
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Bui, Thanh; Rao, Siddharth; Antikainen, Markku; Aura, Tuomas
Pitfalls of open architecture

Published in:
Proceedings of the 12th European Workshop on Systems Security, EuroSec 2019

DOI:
10.1145/3301417.3312495

Published: 25/03/2019

Document Version
Early version, also known as pre-print

Please cite the original version:
Bui, T., Rao, S., Antikainen, M., & Aura, T. (2019). Pitfalls of open architecture: How friends can exploit your
cryptocurrency wallet. In Proceedings of the 12th European Workshop on Systems Security, EuroSec 2019 (pp.
6). Article 3 ACM. https://doi.org/10.1145/3301417.3312495

https://doi.org/10.1145/3301417.3312495
https://doi.org/10.1145/3301417.3312495

Pitfalls of open architecture:
How friends can exploit your cryptocurrency wallet

Submitted to EuroSec’19
ABSTRACT
Many cryptocurrency wallet applications on desktop provide an
open remote procedure call (RPC) interface that other blockchain-
based applications can use to access their functionality. This paper
studies the security of the RPC interface in several cryptocurrency
wallets. We find that, in many cases, a malicious process running
on the computer regardless of its privileges can impersonate the
communication endpoints of the RPC channel and, effectively, steal
the funds in the wallet. The attacks are closely related to server
and client impersonation on computer networks but occur inside
the computer. The malicious process may be created by another
authenticated but unprivileged user on the same computer or even
by the guest user. The main contribution of this paper is to raise
awareness among wallet developers about the need to protect local
RPC channels with the same prudence as network connections. We
also hope that it will discourage users to run security-critical appli-
cations like cryptocurrency wallets on shared systems or computers
with guest account enabled.

CCS CONCEPTS
• Security and privacy→ Authentication; Software security engi-
neering.

KEYWORDS
Cryptocurrencies, Remote Procedure Call (RPC), Impersonation

1 INTRODUCTION
Bitcoin [45] and other cryptocurrencies have become remarkably
popular in the last decade. In cryptocurrencies, transactions happen
between public keys and are communicated as signed messages
in an open peer-to-peer (P2P) network. The transactions are col-
lected into blocks, which are appended into a structure, called the
blockchain. The global consistency of the blockchain is guaranteed
with a consensus mechanism, such as proof-of-work [45], proof-of-
stake [35], or a Byzantine fault-tolerant (BFT) variant [52].

Users access a cryptocurrency with a wallet, which manages the
private/public key-pairs that are used for transactions and allows
the user to store, send and receive the cryptocurrency. There are
various types of cryptocurrency wallets: online, mobile, desktop,
paper, and hardware wallets, each of which has its own pros and
cons [32]. This paper focuses solely on desktop wallet applications.
For simplicity, in the rest of the paper, we will usewallet applications
to refer to desktop wallet applications.

Desktop wallet applications often provide a remote procedure call
(RPC) interface, through which other applications can access the
wallet’s functionality either locally or remotely. While this open
interface enables easy development of other blockchain-based ap-
plications, it increases the attack surface of the wallet. In fact, there
have been reports on attacks where cryptocurrencies have been

stolen from wallets by exploiting the remotely-accessible RPC in-
terface where authentication has not been properly configured [55].
The primary solution for protecting the RPC interface against such
attacks has been to block remote access to the interface so that
only local processes on the computer can access it. Furthermore,
the wallet applications usually require password authentication
when accessing the RPC interface. However, while these security
mechanisms may help against remote attacks, their effectiveness
against local threats has not been considered.

This paper studies the security of the RPC interface of the wallet
applications in the presence of a local attacker. Our main contribu-
tion is to show vulnerabilities in popular cryptocurrency wallets,
which allow nonprivileged processes that belong to other users on
the same computer to exploit their RPC channel and steal the wal-
let content. We also show that the currently used authentication
mechanisms on the channel are not effective and discuss potential
mitigation techniques.

The rest of the paper is organized as follows: Section 2 describes
the background information on cryptocurrency wallet applications
and our threat model. Section 3 shows our attacks to the RPC inter-
face of variouswallet applications, and Section 4 presentsmitigation
solutions to the attacks. We have reported all the vulnerabilities
that we found to the corresponding vendors and received responses
from Parity [21] and Bitcoin Core [5] teams. We include these re-
sponses in Section 5. Section 6 reviews the related prior research
and Section 7 concludes the paper.

