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Abstract. Although motor primitives (MPs) have been studied extensively,
much less attention has been devoted to studying their generalization to new
situations. To cope with varying conditions, a MP’s policy encoding must sup-
port generalization over task parameters to avoid learning separate primitives
for each condition. Local and linear parameterized models have been proposed
to interpolate over task parameters to provide limited generalization.
In this paper, we present a global parametric motion primitive (GPDMP) which
allows generalization beyond local or linear models. Primitives are modeled
using a linear basis function model with global non-linear basis functions.
The model is constructed from initial non-parametric primitives found using
a single human demonstration and subsequent episodes of reinforcement
learning to adapt the demonstrated skill to other task parameters. The initial
models are then used to optimize the parameters of the global parametric
model. Experiments with a ball-in-a-cup task with varying string lengths show
that GPDMP allows greatly improved extrapolation compared to earlier local or
linear models.

1 INTRODUCTION

Learning from demonstration (LfD) is a parametric supervised learning framework;
the parameters of a model [1–5] are fine-tuned, thus fitting the model to the training
data (demonstrations). Developing a model capable of adapting and generalizing to
new unseen situations is one of the main challenges and objectives of supervised
learning. In the context of motor primitives (MPs), a generalizable model can be
translated into a model achieving a successful reproduction of an imitated task in
a perturbed environment. For example, a generalizing model can reproduce a ball-
in-a-cup task for a different string length unseen in the demonstrations; the model
is interpolating when this new string length is in the range of demonstrations set;
otherwise, it is extrapolating.

Recently, researchers have shown interest in generalizing MPs to new situations
[6–9]. Such a generalization is achieved by parametrizing a policy encoding with
respect to an evaluated environment condition. Although these parametric models
are capable of interpolation, they are not guaranteed to extrapolate. In fact, very few
researchers have considered global policy encoding capable of extrapolation [10, 11].
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Fig. 1: (a) Ball-in-a-cup game with two different string lengths. (b) Models fit to 7
points of a non-linear function. Only the second order model captures the global
pattern, while the GPR model tends to the mean when extrapolating, and the linear
model is either (when trained with all samples) leaning toward the mean, or finds
only the local pattern when fit to only two points marked by the green color.

In this paper, we propose a new parametric LfD approach for generalizing an
imitated task to new unseen situations. We selected the ball-in-a-cup task to assess
how effective our method is in generalizing from initial demonstration with certain
string length to changed lengths. The kinematics of the initial demonstration are
encoded using a Dynamic Movement Primitive (DMP). Afterwards, the shape param-
eters of the DMP are optimized using PoWER [12] to adapt the skill to a few other
string lengths. These training data are then used to build a global parametric model
of the skill. Then, the global model can be used for generalizing model parameters
(e.g. shape parameters of DMP) to new task parameters (e.g. string lengths) without
re-learning the generalized model.

The main contribution of this paper is a novel global parametric MP model
(GPDMP) based on DMPs which employs a linear basis function model with global
non-linear basis functions. The representative power of the model can be controlled
to avoid the over-fitting problem. We also show that the PDMP method proposed by
Matsubara et al. [10] can be reduced to a linear special case of our parametric model.
Furthermore, we propose a new mechanism for exploring the DMP’s policy space.
Experiments with a ball-in-a-cup task show that the proposed model greatly improves
extrapolation capability over the existing local or linear models.

2 Related Work

To adapt LfD models to new environments, the model parameters need to be ad-
justed according to parameters characterizing the new environment or task. Existing
generalizable LfD models can be categorized as (i) generalization by design where
the parameters are explicit in the model structure such as the goal of a DMP; (ii)
generalization based on interpolation which uses a weighted combination of training



models; and (iii) generalization by global linear models where the model parameters
depend linearly on the environment/task parameters.

Kober et al. [13] utilized a cost regularized kernel regression (based on Gaussian
process regression) for learning the mapping of new situations to meta-parameters
including the initial position, goal, amplitude and the duration of the MPs; they model
the automatic adjustment of the meta-parameters as a RL problem. The approach
allows then adjusting these designed aspects of motion based on the task but does not
enable modifying other characteristics of the trajectory (policy), making the approach
suitable for learning tasks where the DMPs are adapted spatially and temporally
without changing the overall shape of the motion, but unsuitable for tasks where the
dynamics during motion are changed such as in this paper.

