitated from a human
demonstration using (6) or improved using a policy search
method [14]. In either case, reproducing an imitated task
using wk should lead to a successful performance in an
environment parametrized by lk .

In order to solve (10), one needs to construct the design
matrix

Φ=


φ1(l1) φ2(l1) . . . φJ (l1)
φ1(l2) φ2(l2) . . . φJ (l2)

...
...

. . .
...

φ1(lK ) φ2(lK ) . . . φJ (lK )

 (11)

where K denotes the number of initial DMPs weight vectors
which must be at least equal to or greater than the order of
the model J to avoid unconstrained optimization problems.
Furthermore, the rows of the target matrix

W =

wT
1
...

wT
K

 (12)

represent an initial DMPs weight vector. We can minimize
(10) with respect to the matrix of basis vectors V, giving

V̂ = (ΦTΦ)−1ΦT W. (13)

C. Model selection

The order of complexity for a parametric regression
model needs to be selected for overcoming the so-called
over-fitting problem. The model complexity can be deter-
mined for every single policy parameter (e.g. weight of
every single DMP kernel). However, in such a univariate
model, the correlation among policy parameters are ig-
nored, thus resulting in a very non-smooth trajectories for
new task parameters. Hence, we consider a single model
complexity for the global model.

The model choice for a particular application is a
compromise between complexity of the modelled attractor
landscape and overfitting due to insufficient data. The best
generalization can be achieved by choosing an optimal
order of complexity for the model, which is addressed in
a model selection method such as cross validation, AIC,
or BIC.



Leave-one-out cross validation is a traditional model
selection technique which separates training data into
a training set and a validation set for assessing the
generalization performance. On the other hand model
selection methods based on information criteria such as
AIC and BIC exploit the whole training set for both training
the model and choosing its complexity. Both of these
methods are based on penalized log-likelihood, where the
penalty term constrain the model complexity. AIC selects
the model which maximizes

AI = log p(W|Θ̂)− J (14)

where p(W|Θ̂) denotes the likelihood of training data;
however, AIC favours higher order of complexity resulting
in overfitting.

BIC put a stronger penalty on the number of free
parameters (in this case J), and thereby controlling the
complexity of the model. The optimal model order can be
selected by minimizing the BIC-cost

B =−2log p(W|Θ̂)+ J logK . (15)

We assume a linear regression model with additive white
Gaussian noise

W =ΦV+E (16)

where E is the error matrix

E =

ε
T
1
...
εT

K

 (17)

with each row
εi = wi − V̂Tφ(li ) (18)

representing the difference between the i th training sample
wi and its prediction V̂Tφ(li ). Hence, the likelihood of data
is

log p(W|Θ̂) = log
K∏

i=1
N (wi |li , V̂, Σ̂)

=−K N

2
log (2π)− K

2
log (det(Σ̂))−

1

2
tr {(W−ΦV̂)T (W−ΦV̂)Σ̂−1}

(19)

where N is the number of DMPs kernels (size of g in
4); V̂ denotes the maximum likelihood estimate (MLE)
of parameter matrix (using (13)); and, Σ̂ represent MLE
estimate of the covariance

Σ̂= 1

K
(W−ΦV̂)T (W−ΦV̂) (20)

of DMPs weight vector w. After eliminating the constant
term (−K N

2 log (2π)) in (19), one can rewrite (15) into

B = K log(det(Σ̂))+tr ((W−ΦV̂)T (W−ΦV̂)Σ̂−1)+J logK . (21)

The determinant of the MLE estimate of the covariance,
Σ̂ will be zero with few training samples causing the

BIC cost to go toward negative infinity. Hence, we have
modified the traditional definition of the BIC cost

BM =−2log p(E |Θ̂)+ J logK (22)

by considering the distribution of the noise which can be
written into

log p(E |Θ̂) = log
K∏

i=1
N (εi |0,Σ) =−K N

2
log(2π)− K

2
log(det(Σ))

− 1

2

K∑
i=1

(εT
i Σεi )

=−K N

2
log(2π)− K

2
log(det(Σ))

− 1

2

K∑
i=1

(wi − V̂Tφ(li ))TΣ(wi − V̂Tφ(li ))

=−K N

2
log(2π)− K

2
log(det(Σ))