2 BACKGROUND
This section describes how a typical cryptocurrency wallet applica-
tion works as well as explaining our threat model.

2.1 Cryptocurrency wallets
Most cryptocurrencies have one “official” wallet applications and
several recommended third-party applications. A wallet application
typically provides a command-line or graphical user interface for
the users to manage their cryptocurrency accounts. Each account
is basically a private/public key-pair that is used for transactions
and usually encrypted with a password. (Note that in some places
“wallet” is used to refer to such key pair. We chose to use “account”
instead to easy differentiation between key pairs and wallet appli-
cations.) The user must enter the password to unlock the account
before it can be used.

Most wallet applications provide a remote procedure call (RPC)
interface with a JSON-RPC over HTTP server [40] that runs on a
specific port number on the localhost. Other applications can con-
nect to the RPC server as clients to access the wallet’s functionality,
such as querying account balance or making transactions. Examples
of such RPC client applications include web-browser extensions
[17], third-party wallet applications that do not want to implement
the cryptocurrency protocol by themselves [4], and cryptocurrency

EuroSec’19, March 2019, Dresden, Germany

Alice's login session

RPC client Wallet app8332

Alice's login session

RPC client Wallet app8332

Mallory's login session

Evil process

8332

Alice's login session

RPC client Wallet app8332

Mallory's login session

Evil process

(a) Normal operation

Alice's login session

RPC client Wallet app8332

Alice's login session

RPC client Wallet app8332

Mallory's login session

Evil process

8332

Alice's login session

RPC client Wallet app8332

Mallory's login session

Evil process

(b) Server impersonation

Alice's login session

RPC client Wallet app8332

Alice's login session

RPC client Wallet app8332

Mallory's login session

Evil process

8332

Alice's login session

RPC client Wallet app8332

Mallory's login session

Evil process

(c) Client impersonation

Figure 1: Attacks on the RPC channel of a wallet application by a nonprivileged user

exchange web platforms [3, 22]. While the number of RPC client
applications is still fairly low, the availability of open RPC interfaces
and client libraries indicate that the wallet developers expect the
ecosystem of such add-on software to grow in the future.

2.2 Threat model
In this paper, we consider threats onmulti-user computers that have
processes belonging to two or more users running at the same time.
The attacker is a logged-in user who tries to steal cryptocurrency
from the wallet of another logged-in user of the same computer.
The attacker does this by impersonating the communication end-
points of the wallet’s RPC channel, as illustrated in Figure 1. Unlike
malware that runs with the victim’s privileges or as administrator,
the attacker here is nonprivileged, and we do not assume that he
can perform any kind of privilege escalation.

To exploit the RPC channel, the attacker needs to run a process
in the background when the victim is using the computer. On Linux
and macOS, the attacker only needs to log in, run the process, and
leave it running when he logs out, e.g. with the nohup command. On
Windows, user processes are killed at the end of the login session,
and thus the attacker needs to do fast user switching [43] to leave
his session in the background. The attacker can also remotely run
his malicious process if SSH or remote desktop is enabled on the
target computer.

While PC is often considered personal, it is relatively common
that several people can access it. For example, in enterprise environ-
ments that use centralized access control, users are typically able to
sign in to each other’s workstations. Shared family computers with
multiple user accounts and machines with a guest account enabled
are similarly vulnerable.

3 ATTACKS ONWALLET APPLICATIONS
We analyzed the wallet applications of several popular cryptocur-
rencies.While the applications have taken somemeasures to protect
their RPC interface, we will show through various case studies that
the current protections are ineffective against malicious local pro-
cesses. Table 1 summarizes the vulnerable wallet applications and
RPC clients, including blockchain-based applications and RPC client
libraries, that we found. We expect that similar vulnerabilities will
be discovered over time in other wallet applications with an open
RPC interface.

3.1 Case 1: Wallets with no authentication
Ethereum [56] has two official command-line wallets: Go-Ethereum
(Geth) [14] and CPP [9], out of which only the former supports the
RPC interface. If the user enables the RPC interface, Geth runs the
RPC server on port 8545 of the localhost by default so that only
local clients can access it. Geth does not require any authentication
mechanism on its RPC interface, and it does not support TLS. If the
user wants to access the interface over TLS, he/she must configure
a TLS proxy on the same host, which relays requests to the RPC
interface. The only security mechanism that Geth provides is allow-
ing the user to configure cross-origin resource sharing (CORS) [41]
to authorize specific web pages that are open in the user’s browser
to access the wallet.