Researchers have recently shown interest also in generalizing DMP shape param-
eters to new situations [7–9, 14–16]. The approaches are primarily based on local
regression methods. For example, Da Silva et al. [7] extract lower dimensional man-
ifolds (latent space) from learned policies using ISOMAP algorithm; they achieve a
generalizable policy by mapping the manifolds (representing task parameters) to
DMPs shape parameters. Support Vector Machines with local Gaussian kernels are
used for learning the mapping. Similarly, Forte et al. [8] utilize Gaussian process re-
gression (GPR) to learn the mapping of task parameters to DMP shape parameters.
Ude et al. [9] and Nemec et al. [15] utilize Locally Weighted Regression (LWR) and
kernels with positive weights for learning the mapping. Stulp et al. [14] learn the
original shape parameters and generalize it with one single regression using Gaussian
kernels. Mülling et al. [16] propose a linear mixture of MPs for generalization and
refine the generalized behavior using RL.

Although the local regression approaches might interpolate within the range of
demonstrations, their extrapolation capability is not guaranteed, which is mainly
because of the kernels learning the local structure; thus they typically tend towards
the mean of training data when extrapolating. This problem is illustrated using a
simple example in Fig. 1.(b) which shows local (GPR) and global (linear, second order)
models fit to a set of points. When a line is fit to two points close to each other, it learns
the local pattern allowing interpolation and extrapolation in a small neighborhood. If
the line fit is made using all points, the fit tends to become poor everywhere. A local
regression such as GPR performs well in interpolation, but not in extrapolation. When
a well fitting higher order global model can be found, it typically outperforms the
others in extrapolation.

Carrera et al. [6] developed a parametric MPs model based on a mixture of several
DMPs. First, they record multiple demonstrations. A DMP model is fit to each demon-
stration, and a parametric value is assigned to it representing the task environment in
which the demonstration was recorded. Then, they calculate the influence of each
model using a distance function between the model parameters and the parametric
value describing the current environment perturbation. Using the influence of each
model as its mixing coefficient, the mixture of models is computed at the acceler-
ation level. Since it is a linear combination with positive coefficients, the mixture
model is not expected to be capable of extrapolation. In fact, we have observed in



our experiments (see section IV.C) that this model is incapable of extrapolation in a
Ball-in-a-Cup task.

Calinon at al [11] proposed an MPs model based on a Gaussian mixture model and
generalize it to new situations using expectation maximization. Although their model
is capable of linear extrapolation, it is only applicable when the task parameters can
be represented in the form of coordinate systems.

All things considered, few researchers [10] have considered the extrapolation
capability in generalizing task parameters to model parameters, which is the main
focus of this paper. We show (see section III.C) that the model proposed by Matsubara
et al. [10] is a linear special case of the proposed parametric model.

3 Method

In this section, we review dynamic movement primitives (DMPs). After that, we clarify
our global parametric dynamic movement primitives (GPDMPs) method which incor-
porates both linear and non-linear parametric models. Besides that, we reformulate
the parametric DMP method proposed by Matsubara et al. [10] and demonstrate how
it can be reduced to a linear special case of the proposed approach.

3.1 Dynamic Movement Primitives

DMPs encode a policy for a one-dimensional system using two differential equations.
The first differential equation

ż =−ταz z (1)

formulates a canonical system where z denotes the phase of a movement; τ = 1
T

represents the time constant where T is the duration of a demonstrated motion, and
αz is a constant controlling the speed of the canonical system. This first order system
resembles an adjustable clock driving the transform system

1

τ
ẍ =αx (βx (g −x)− ẋ)+ f (z;w) (2)

consisting of a simple linear dynamical system acting like a spring damper perturbed
by a non-linear component (forcing function) f (z;w). x denotes the state of the
system, and g represents the goal. The linear system is critically damped by setting
the gains as αx = 1

4βx . The forcing function

f (z;w) = wT g (3)

controls the trajectory of the system using a time-parameterized kernel vector g and a
modifiable policy parameter vector (shape parameters) w. Each element of the kernel
vector

[g]n = ψn(z)z∑N
n=1ψ

n(z)
(g −x0) (4)



is determined by a normalized basis functionψn(z) multiplied by the phase variable z
and the scaling factor (g −x0) allowing for the spatial scaling of the resulting trajectory.
Normally, a radial basis function (RBF) kernel

ψn(z) = exp(−hn(z − cn)2) (5)

is selected as the basis function. The centres of kernels (cn) are usually equispaced
in time spanning the whole demonstrated trajectory. It is also a common practice to
choose the same temporal width (hn = 2

3 |cn − cn−1|) for all kernels. Furthermore, the
contribution of the non-linear component (3) decays exponentially by including the
phase variable z in the kernels. Hence, the transform system (2) converges to the goal
g .