− 1

2
tr ((W−ΦV̂)T (W−ΦV̂)Σ−1)

(23)

due to the the i.i.d assumption on the white additive noise
(εi ∼N (0,Σ)), where Σ represents a constant covariance
matrix which needs to be determined prior to the model
selection process. In our experiments, we have selected an
scaled identity matrix sI as the constant covariance matrix
where s denotes the scale. The scale can be determined
with respect to the magnitude of the error (difference
between wk and V̂Tφ(lk )). A simple way to estimate the
scale is to look at the largest eigenvalue of the MLE estimate
of the covariance matrix (20) with linear fitting. After
eliminating constant terms (−K N

2 log(2π) and K
2 log(det(Σ)))

in (23), one can rewrite the modified BIC cost (22) into

BM = tr ((W−ΦV̂)T (W−ΦV̂)Σ−1)+ J logK . (24)

The model which minimizes BM will be selected. The
first term in BM favours higher order model while the
second term discourages a very high order; hence, it
guarantees best prediction while avoiding over-fitting. Since
the determinant of the MLE covariance does not appear
in our modified BIC BM (24), it is more suitable than the
traditional BIC when the training samples are scarce.

D. Reinforcement Learning

Executing a DMP with imitated shape parameters might
not lead to a successful reproduction of a task. One way
to refine the shape parameters is to learn them through
trial-and-error using policy search reinforcement learning
(RL). Next, we briefly review the state-of-the-art policy
search method PoWER [2] which was used in this work to
optimize individual primitives.

PoWER (see Algorithm 1) updates the DMP shape
parameters θ ≡ w iteratively. In each iteration, (several)
stochastic roll-out(s) of the task is performed, each of
which is achieved by adding random (Gaussian) noise to
the DMPs shape parameters. Each noisy vector is weighted
by the returned accumulated reward. Hence, the higher



the returned reward, the more the noisy vector contribute
to the updated policy parameters. This exploration process
continues until the algorithm converges to the optimal
policy.

Algorithm 1 PoWER [2].

Input: The initial policy parameters θ, the exploration
variance Σ

1: repeat
2: Sample: Perform rollout(s) using a = (θ+εt)Tφ(s,t)

with εT
t φ(s,t) ∼N (0,φ(s,t)TΣ̂φ(s,t)) as stochastic

policy and collect all (t,sh
t ,ah

t ,sh
t+1,εh

t ,rh
t+1) for

t = {1,2, . . . ,T+1}.
3: Estimate: Use unbiased estimate

Q̂π(s, a, t ) =
T∑

t̃=t

r (s t̃ , a t̃ , s t̃+1, t̃ ).

4: Reweight: Compute importance weights and reweigh
rollouts, discard low-importance rollouts.

5: Update policy using

θk+1 = θk +
〈∑T

t=1 εt Qπ(s,a, t )〉w(τ)

〈∑T
t=1 Qπ(s,a, t )〉w(τ)

6: until convergance θk+1 ≈ θk

The structure of the noise is a key element influencing
the convergence speed of a policy search method but the
choice is a trade-off. In the case of DMP shape parameters
and uncorrelated noise, high noise variance causes large
accelerations of the system, causing a safety hazard and
possibly surpassing the physical capabilities of the robot.
In contrast, low noise variance makes the learning process
slow.

To address this trade-off, we propose to use correlated
noise instead of the earlier works employing uncorrelated
noise. Since the elements of a DMP parameter vector
correspond to temporally ordered perturbing forces, we
want to control their temporal statistics. To achieve this,
an intuitive structure for the covariance matrix Σ = R−1

can be used where the quadratic control cost matrix

R =
F∑

j=1
h j AT

j A j (25)

is a weighted combination of quadratic costs related
to finite difference matrices A1 · · ·AF . h j denotes the
weight of the j -th finite difference matrix, where j is the
order of differentiation. This structure allows us then to
control statistics of any order. In experiments, we consider
variation only in acceleration (second order). Thus, h2 = 1
and all other weights h j = 0, j 6= 2, and the second order

finite difference matrix A2 can be written

A2 =



1 0 0
· · ·

0 0 0
−2 1 0 0 0 0
1 −2 1 0 0 0

...
. . .