Attacks. Since there is no authentication between the RPC client
and the RPC server, a malicious nonprivileged process can imper-
sonate the client by simply connecting to the server. CORS is clearly
not an effective mitigation solution here because the attacker can
set the Origin header of its HTTP requests to anything. While an
account could be encrypted with a password, Geth allows the user
to unlock the account when starting it. This allows the malicious
client to access the account without knowing the password and,
for example, sends the victim’s funds to the attacker’s account. It
is also possible for the attacker to impersonate the RPC server by
taking over the port before Geth is started. However, performing
such attack is unnecessary because the attacker already has full
access to the wallet’s functionality with the client impersonation
attack.

Parity [21] is a recommended Ethereum wallet whose behavior
is similar to that of Geth, and the above attacks are also feasible on
Parity. The main difference between Parity and Geth is that Parity
enables the RPC interface by default, while in Geth, the user has to
enable it.

3.2 Case 2: Wallets with basic access
authentication

Bitcoin Core [5], one of the most popular Bitcoin wallets, operates
its RPC server on port 8332. The RPC server authenticates the client
with HTTP basic access authentication [47], in which the client
sends its credentials (username and password) to the server in a
HTTP header. Since the scheme does not protect the confidentiality

How friends can exploit your cryptocurrency wallet EuroSec’19, March 2019, Dresden, Germany

Table 1: Discovered vulnerable wallet applications and RPC clients

Authentication Currency Wallet application RPC client

No
authentication

Ethereum Geth 1.8.15 Metamask 4.9.3 [17]
Parity 2.0.3 web3.py 3.16.5 [30]

web3.js 0.20.6 [29]
web3 java v3.5 [28]

Basic access
authentication

Bitcoin Bitcoin Core 0.16.3 bitcoin-cli [5]
Bitcoin Knots 0.16.2 Armory 0.96.4 [4]

bitcoind-rpc 0.7 [8]
python-bitcoinrpc 1.0 [23]

Qtum Qtum Core 0.16.1 qtum-cli [24]
qtumjs 1.9.1 [25]

Dash Dash Core 0.12.3.3 dash-cli [10]
dashd-rpc 1.1 [11]

Digest access
authentication

Monero Monero wallet 0.12.3 monero-python 0.4.2 [19]
monero-nodejs 4.0 [18]

of the credentials, it should be used in conjunction with TLS. How-
ever, Bitcoin Core has stopped supporting RPC over TLS in 2017 to
discourage the RPC interface from being used over the Internet [1].
Bitcoin Core allows the user to encrypt each account with a pass-
word, and the client must send the password as HTTP POST data
to the RPC server to unlock the account before the account can be
used. The encryption password does not need to be the same as the
password used for client authentication.

Attacks. At first glance, the authentication mechanism appears
to prevent local attackers that do not know the credentials from
performing client impersonation to the RPC server. However, only
the server authenticates the client. Thus, nothing prevents imper-
sonation of the server to benign clients. That is, the attacker can
run a malicious server on port 8332 before the benign server starts
and can accept any clients regardless of the credentials they present.
Luckily for the attacker, when the server port has been taken, Bit-
coin Core fails to start the RPC server and does not notify the user
about the failure. As a result, the attacker can capture both the
plaintext authentication credentials and the account decryption
passwords sent by the benign clients without alerting the victim.
Once the attacker has obtained these, he can terminate the mali-
cious RPC server and wait for the benign RPC server to restart. He
can then use the captured secrets to connect to the benign RPC
server and steal the coins from the wallet.

Bitcoin Knots (a recommended Bitcoin wallet) [7], Qtum Core
(the official wallet of Qtum) [24], Dash Core (the official wallet of
Dash) [10] also use the basic access authentication mechanism and
share the same vulnerabilities as Bitcoin Core. Two other cases in
this category are the official Litecoin wallet [16] and official Zcash
wallet [31].While they also use the same authenticationmechanism,
they do support configuration of TLS. However, if the user does not
enable TLS on the RPC server, these wallets are similarly vulnerable.