The shape parameter vector w can be learned using weighted linear regression
(LWR) [17]; firstly, the nominal forcing function f r e f is retrieved by integrating the
transform system (2) with respect a human demonstration xdemo ; next, the shape
parameter for every kernel is estimated using

[w]n = (ZTΨZ)−1ZTΨfr e f (6)

where [fr e f ]t = f r e f
t , [Z]t = zt , andΨ= diag(ψn

1 , ...,ψn
t , ...,ψn

T ).

3.2 Global Parametric Dynamic Movement Primitives

Using DMPs, a task can be imitated from a human demonstration; however, the repro-
duced task cannot be adapted to different environment conditions. To overcome this
limitation, we have integrated a parametric model to DMPs capturing the variability
of a task from multiple demonstrations. We transform the basic forcing function (3)
into a parametric forcing function

f (z, l;w) = wT (l)g (7)

where the kernel weight vector w is parametrized using a parameter vector l of mea-
surable environment factors.

We model the dependency of the weights with respect to parameters as a linear
combination of J basis vectors vi with coefficients depending on parameters in a
non-linear fashion,

w(l) =
J∑

i=0
φi (l)vi (8)

where φi (l) is a function describing the coefficient of the i th basis vector vi .
For a chosen non-linear basis (known functions φi ), the basis vectors can be

chosen by minimizing the difference between modeled and initial non-parametric
DMP shape parameters,

arg min
v0,...,J

K∑
k=1

∥∥∥w(lk )−wk
∥∥∥

2
(9)

where wk denotes the weight vector of a non-parametric DMP optimized for parame-
ter values lk . The initial weights can be merely imitated from a human demonstration



using (6) or improved using a policy search method [18]. In either case, reproducing
an imitated task using wk should lead to a successful performance in an environment
parametrized by lk .

The formulation captures linear models such as [10] as a special case. Considering
a single parameter l for presentational simplicity, the linear model can be written

w(l ) = l v1 +v0. (10)

In the next section we show the equivalence of (10) to the mode presented in [10].
To optimize the linear model using DMPs for two parameter values, each element

of the weight vectors [v̂1]i and [v̂0]i can be estimated independently using

[v̂1]i = [w1]i − [w2]i

l1 − l2
(11)

[v̂0]i = [w1]i − li [v̂1]i (12)

The linear model requires thus 2N parameters where N refers to the number of kernels
g.

For a general polynomial model in one parameter, the non-linear basis is

φ(l ) = (
1 l l 2 ... l J ) . (13)

The number of initial DMPs must then be at least equal to or greater than the order of
the model to avoid unconstrained optimization problems. In the experimental part of
the paper, we consider a second order model in one parameter, so that

w(l ) = l 2v2 + l v1 +v0. (14)

The model choice for a particular application is a compromise between complexity of
the attractor landscape that can be modeled and overfitting due to insufficient data.

3.3 Relationship to Matsubara’s PDMP

Matsubara et al. [10] have proposed a PDMP method for learning parametric attractor
landscape by extracting a small number of common factors from M demonstrations.
Firstly, these M demonstrations are aligned so that they have the same size. Then, the
nominal forcing function matrix is generated using

Fr e f
al l =

(
fr e f

1 fr e f
2 ... fr e f

M

)
(15)

where fr e f
m represents the reference forcing function calculated for the m-th demon-

stration xdemo
m . Next, using the singular value decomposition of the nominal forcing

functions matrix
Fr e f

al l = UΣVT (16)

the matrix of desired basis Fbasi s function is created from the first J columns of V.
They estimate the forcing function using

f̂ (z, s;w) =ΣJ
j=1s j b j (z;w) (17)



where the basis function
b j = wT

j g (18)

is a weighted sum of kernels [g]n (4). The weight vector w can be calculated using
least square fitting or LWR as