...
0 0 0

· · ·
1 −2 1

0 0 0 0 1 −2
0 0 0 0 0 1


. (26)

With this covariance matrix, the noise signal is smooth
(see Fig. 2a) due to limited acceleration and it has small
magnitude in the beginning and at the end of the trajectory.
Hence, safe exploration is provided. It is worth mentioning
that a similar covariance matrix has been applied in [15]
and [16] for direct trajectory encoding.

In order to control the magnitude of noise, we used a
further modified covariance matrix Σ= γβR−1 where γ is a
constant controlling the initial magnitude and convergence
factor

β= 1∑I
i=1 r 2

i

, (27)

reduces the magnitude of noise as the policy search
algorithm is converging to the optimal policy.
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Fig. 2: (a) Noises ε sampled from a zero mean multivariate
Gaussian distribution N (0,Σ) with γ= 1 and β= 0.01. (b)
Mean and variance of returns over 12 trials where 11 initial
roll-outs were used before re-weighting DMP weights.

IV. EXPERIMENTAL EVALUATION

We studied experimentally the generalization perfor-
mance of the proposed model using a Ball-in-a-Cup
task taught to KUKA LBR 4+ initially using kinesthetic
teaching. In this section, we explain the incremental
learning scenario and compare it with LWR and non-
incremental learning in terms of convergence speed and
the extrapolation capability of the model.

A. Ball-in-a-Cup Task

The Ball-in-a-Cup game consists of a cup, a string, and
a ball; the ball is attached to the cup by the string (see
Fig. 1a). The objective of the game is to get the ball in the
cup by moving the cup in a suitable fashion. In practice,
the cup needs to be moved back and forth at first; then,
a movement is induced on the cup, thus pulling the ball
up and catching it with the cup.



We chose the Ball-in-a-Cup game because variation in
the environment can be generated simply by changing the
string length. The string length is observable and easy to
evaluate, thus providing a suitable parameter representing
the environment variation. Nevertheless, changing the
length requires a complex change in the motion to succeed
in the game. Hence, the generalization capability of a
parametric LfD model can be easily assessed using this
game.

The state of the robot is defined in a seven dimen-
sional space X = {x, y, z, qx , qy , qz , qw }, where Xp = {x, y, z}
represents the position of the robot end effector (cup),
and Xq = {qx , qy , qz , qw } formulates its orientation using
a quaternion. The ball-in-a-cup is essentially a two-
dimensional game and thus only motion along two axes,
y and z was used. In the demonstration phase, the
robot was set compliant along y and z, while it was
set stiff rotationally and along x, which were considered
as constant states. The plane spanning y and z was
orthogonal with respect to the table upon which the robot
was mounted (see Fig. 1a).

The trajectories along y and z were encoded using
separate DMPs with same number of parameters. We found
experimentally that 55 kernels (shape parameters) were
required so that the reproduced movement was able to put
the ball above the rim of the cup in the execution phase.
In total, 110 shape parameters were then learned using
weighted linear regression (6). However, using these initial
shape parameters, the reproduced movement did not put
the ball back into the cup. Hence, the shape parameters
were optimized in a trial-and-error fashion using RL as
described in Sec. III-D.

Reward function is the most fundamental ingredient of
RL. We formulated the reward function similar to [2] as

r (t ) =
{

e−αd 2
, if t = tc ,

0, otherwise
(28)

where tc denotes the time instant when the ball crosses
the rim of the cup with a downward motion; d represents
the horizontal distance between the rim of the cup and
the centre of the ball; and α is a scaling parameter set to
100 in our experiments. The closer the ball is to the rim
of the cup, the higher the reward will be. As the shape
parameters are fine-tuned in a trial-and-error approach,
the ball would get closer to the cup. Furthermore, the
reward is zero if the ball does not reach above the rim of
the cup.