3.3 Case 3: Wallets with digest access
authentication

The Monero wallet [20] provides a separate executable for the user
to enable the RPC interface. When the user runs the executable,
the RPC server will start on a port number that is specified by the
user. Like the wallets mentioned above, the Monero wallet does
not support RPC over TLS. The RPC server authenticates the client
with the HTTP digest access authentication scheme [38], which
is based on a simple challenge-response paradigm. Basically, the
client receives a nonce from the server and then replies with a MD5
hash value of the username, the password, the nonce, the HTTP
method, and the URI. With the digest access authentication scheme,
the client can authenticate itself to the server without revealing the
authentication credentials in plaintext.

Attacks.We found that it is possible to perform server imperson-
ation on the Monero wallet by hijacking the port number before
the victim starts the RPC server. The digest access authentication
mechanism does not help here because it only authenticates the
client. However, the RPC executable will fail to start if the port that
it uses has already been taken. While this allows the victim to detect
the attack, it does not free him from risks. For example, the victim
may attach the RPC executable to the operating system’s startup
to launch it automatically after login for convenience. In that case,
since the RPC server process does not have a graphical user inter-
face (GUI) to notify the victim that it has failed, the victim will not
notice the failure and thus assume that the RPC server is running.
Hence, the attacker’s malicious server captures commands from the
benign client. An example of such commands is create_wallet,
which tells the server to create a new wallet account. This allows
the attacker to have access to the new account because it is created
by the attacker instead of the real wallet application.

Client impersonation, on the other hand, is not practical because
the attacker will receive MD5 authentication hash instead of the
plaintext credentials. While MD5 is known to be insecure against

EuroSec’19, March 2019, Dresden, Germany

collision attacks [42, 53], cracking a given authentication hash (i.e.
preimage attack) is still not feasible.

4 DEFENSE MECHANISMS
In this section, we discuss potential defense machanisms for the
attacks presented in the previous section. Our recommendations
below are inspired by our discussions with cryptocurrency devel-
opment teams and by the rich literature of network security, where
solutions to tackle impersonation and man-in-the-middle attacks
in open networks are actively researched. Even though the types of
attacks are similar, the communication taking place inside a com-
puter has not been treated with the same level of cautiousness as
that of a typical communication over a network. It could be due to
the ignorance of desktop application developers towards security in
general, or due to the orthodox opinion towards local attackers that
physical access to a computer ends any level of security. The latter
might be true is some cases, however, we argue that reusing and
utilizing existing solutions from network security domain would
be highly beneficial as a protection against our attacks.

Limiting the attack surface.Malicious processes are a particular
threat in environments where multiple users have access to the
computers. The number of possible attackers can be minimized
by ensuring that nobody else can access the computer where you
keep your cryptocurrency wallets. This includes disabling the guest
account. Also, wallet applications should, by default, disable the
RPC interface.

Fail-stop failure. One simple change that could help to improve
the security of wallet applications with GUI is that when the soft-
ware fails to start the RPC server, instead of silently ignoring the
failure (as e.g. Bitcoin Core does), the application notifies the user
about the failure and halts. This would mitigate the server imper-
sonation attack (described in Section 3.2) to some extent because
the user would know that the software is not running.

Cryptographic protection. The main cause of the described at-
tacks is the lack of mutual authentication between the RPC server
and client: both, basic access authentication and digest access au-
thentication, allow only the server to authenticate the client. One
way to achieve mutual authentication is to mandate the use of TLS
even when the RPC interface is accesses only from the localhost.
Strong passwords that are in current implementations used for
client authentication could be utilized with TLS as preshared keys.
Alternatively, the wallet applications could use TLS with self-signed
certificates.

Architectural changes to the wallet applications. Finally, if
the RPC interface is only accessed by local processes, the security
problems could be eradicated by replacing HTTP with a less open
inter-process communication (IPC) mechanism. For example, if the
client and server processes were related (e.g. sibling processes) the
communication could be done using anonymous pipes or socket
pairs. These IPC channels are not vulnerable to nonprivileged local
attackers because both endpoints are created at the same time
by the same process. Such architecture has been widely used, for
example, to provide secure connection between browser extensions
and native desktop applications [39].

Solutions that may not be suitable. We now discuss solutions
that could be used to protect local communication against local
attackers, but may not be suitable for wallet applications.