[w j ]n = (ZTΨZ)−1ZTΨFbasi s (19)

In addition, the hyper parameter is calculated using

s j =β j ,1l +β j ,2 (20)

where l represents an environment parameter. The structure of the basis function (18)
allows for further simplification of the forcing function (17). In fact, by substituting
(20) into (17), we get

f̂ (z, s;w) =ΣJ
j=1(β j ,1l +β j ,2)b j (z;w)

=ΣJ
j=1(β j ,1l wT

j g)+ΣJ
j=1(β j ,2wT

j g)

= (ΣJ
j=1β j ,1wT

j )l g+ (ΣJ
j=1β j ,2wT

j )g

= vT
1 l g+vT

0 g

= (v1l +v0)T g

(21)

which is equivalent to our linear parametric model (10). However, Matsubara’s ap-
proach is computationally more complex. In fact, their method involves three main
processes: an SVD decomposition of the matrix F basi s of desired basis functions, cal-
culating J kernel vectors w for basis functions b j , and computing J style parameters
β j ,1 and β j ,1. The complexity of the SVD (16) is O(s2

d M +M 3) where sd refers to the
size of each one of M demonstrations. Moreover, J ×N basis function parameters and
J ×2 style parameters need to be estimated using least square fitting. The number of
desired basis functions J ≥ 2 should be at least two; otherwise, the learned model will
be too general failing to capture the variability of a task. On the other hand, our linear
parametric model (8) requires only the estimation of 2×N parameters. Hence, our
approach is simpler, less computationally complex, and at least as representative as
the Mastubara’s method. Furthermore, our GPDMP approach accommodates higher
order parametric models (8), thus allowing the generalization of skills with more
complex dependencies.

3.4 Reinforcement Learning

Executing a DMP with imitated shape parameters might not lead to a successful
reproduction of a task. One way to refine the shape parameters is to learn them
through trial-and-error using policy search reinforcement learning (RL). Next, we
briefly review the state-of-the-art policy search method PoWER [12] which was used
in this work to optimize individual primitives.

PoWER (see Algorithm 1) updates the DMP shape parameters θ ≡ w iteratively.
In each iteration, (several) stochastic roll-out(s) of the task is performed, each of



which is achieved by adding random (Gaussian) noise to the DMPs shape parameters.
Each noisy vector is weighted by the returned accumulated reward. Hence, the higher
the returned reward, the more the noisy vector contribute to the updated policy
parameters. This exploration process continues until the algorithm converges to the
optimal policy.

Algorithm 1 Pseudocode of the PoWER [12] algorithm for a one-dimensional policy.

Input: The initial policy parameters θ, the exploration variance Σ
1: repeat
2: Sample: Perform rollout(s) using a = (θ+εt)Tφ(s,t) with εT

t φ(s,t) ∼N (0,φ(s,t)TΣ̂φ(s,t))
as stochastic
policy and collect all (t,sh

t ,ah
t ,sh

t+1,εh
t ,rh

t+1) for
t = {1,2, . . . ,T+1}.

3: Estimate: Use unbiased estimate

Q̂π(s, a, t ) =
T∑

t̃=t

r (s t̃ , a t̃ , s t̃+1, t̃ ).

4: Reweight: Compute importance weights and reweigh rollouts, discard low-importance
rollouts.

5: Update policy using

θk+1 = θk + 〈∑T
t=1 εt Qπ(s,a, t )〉w(τ)

〈∑T
t=1 Qπ(s,a, t )〉w(τ)

6: until convergance θk+1 ≈ θk

The structure of the noise is a key element influencing the convergence speed
of a policy search method but the choice is a trade-off. In the case of DMP shape
parameters and uncorrelated noise, high noise variance causes large accelerations of
the system, causing a safety hazard and possibly surpassing the physical capabilities
of the robot. In contrast, low noise variance makes the learning process slow.