B. Incremental Learning

Learning without a prior is a very time-consuming pro-
cess. The speed of RL will improve significantly when the
learning process is started from a good initial policy. In fact,
it is customary to initiate the policy search process with a
policy that imitates a human demonstration. However, the
optimized policy is not guaranteed to work successfully
in a new environment characterized by a different task
parameter. In this case, a policy must be optimized for the
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Fig. 3: Validity ranges (red lines) of models learned from
database of different sizes. (a) zero order (model selection)
global model trained only on one MPs. (b) zero order
model trained on 2 MPs. (c) zero-order (model selection)
model trained on 3 MPs. (d),(e),(f), and (g) represent first,
second, third, and fourth order models trained on the
same DB of MPs as in (c). (h) Locally weighted regression.

new task parameter. Starting the optimization process from
an imitated policy is still time-consuming. The speed of
learning process can increase with a more accurate initial
policy such as the policy optimized for the closest task
parameter. In this way, a database of MPs can be created.

The underlying regularities in this database can be
extracted in an online manner for enhancing the extrapo-
lation capabilities and boosting up the speed of learning
process. In fact, we are constructing a global model in
an online fashion and control its complexity as new MPs
are added to the database. The global model can provide
the policy search process with an initial policy which is
more accurate than the policy optimized for the closest
task parameter. Utilizing only the policy optimized for the
closest task parameter is equivalent of using a DB of only
one MP and a global model of order zero.

We studied first the generalization performance of global
models with different complexities and compared them
with LWR. We started the incremental learning process in
a Ball-in-a-cup game with a string length of 37 cm. The
model selection indicated a zero-order global model. With
this model, the game could be re-enacted successfully for
string length of 35 to 38 cm. Next, we used the model
for providing an initial policy for RL and optimized it for
string length of 34 cm. This newly optimized MP was added
to the database, and subsequently the global model and
its complexity were updated. The model selection again
indicated zeroth order for the complexity of the global
model. This model works successfully for string length of
34 to 38 cm. An initial policy for string length of 33 cm
was estimated using the model learned from the current
database, optimized using PoWER, and then added to
the database. With this database of three MPs, the model
selection still indicated a zero order model. These results
are depicted in Fig. 3 where X indicates training samples in
the database, and red line the validity region of the model
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Fig. 4: (a) RL convergence rate of incremental vs. non-
incremental learning. The number of iterations in (a)
include the 11 initial roll-outs. (b) The convergence rate of
incremental learning vs. non-incremental for string length
of 40cm. The rewards of 11 intial roll-outs are not shown
in (b).

where 10 consecutive roll-outs of the same policy were
successful. Fitted to the DB of same three MPs, a higher
order model such as linear (Fig. 3.d), second (Fig. 3.e), third
(Fig. 3.f), and fourth order(Fig. 3.g) could not improve the
extrapolation capability. This indicates that the proposed
model selection is able to identify the required complexity.
Moreover, LWR (see 3.h) could extrapolate to string length
of 32 cm because there are more training samples nearby,
but it lost both inter- and extrapolation capability for string
lengths of 37–38 cm. This indicates superior generalization
capabilities of global models in this task.

C. Incremental vs Non-incremental learning

We next studied the effect of incremental learning on
the convergence rate of RL for optimizing the policy
parameters for a new task parameter. As a starting point,
the model trained on MPs for string lengths of 33, 34,
and 37 could interpolate among the training samples and
extrapolate to length 39 cm. When the MP estimated by
this model was used as a starting point of RL for string
length of 40 cm, 18 roll-outs (including 11 initial roll-outs)
of RL were needed. On the other hand, when only MP of
length 37 was used as the initial policy, the policy search
took 97 roll-outs (including 11 initial roll-outs) to optimize
the MP (compare the red vs. blue in Fig 4.b). Studying
other string lengths, incremental learning consistently led
to faster convergence when extrapolating (compare the
red vs. blue in Fig 4.a), demonstrating that incremental
learning speeds up the learning process by providing a
more accurate starting point.