Since the attacks presented in this paper are performed by an-
other user of the same computer, it might appear that the commu-
nicating endpoints (i.e. the RPC server or client) can use access
control functionalities of the OS to check whether they are commu-
nicating with the correct entity. That is, the endpoints can simply
deny any connections by processes whose owner is not the same as
theirs. Alternatively, they can restrict access to processes that are
owned by administrators or users that belong to a specific group.
However, verification of a process’s owner is not that straightfor-
ward, and it might not work in every case. For instance, users may
run the wallet application inside a container (e.g. in a Docker con-
tainer [12]). In such situation, it is not possible for a process running
inside the container to know the owner of the other communica-
tion endpoint’s process. Similarly, other sophisticated mechanisms
that offers protection to local communication by securing the re-
source access [49–51] are also confined only to a non-containerized
environment.

One may also think about replacing basic access authentica-
tion and digest access authentication with a mutual authentication
scheme [33, 46, 57]. Such schemes, however, are not currently sup-
ported by HTTP authentication framework [44], making it harder
for them to be deployed.

5 RESPONSIBLE DISCLOSURE
We have reported all the vulnerabilities that we discussed in this
paper to the corresponding vendors. We described the attacks and
their impact as well as providing suggestions on how to mitigate
the attacks. Below are the excerpts from two of the vendors who
actively engaged with us to discuss the problems as well as potential
solutions.

Bitcoin Core development team admitted that the impersonation
attacks (see Section 3.2) can be used to to expose user funds on
shared systems. From their point of view, using more permissioned
IPC mechanisms, such as UNIX sockets, for the RPC channel may
help to address the issues. However, they are hesitant to do that
because it would greatly change the Bitcoin Core’s user experience.
Thus, instead they encouraged us to publish our findings as a dis-
couragement for users attempting to use Bitcoin Core on shared
systems. The developers stated that they will update Bitcoin Core
so that it will notify the user and fail to start if it cannot start the
RPC server.

Parity developers also acknowledged the findings as genuine issues
that need to be addressed. We initially proposed that the RPC server
should accept only connections from processes that are owned by
an administrator or an user belonging to a specific group. However,
Parity developers noted that this would not work if the wallet appli-
cation was run inside a container, as discusses in Section 4. Instead,
the Parity developers decided that it is better to drop support for
the RPC interface altogether instead of trying to fix it.

Others. At the time of writing, we are still anticipating responses
from the rest of the vendors. Since most of the mentioned wal-
let applications are community-driven projects, we assume that

How friends can exploit your cryptocurrency wallet EuroSec’19, March 2019, Dresden, Germany

unanimous acknowledgement of the disclosed vulnerabilities and
agreement on a suitable solution would take some time. Nonethe-
less, we will provide more information about how these vendors
react to the presented problems in the final version of the paper.

6 RELATEDWORK
In this section, we summarize the research literature related to the
attacks presented in this paper.

Without appropriate authentication mechanisms in place, IPC
channels, for example Windows named pipes, are prone to be
abused by attackers who have access to the victim’s computer [36,
54]. It has been discussed previously that such ill-secured IPC chan-
nels inside the computer allow local attackers to exploit password
managers and other security-critical applications [34]. Similar prob-
lems found in mobile OSs [37, 48, 58] show that IPC security needs
more attention even on environments where the applications are
isolated from each other. In this paper, we continue this thread of
security research demonstrating that a local attacker with minimal
privileges can steal sensitive information from other users. We fo-
cus specifically on cryptocurrency wallet applications, which none
of the aforementioned works considered.

By exploiting the wallets that expose their RPC interface to
the Internet, there are incidents where attackers have stolen large
amount of Bitcoins [13] and Ethereum [55]. While most wallets
have discouraged the remote usage of the RPC interface [6], ac-
cepting requests only from localhost does not completely solve
the problem. In fact, if those requests are unauthenticated, the RPC
interface can still be exploited by malicious websites through the
victim’s web browsers, either by Cross Site Request Forgery attack
(CSRF) [2, 26] or by DNS rebinding attacks [15]. These vulnerabili-
ties can be fixed by enforcing CORS policies. However, an overly
permissive policy could still allow attackers to exploit the JSON-
RPC daemon misconfiguration like in the case of Ethereum [27].
In comparison, our attacker is an unprivileged process started by
another user or guest on the same computer, in which case the
CORS policy has no effect.

7 DISCUSSION AND CONCLUSION
In this work, we analyzed the security of the open RPC interface of
cryptocurrency wallet applications. We found vulnerabilities that
allow any unprivileged process on the same computer to perform
impersonation attacks on the RPC channel. The vulnerabilities
could be exploited in multi-user computers, where an authorized
insider can effectively steal the wallet’s funds. We have reported
the discovered vulnerabilities to the respective vendors.