To address this trade-off, we propose to use correlated noise instead of the earlier
works employing uncorrelated noise. Since the elements of a DMP parameter vector
correspond to temporally ordered perturbing forces, we want to control their temporal
statistics. To achieve this, an intuitive structure for the covariance matrix Σ= R−1 can
be used where the quadratic control cost matrix

R =
K∑

k=1
wk AT

k Ak (22)

is a weighted combination of quadratic costs related to finite difference matrices
A1 · · ·AK . wk denotes the weight of the k-th finite difference matrix, and k is the order
of differentiation. This structure allows us then to control statistics of any order. In
experiments, we consider variation only in acceleration (second order). Thus, w2 = 1



and all other weights wk = 0,k 6= 2, and the second order finite difference matrix A2

can be written

A2 =



1 0 0
· · ·

0 0 0
−2 1 0 0 0 0
1 −2 1 0 0 0

...
. . .

...
0 0 0

· · ·
1 −2 1

0 0 0 0 1 −2
0 0 0 0 0 1


. (23)

With this covariance matrix, the noise signal is smooth (see Fig. 2.(a) due to limited ac-
celeration and it has small magnitude in the beginning and at the end of the trajectory.
Hence, safe exploration is provided. It is worth mentioning that a similar covariance
matrix has been applied in [19, 20] for direct trajectory encoding.

In order to control the magnitude of noise, we used a further modified covari-
ance matrix Σ= γβR−1 where γ is a constant controlling the initial magnitude and
convergence factor

β= 1∑I
i=1 r 2

i

, (24)

reduces the magnitude of noise as the policy search algorithm is converging to the
optimal policy.
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Fig. 2: (a) Noises ε sampled from a zero mean multivariate Gaussian distribution
N (0,Σ) with γ= 1 and β= 0.01. (b) Mean and variance of returns over 12 trials.

4 Experimental Evaluation

We studied experimentally the generalization performance of the proposed model
using a Ball-in-a-Cup task taught to KUKA LBR 4+ initially using kinesthetic teaching.



In this section, we explain the scenario, compare the proposed noise (proposal)
generation to standard uncorrelated noise in terms of convergence speed, and study
the extrapolation capability of the model.

4.1 Ball-in-a-Cup Task

The Ball-in-a-Cup game consists of a cup, a string, and a ball; the ball is attached to
the cup by the string (see Fig. 1.(a)). The objective of the game is to get the ball in the
cup by moving the cup in a suitable fashion. In practice, the cup needs to be moved
back and forth at first; then, a movement is induced on the cup, thus pulling the ball
up and catching it with the cup.

We chose the Ball-in-a-Cup game because variation in the environment can be
generated simply by changing the string length. The string length is observable and
easy to evaluate, thus providing a suitable parameter representing the environment
variation. Nevertheless, changing the length requires a complex change in the motion
to succeed in the game. Hence, the generalization capability of a parametric LfD
model can be easily assessed using this game.

The state of the robot is defined in a seven dimensional space X = {x, y, z, qx , qy , qz , qw },
where Xp = {x, y, z} represents the position of the robot end effector (cup), and
Xq = {qx , qy , qz , qw } formulates its orientation using a quaternion. The ball-in-a-cup
is essentially a two-dimensional game and thus only motion along two axes, y and
z was used. In the demonstration phase, the robot was set compliant along y and
z, while it was set stiff rotationally and along x, which were considered as constant
states. The plane spanning y and z was orthogonal with respect to the table upon
which the robot was mounted (see Fig. 1.(a)).

The trajectories along y and z were encoded using separate DMPs with same
number of parameters. We found experimentally that 55 kernels (shape parameters)
were required so that the reproduced movement was able to put the ball above the
rim of the cup in the execution phase. In total, 110 shape parameters were then
learned using LWR (6). However, using these initial shape parameters, the reproduced
movement did not put the ball back into the cup. Hence, the shape parameters were
optimized in a trial-and-error fashion using RL as described in Sec. 3.4.

Reward function is the most fundamental ingredient of RL. We formulated the
reward function similar to [12] as

r (t ) =
{

e−αd 2
, if t = tc ,

0, otherwise
(25)

where tc denotes the time instant when the ball crosses the rim of the cup with a
downward motion; d represents the horizontal distance between the rim of the cup
and the centre of the ball; and α is a scaling parameter set to 100 in our experiments.
The closer the ball is to the rim of the cup, the higher the reward will be. As the shape
parameters are fine-tuned in a trial-and-error approach, the ball would get closer to
the cup. Furthermore, the reward is zero if the ball does not reach above the rim of the
cup. Without such a constraint, the RL algorithm might converge to a policy where
the ball is tossed to the bottom of the cup.