D. Model Selection

We finally studied if the proposed model selection
criterion can choose an optimal complexity for both
incremental and non-incremental learning. The MP opti-
mized for string length 40 cm was added to the database.
The global model was constructed for different orders
of complexity. The model selection criterion indicated 2
(parabolic) as the order for Y direction and zero for the Z

30 31 32 33 34 35 36 37 38 39 40 41

a)

b)

c)

d)

e)

f)

g)

Fig. 5: Validity ranges (red lines) of models learned from
database of incrementally learned MPs. (a) model selection
indicates 2nd order for Y and zero order for Z. (b), (c), (d),
(e), and (f) represent zero, first, second, third, and fourth
order models trained on the same DB of MPs as in (a). (g)
Locally weighted regression.

direction. This model (Fig. 5.a) could inter- and extrapolate
between 31 and 40 cm. Constant (Fig. 5.b) and linear
(Fig. 5.c) models were not sufficient as they could not
even interpolate in the whole range. The interpolation and
extrapolation range of a 2nd order model (Fig. 5.d) was
the same as the model selected by the proposed criterion
(Fig. 5.a) but the model selection gives a simpler (zero
order) model for Z direction. Furthermore, higher order
models (see 5.e and 5.f) improved neither interpolation
nor extrapolation capability. Besides, a higher order model
can overfit to the training samples leading to very limited
extrapolation. For example, a 4th order model fit to the
database (see Fig. 5.f) led to bad trajectory (see Fig. 7) for
string length of 45. Therefore, it was not safe to exploit a
very high order model for extrapolating to a distant task
parameter. A similar problem was encountered with LWR,
which yielded in a too high acceleration for both Y and
Z in the beginning of the trajectory (marked with black
star in Fig. 7). Hence, model selection is a key process
for constructing an online incremental DB of MPs using
parametric models. All in all, the proposed model selection
method resulted in the simplest yet most effective and
safest model, excelling over LWR (Fig. 5.g).

To study the effectiveness of model selection in non-
incremental learning, we constructed models of varying
complexity from a DB of MPs learned non-incrementally.
The validity ranges of the models are shown in Fig. 6.
Linear (Fig. 6.b) and second-order (Fig. 6.c) models had
the largest validity region. The model selection criterion
chose the linear model, which was the simplest with the
best extrapolation capability.

The extrapolation capability dwindled when non-
incremental DB was used (compare Fig. 6.b and Fig. 5.a).
Moreover, higher order models (6.d and e) lost their inter-
polation capability since each MP in the non-incremental
database was optimized by starting from the policy op-
timized for the closest task parameter, thus ignoring the
underlying regularities in distant task parameter space.



30 31 32 33 34 35 36 37 38 39 40 41

a)

b)

c)

d)

e)

f)

Fig. 6: Validity ranges (red lines) of models learned from
databases of non-incrementally learned MPs. (a), (b), (c),
(d), (e) represent zero, first, second, third, and fourth order
models trained on the same DB of MPs as in (a). Model
selection chose (b) as the best model. (f) Locally weighted
regression.
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Fig. 7: Extrapolated trajectories for string length of 45cm.(a)
trajectories in Y direction. (b) trajectories in Z. Optimal
trajectory for string length of 40cm (OT), 4th order global
model (4th order), global model with complexity deter-
mined by model selection (MS), and LWR trajectories (LWR)
are demonstrated. In (b), model selection and optimal
trajectory overlaps because model selection indicates zero
as the best complexity for Z direction.

Similarly, LWR on the non-incremental DB (Fig. 6.f)
performed worse than our approach (Fig. 6.b). These
results indicate that model selection and incremental
learning are key ingredients for learning generalizable
motion primitives.

V. CONCLUSION

In this paper, we proposed a global model for parametric
MPs. The model maps a task parameter to policy parame-
ters, allowing for generalizing a policy to new situations
and incremental construction of a database of primitives.
The complexity of the model is updated online as a new
training example is added to the database. Only a single
human demonstration is then needed for constructing the
database. Our experiments demonstrated that the global
model can provide RL with a more accurate initial policy
resulting in a faster convergence; in return, RL provides the
global model with additional training examples leading to a
better predictive accuracy. Comparing incremental versus
non-incremental learning, we showed that incremental

learning performs better than non-incremental approach
both in terms of generalization and the speed of learning.

All things considered, the global model is simple and
can be scaled to accommodate for non-linearities in the
task space. Furthermore, we proposed a novel penalized
log-likelihood based model selection method which is
integral for constructing online incremental DB of MPs
using a parametric approach. Experiments showed that
the model selection approach lead to a global model
which is simple; overcomes over-fitting; and, performs
better than locally weighted regression both in terms
of inter- and extrapolation. It also works even with few
training samples, which indicates its suitability for online
incremental learning.
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