Having an open architecture by providing the RPC interface
that enables the development of other blockchain applications will
indeed helps the cryptocurrency ecosystem to grow in future. How-
ever, remotely accessing such RPC interface of wallet applications
is often discouraged (or deprecated in some cases) to reduce the
attack surface of the wallets. Also, as we discussed in this paper,
security of using those RPC interfaces for local communication is
overlooked and it can be abused by an attacker having access to the
local machine. Unless these interfaces offers secure means of using
them, they are indeed the pitfalls of the cryptocurrency wallets.

Based on our findings, we emphasize that protecting cryptocur-
rency wallets from local attacks has not received sufficient attention.
It has become common wisdom among information security ex-
perts to think that if the attacker has access to the computer there
is nothing that can be done to protect the user data. This may be
true for malware because it usually runs with the privileges of the
victim or an administrator. However, there are many other kinds of
local attacks. The attacks that we presented in this paper could be
performed by any other user on the same computer regardless of
their privileges, including guest users. Furthermore, we discussed
various ways to prevent attacks by these nonprivileged attackers.
We hope that this work will raise awareness about the importance
of the security of local communication channels and thus prevent
similar vulnerabilities in not only cryptocurrency wallets but also
in other software.

REFERENCES
[1] 2015. Enabling SSL on original client daemon. https://en.bitcoin.it/wiki/

Enabling_SSL_on_original_client_daemon
[2] 2016. CSRF Vulnerability Allows for Remote Compromise of

Monero Wallets. https://labs.mwrinfosecurity.com/advisories/
csrf-vulnerability-allows-for-remote-compromise-of-monero-wallets/

[3] 2018. Bisq the P2P exchange network. https://bisq.network/
[4] 2018. Bitcoin Armory. https://btcarmory.com/
[5] 2018. Bitcoin Core. https://bitcoin.org/
[6] 2018. Bitcoin JSON-RPC API. https://en.bitcoin.it/wiki/API_reference_

(JSON-RPC)
[7] 2018. Bitcoin Knots. https://bitcoinknots.org/
[8] 2018. Bitcoind-rpc library. https://github.com/bitpay/bitcoind-rpc
[9] 2018. Cpp Ethereum wallet. https://github.com/ethereum/aleth
[10] 2018. Dash Core wallet. https://github.com/dashpay/dash
[11] 2018. Dashd-rpc library. https://github.com/dashevo/dashd-rpc
[12] 2018. Docker Parity documentation. https://wiki.parity.io/Docker
[13] 2018. Electrum Bitcoin Wallets Left Exposed to Hacks for

Two Years. https://www.bleepingcomputer.com/news/security/
electrum-bitcoin-wallets-left-exposed-to-hacks-for-two-years/

[14] 2018. Go Ethereum wallet. https://geth.ethereum.org/
[15] 2018. How your Ethereum can be stolen through DNS

rebinding. https://ret2got.wordpress.com/2018/01/19/
how-your-ethereum-can-be-stolen-using-dns-rebinding/

[16] 2018. Litecoin wallet. https://litecoin.org/
[17] 2018. Metamask Ethereum client. https://metamask.io/
[18] 2018. Monero-nodejs library. https://github.com/PsychicCat/monero-nodejs
[19] 2018. Monero-python library. https://github.com/emesik/monero-python
[20] 2018. Monero Wallet. https://getmonero.org/
[21] 2018. Parity Ethereum wallet. https://www.parity.io/
[22] 2018. Peatio: an open-source assets exchange. https://www.peatio.com/
[23] 2018. Python-BitcoinRPC library. https://github.com/jgarzik/python-bitcoinrpc
[24] 2018. Qtum Core wallet. https://github.com/qtumproject/qtum
[25] 2018. Qtumjs library. https://qtumproject.github.io/qtumjs-doc/
[26] 2018. Unauthenticated JSON-RPCAPI allows takeover of CryptoNote RPCwallets.

https://www.ayrx.me/cryptonote-unauthenticated-json-rpc
[27] 2018. Vulnerability Spotlight: Multiple Vulnerabilities in the CPP and

Parity Ethereum Client. https://blog.talosintelligence.com/2018/01/
vulnerability-spotlight-multiple.html

[28] 2018. Web3 java Ethereum library. https://web3j.io/
[29] 2018. Web3 javascript Ethereum library. https://github.com/ethereum/web3.js
[30] 2018. Web3 python Ethereum library. https://web3py.readthedocs.io/en/stable/

index.html
[31] 2018. Zcash Wallet for Linux. https://github.com/zcash/zcash
[32] Jean-Philippe Aumasson. 2018. Attacking and Defend-

ing Blockchains: From Horror Stories to Secure Wallets.
https://www.blackhat.com/eu-18/briefings/schedule/index.html#
attacking-and-defending-blockchains-from-horror-stories-to-secure-wallets-12711.