4.2 RL Convergence Rate

Figure 2.(b) depicts the convergence rate for the RL algorithm with the proposed
method starting from an imitated trajectory. Figure 2.(b) shows both mean and vari-
ance of returns over 12 trials. On average a total of 80 rollouts (including 11 initial
rollouts) are required for the policy to converge to an optimal one where the robot
repeatedly succeeds at bringing the ball into the cup. After the ball went into the
cup for the first time, on average 11 additional rollouts were required for the policy
to converge. The convergence rate is similar to [12] where 75 rollouts were typically
required for convergence. However, the results are not directly comparable due to
differences in hardware realizations and human demonstration quality.

Figure 3 shows a comparison between the proposed correlated (blue) and earlier
uncorrelated (red) exploration noises. The graph on left (Fig. 3.(a)) shows that the
proposed correlated noise improves the convergence rate significantly. The slow
learning rate of uncorrelated noise is partially due to the small variance of the sampled
noise in comparison to the correlated noise as shown in Fig. 3.(b). However, larger
noise variance was not feasible in the uncorrelated case because of the required
accelerations were not physically realizable. This is demonstrated in Fig. 3.(c) which
shows accelerations in three cases: original demonstration, correlated noise and
uncorrelated noise. Figure 3 shows that although the magnitude of the noise is smaller
in the uncorrelated case, the learned policy requires much larger accelerations. After
36 iterations, the learned policy with uncorrelated exploration became infeasible to
be executed on the real robot as it required more acceleration than the robot was
physically able to realize.
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Fig. 3: (a) Returns for uncorrelated (red) and correlated (blue) exploration noise. (b)
Two samples of correlated and uncorrelated noise. (c) Acceleration of end-effector in
y-direction for demonstration (black), and policies after 36 roll-outs with uncorrelated
(red) and correlated (blue) exploration noise.

4.3 Generalization Capability

We evaluated both the proposed linear (10) and second order (14) GPDMP models
for generalizing the DMP policy (shape) parameters. As a comparison, we used the



parametric model by Carrera et al. [6] as a recent example of a data-driven local
regression model.

All models require training data with varying string lengths. The training data was
collected from a single demonstration with a string length of 40 cm. Starting from the
shape parameters derived from this demonstration, the parameters were then learned
using PoWER for string lengths of 32,35,38,40 and 41 cm. It should be noted that
during the RL, executing the task with shape parameters learned for a specific length
did not lead to a successful reproduction for another string length in the training set.

We performed two experiments, both studying the range of interpolation and
extrapolation obtained by the models, with varying number of training data. In both
experiments, a reproduction was considered to be successful if 5 consecutive replica-
tions of the Ball-in-a-Cup task with the same shape parameters put the ball into the
cup.

Generalization over minor variations In the first experiment, we studied generaliza-
tion over minor variations by extracting parametric models from two training samples
with string lengths of 38 and 41 cm. As there were only two training samples, only the
linear variant (10) and the locally interpolating model of Carrera et al. [6] were used.
The range of validity for these is shown in Fig. 4, the red line showing the range of valid-
ity, and (a) and (b) denoting Carrera et al. and the linear GPDMP, correspondingly. The
training samples are shown with crosses. Both models were capable of interpolating
successfully within the range of the training samples. In addition, the proposed linear
model was able to extrapolate within ±2 cm from the training samples. The result
demonstrates that models using a positive linear combination of training models,
such as Carrera’s and others in the literature, are not well suited for extrapolation
as they tend towards the mean of training data when extrapolating as discussed in
Sec. 2. However, a simple linear model is global and capable of extrapolation when
the variation in the task is minor.

Fig. 4: Validity ranges for different models (red lines). Input data indicated as X. (a)-(b)
small task variation: (a) Carrera et al. [6]; (b) linear GPDMP; (c)-(e) larger task variation:
(c) Carrera et al.; (d) linear GPDMP; (e) second order GPDMP.