[33] Steven M Bellovin and Michael Merritt. 1992. Encrypted key exchange: Password-
based protocols secure against dictionary attacks. In Proceedings of IEEE Computer
Society Symposium on Research in Security and Privacy. IEEE, 72–84.

[34] Thanh Bui, Siddharth Prakash Rao, Markku Antikainen, Viswanathan Manihatty
Bojan, and Tuomas Aura. 2018. Man-in-the-Machine: Exploiting Ill-Secured
Communication Inside the Computer. InUSENIX Security 18. USENIXAssociation,

https://en.bitcoin.it/wiki/Enabling_SSL_on_original_client_daemon
https://en.bitcoin.it/wiki/Enabling_SSL_on_original_client_daemon
https://labs.mwrinfosecurity.com/advisories/csrf-vulnerability-allows-for-remote-compromise-of-monero-wallets/
https://labs.mwrinfosecurity.com/advisories/csrf-vulnerability-allows-for-remote-compromise-of-monero-wallets/
https://bisq.network/
https://btcarmory.com/
https://bitcoin.org/
https://en.bitcoin.it/wiki/API_reference_(JSON-RPC)
https://en.bitcoin.it/wiki/API_reference_(JSON-RPC)
https://bitcoinknots.org/
https://github.com/bitpay/bitcoind-rpc
https://github.com/ethereum/aleth
https://github.com/dashpay/dash
https://github.com/dashevo/dashd-rpc
https://wiki.parity.io/Docker
https://www.bleepingcomputer.com/news/security/electrum-bitcoin-wallets-left-exposed-to-hacks-for-two-years/
https://www.bleepingcomputer.com/news/security/electrum-bitcoin-wallets-left-exposed-to-hacks-for-two-years/
https://geth.ethereum.org/
https://ret2got.wordpress.com/2018/01/19/how-your-ethereum-can-be-stolen-using-dns-rebinding/
https://ret2got.wordpress.com/2018/01/19/how-your-ethereum-can-be-stolen-using-dns-rebinding/
https://litecoin.org/
https://metamask.io/
https://github.com/PsychicCat/monero-nodejs
https://github.com/emesik/monero-python
https://getmonero.org/
https://www.parity.io/
https://www.peatio.com/
https://github.com/jgarzik/python-bitcoinrpc
https://github.com/qtumproject/qtum
https://qtumproject.github.io/qtumjs-doc/
https://www.ayrx.me/cryptonote-unauthenticated-json-rpc
https://blog.talosintelligence.com/2018/01/vulnerability-spotlight-multiple.html
https://blog.talosintelligence.com/2018/01/vulnerability-spotlight-multiple.html
https://web3j.io/
https://github.com/ethereum/web3.js
https://web3py.readthedocs.io/en/stable/index.html
https://web3py.readthedocs.io/en/stable/index.html
https://github.com/zcash/zcash
https://www.blackhat.com/eu-18/briefings/schedule/index.html#attacking-and-defending-blockchains-from-horror-stories-to-secure-wallets-12711
https://www.blackhat.com/eu-18/briefings/schedule/index.html#attacking-and-defending-blockchains-from-horror-stories-to-secure-wallets-12711

EuroSec’19, March 2019, Dresden, Germany

Baltimore, MD, 1511–1525.
[35] Vitalik Buterin. 2013. What proof of stake is and why it matters. Bitcoin Magazine

(2013).
[36] Gil Cohen. 2017. Call the plumber - You have a leak in your (named) pipe. In DEF

CON 25.
[37] Adrienne Porter Felt, Helen J Wang, Alexander Moshchuk, Steve Hanna, and

Erika Chin. 2011. Permission Re-Delegation: Attacks and Defenses. In 20th
USENIX Security Symposium.

[38] J. Franks, P. Hallam-Baker, J. Hostetler, P. Leach, A. Luotonen, E. Sink, and L.
Stewart. 1997. An Extension to HTTP: Digest Access Authentication. RFC 2069.
RFC Editor.

[39] Google. 2018. Native messaging. https://developer.chrome.com/apps/
nativeMessaging.

[40] JSON-RPC Working Group and others. 2012. JSON-RPC 2.0 specification.
[41] Anne Kesteren. 2018. Cross-Origin Resource Sharing. https://www.w3.org/TR/

cors/
[42] Jie Liang and Xue-Jia Lai. 2007. Improved collision attack on hash function MD5.

Journal of Computer Science and Technology 22, 1 (2007), 79–87.
[43] Microsoft Developers Network. 2018. Fast User Switching. https://msdn.microsoft.

com/en-us/library/windows/desktop/bb776893.
[44] Mozzila. 2018. HTTP authentication. https://developer.mozilla.org/en-US/docs/

Web/HTTP/Authentication.
[45] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).
[46] Yutaka Oiwa, Hajime Watanabe, Hiromitsu Takagi, K Maeda, Tatsuya Hayashi,

and Y Ioku. 2017. Mutual authentication protocol for HTTP. RFC 8120. https:
//tools.ietf.org/html/rfc8120

[47] Julian Reschke. 2015. The ’Basic’ HTTP Authentication Scheme. RFC 7617. https:
//tools.ietf.org/html/rfc7617

[48] Yuru Shao, Jason Ott, Yunhan Jack Jia, Zhiyun Qian, and Z. Morley Mao. 2016.
The Misuse of Android Unix Domain Sockets and Security Implications. In 2016
ACM SIGSAC Conference on Computer and Communications Security, CCS 2016.
ACM, 80–91.

[49] Hayawardh Vijayakumar, Xinyang Ge, Mathias Payer, and Trent Jaeger. 2014.
JIGSAW: Protecting Resource Access by Inferring Programmer Expectations. In
23rd USENIX Security Symposium. 973–988.

[50] Hayawardh Vijayakumar, Joshua Schiffman, and Trent Jaeger. 2012. STING:
Finding Name Resolution Vulnerabilities in Programs. In 21th USENIX Security
Symposium. 585–599.

[51] Hayawardh Vijayakumar, Joshua Schiffman, and Trent Jaeger. 2013. Process
firewalls: Protecting processes during resource access. In 8th ACM European
Conference on Computer Systems, EuroSys’18. ACM, 57–70.

[52] Marko Vukolić. 2015. The quest for scalable blockchain fabric: Proof-of-work vs.
BFT replication. In International Workshop on Open Problems in Network Security.
Springer, 112–125.

[53] XiaoyunWang andHongbo Yu. 2005. How to breakMD5 and other hash functions.
In Annual international conference on the theory and applications of cryptographic
techniques. Springer, 19–35.

[54] Blake Watts. 2017. Discovering and Exploiting Named Pipe Security Flaws for
Fun and Profit. http://www.blakewatts.com/namedpipepaper.html.

[55] Wang Wei. 2018. Hackers Stole Over $20 Million in Ethereum from
Insecurely Configured Clients. https://thehackernews.com/2018/06/
ethereum-geth-hacking.html

[56] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151 (2014), 1–32.

[57] Thomas DWu et al. 1998. The Secure Remote Password Protocol. In NDSS, Vol. 98.
97–111.

[58] Luyi Xing, Xiaolong Bai, Tongxin Li, XiaoFengWang, Kai Chen, Xiaojing Liao, Shi-
Min Hu, and Xinhui Han. 2015. Cracking app isolation on Apple: Unauthorized
cross-app resource access on macOS. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, CCS 2015. ACM, 31–43.

https://developer.chrome.com/apps/nativeMessaging
https://developer.chrome.com/apps/nativeMessaging
https://www.w3.org/TR/cors/
https://www.w3.org/TR/cors/
https://msdn.microsoft.com/en-us/library/windows/desktop/bb776893
https://msdn.microsoft.com/en-us/library/windows/desktop/bb776893
https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication
https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication
https://tools.ietf.org/html/rfc8120
https://tools.ietf.org/html/rfc8120
https://tools.ietf.org/html/rfc7617
https://tools.ietf.org/html/rfc7617
http://www.blakewatts.com/namedpipepaper.html
https://thehackernews.com/2018/06/ethereum-geth-hacking.html
https://thehackernews.com/2018/06/ethereum-geth-hacking.html