Generalization over larger variations In the second experiment, we studied larger
variations by extracting Carrera’s PDMP [6], the linear GPDMP model (10), and the



second order GPDMP (14) using a dataset of four samples with string lengths of 32, 35,
38, and 40 cm. The range of validity for each of these is shown in Fig. 4, (c) denoting
Carrera et al., (d) the linear GPDMP, and (e) the second-order GPDMP.

Both Carrera’s and the linear GPDMP show poor performance, capable of limited
interpolation and missing also some of the training samples. The reasons for the
failures appear to be different: Carrera’s model uses a positive linear combination
of the training data weighted inversely proportional to a distance metric in the task
parameter space. With an optimal distance metric, the model should at least be able
to replicate the training samples. We used the metric proposed in the original paper
in our experiment but believe that with a more suitable metric the model would be
likely to be able to interpolate successfully in this experiment. Nevertheless, success
in extrapolation would be unlikely as explained earlier. Similarly, models employing
Gaussian process regression or support vector machines would be unlikely to perform
better in extrapolation. The failure of the linear GPDMP is likely due to the fact that the
linear model is simply incapable of representing the complex relationship between
the task and policy parameters. The linear approach by Matsubara et al. [10] would be
likely to suffer from the same problem.

In contrast to the above, the proposed second order GPDMP (e in Fig. 4) is capable
of both interpolation over the whole range and a surprising range of extrapolation
within the range of [-3.5 cm, +2 cm]. It thus greatly outperforms the others. This
demonstrates that global non-linear models are clearly beneficial for representing
parametric policies. The choice of a model complexity for a particular application
is not trivial, but model selection criteria based on e.g. information theoretic met-
rics could be used. In our experiments, the achieved range of extrapolation already
approached the performance limits of the physical system and therefore we did not
study how higher order models could have increased the extrapolation capability
even further.

Extrapolation using a one-dimensional basis for policy To further study the com-
plexity of policies needed for extrapolation, we performed a separate experiment with
a linear GPDMP fit to demonstrations with lengths 38 and 41 cm, identical to the
first experiment. Instead of using the model as such, we searched experimentally, if a
task parameter value other than the real one would lead to success. Thus, in effect
we studied if non-linear coefficients for the one-dimensional basis (10) would allow
generalization, and found that this is indeed the case. Figure 5 shows the found task
parameter values (string lengths) that lead to success versus their actual values. The
two training points used to determine the basis using (11–12) are shown in red. As
seen in Fig. 5, in the neighborhood of the training points, a line fit would have small
residual error, showing that in that neighborhood a linear model is valid, as also
apparent from the earlier Fig. 4. However, the one-dimensional basis (v1) is sufficient
for significant futher generalization (up to -8 cm) if non-linear coefficients are used.
This extended range of validity is shown with green dashed line in Fig. 4 and is only
slightly less than that of the second order model. It should be noted, however, that
this is not a free lunch; the linear space coefficients were found by trial and error and
the two training points do not allow to determine the non-linearity. Nevertheless, low



dimensional vector spaces appear surprisingly powerful in policy representation, but
simple linear transforms of task variables are not sufficient for coefficients.
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Fig. 5: One-dimensional linear space coefficients found by trial and error.

5 Conclusion and future work

In this paper, we proposed a global model for mapping a task parameter to policy
parameters. The training examples for constructing the global model were obtained
from a single human demonstration and optimized using reinforcement learning. The
trained global model is capable of both inter- and extrapolating policy parameters
from new task parameters unseen in the examples. In fact, policy parameters are
generalized without re-learning. The global model is simple and can easily be scaled
to accommodate for non-linearities in the task space. Experiments showed a signif-
icant improvement in extrapolation capabilities over current state-of-the-art. This
is due to inherent structures of existing methods which are based either on linear or
local regression type relationships between task and policy parameters. Studying the
extension of the other available models towards more global regression would open
interesting research venues. For example, Gaussian process regression models are
capable of representing global relationships, however, the typically used covariance
structures (kernels) are local.

Our experiments were limited to a single task parameter and future work should
address generalization over more parameters. In addition, we will consider the choice
of basis function and model complexity using multiple tasks. Both of these research
questions are addressed in model selection methods based on either cross validation
or information criteria such as BIC or AIC. Nevertheless, experimental evidence in
this paper indicates that the current local and linear models have limited extrapo-
lation powers which needs to be addressed by models able to capture more global
relationships despite the number of task parameters.
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