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Stress redistribution around clusters of broken fibres in a composite

Luc St-Pierre∗, Ned J. Martorell, Silvestre T. Pinho

Department of Aeronautics, Imperial College London, South Kensington, London SW7 2AZ, UK

Abstract

A key aspect of the longitudinal tensile failure of composites is the stress redistribution that

occurs around broken fibres. Work on this topic has focussed mainly on the stress field

surrounding a single broken fibre; however, this is an important limitation as unstable failure

in carbon fibre bundles occurs when a cluster of about 16 or more broken fibres is formed.

Therefore, we have developed a detailed Finite Element (FE) model to investigate how stress

redistribution varies with the number of broken fibres in a cluster. The results show that

both the recovery length and stress concentration factor increase significantly with increasing

number of broken fibres in a cluster. We have also developed an analytical model, suitable to

be included in existing or new fibre bundle models, that captures how the recovery length and

stress concentration factor vary with the broken cluster size, and validated its predictions

against our FE simulations. Finally, we extended our FE model to predict the survival

probability of fibre bundles using Monte Carlo simulations, and found that these predictions

were in good agreement with experimental and analytical results on microcomposites.

Keywords: Carbon fibres, Finite element analysis (FEA), Stress concentrations, Monte

Carlo simulations

1. Introduction

Longitudinal tensile failure of composites is a complex process governed by: (i) variations

in strength between each fibre and (ii) the stress redistribution that occurs around broken

fibres [1, 2]. While strength variations can be quantified using single fibre tensile tests, insights
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on stress redistribution rely essentially on modelling efforts. Many early analytical models5

were developed to predict the stress field around clusters of broken fibres: first for 1D [3, 4]

and then for 2D [5, 6] arrays of fibres embedded in a linear elastic matrix. However, it

is challenging to include the effect of matrix plasticity in these models and, consequently,

analytical studies of stress redistribution considering clusters of broken fibres and a plastic

matrix have been limited to 1D fibre packings only [7, 8].10

This limitation was alleviated by the development of Finite Element (FE) models to study

stress redistribution. This approach allowed researchers to represent 1D [9], square [10–14],

hexagonal [15–17] and random [18, 19] fibre arrangements, and to model the matrix as an

elastic-plastic material [9–11, 13–16, 18]. With the exception of Blassiau et al. [12–14], who

have considered different conditions of diffuse damage, most FE studies have analysed the15

stress redistribution that occurs around a single broken fibre. However, this is an important

limitation as there is growing experimental [20, 21] and analytical [22] evidence that unstable

failure of a carbon fibre/polymer matrix bundle occurs when a cluster of approximately 16

or more broken fibres is formed. Hence, there is a need to quantify how stress redistribution

varies with the number of broken fibres in a cluster, and this will be investigated in the first20

part of the paper using both analytical and FE modelling.

Accurately representing how stress redistribution varies with the size of the broken cluster

is a critical component of models predicting the strength of fibre bundles, especially for those

using a two-step simulation technique [18, 23–25]. With this approach, a deterministic model

is first used to calculate the stress field around a single broken fibre. Second, a Monte Carlo25

simulation is performed in which fibres are assigned a stochastic strength and when a fibre

breaks, the stress redistribution is defined by superposition of the solution obtained in the

first step. A fundamental assumption of this technique is that stress redistribution around

a cluster of broken fibres can be obtained simply by superposition of the stress field around

a single broken fibre. In addition to approximating the stress concentration factor, a crucial30

implication of the superposition technique is that the recovery length does not change with

the number of broken fibres in a cluster. Therefore, replacing this superposition method by

a precise representation of how stress redistribution varies with the number of broken fibres

in a cluster would be valuable for this two-step modelling approach.
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Alternatively, fibre bundle strength distributions can be predicted analytically. Most35

analytical models assume an idealised stress redistribution: when a fibre breaks, its load is

redistributed either (i) equally between all surviving fibres (equal or global load sharing [26,

27]) or (ii) locally to the closest surviving fibres only (local load sharing [28, 29]). Models

can also be based on a hierarchical build-up of the failure process [22]; this approach is

computationally very efficient and the predictions were found to compare favourably with40

experimental results on several composites in the literature.

Finally, other researchers have predicted the strength of fibre bundles using Monte Carlo

FE simulations where (i) the fibres are interconnected by a network of shear springs repre-

senting the matrix [30, 31] or (ii) both the fibres and matrix are modelled with continuum

elements [32]. The latter approach is computationally demanding, which limits the analysis45

to very small volumes and consequently, no comparison with experiments could be presented

in [32]. Therefore, in the second part of this paper, we present computationally efficient Monte

Carlo FE simulations, where the fibres are modelled with truss elements and the matrix is

meshed with continuum elements. We validate our approach by comparing our predictions

to experiments on microcomposites [33, 34] and to analytical predictions [22].50

This article is organised as follows. First, Section 2 focuses on the stress redistribution

around clusters of broken fibres and contains: analytical predictions for the recovery length

and stress concentration factor; a description of the FE model developed and a comparison

between analytical and FE predictions. Second, Section 3 presents the Monte Carlo FE

simulations and includes a description of the modelling approach and a comparison between55

measured and predicted survival probabilities for two different microcomposites.

2. Stress redistribution around broken fibres

The fibre bundle considered to analyse stress redistribution is illustrated in Fig. 1: it

consists of a square arrangement of fibres and contains a cluster of broken fibres at its centre.

Recent results [19] show that the fibre arrangement (hexagonal, square or random) does not60

significantly affect the stress concentration factor. All breaks are considered to be on the

same plane, see Fig. 1. This is based on SEM images of fracture surfaces [35] and recent x-ray

tomographic observations of incipient failure which showed that 70% of clusters analysed had
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fibres broken in the same plane [25].

2.1. Analytical predictions65

In this section, we present analytical equations to predict how: (i) the recovery length

varies with the number of broken fibres in a cluster and (ii) the stress concentration factor

varies with the number of broken fibres and the distance from the broken cluster. These

analytical predictions will be compared to FE simulations in Section 2.3.

2.1.1. Recovery length70

Consider the fibre bundle illustrated in Fig. 1: a total of nt fibres are packed in a square

arrangement with a regular spacing s =
√
π/Vfφ/2, defined by the fibre diameter φ and the

fibre volume fraction Vf . When the fibres are loaded in tension by a remote fibre stress σ∞,

the cluster of nb broken fibres will transfer its load to the neighbouring fibres by shearing

the resin. Assuming a rigid perfectly-plastic resin with a shear strength τy, this load transfer75

will occur over a recovery length [22]:

le =
nbAfσ

∞

Cτy
, with Af =

πφ2

4
and C = 4s

√
nb = 2φ

√
πnb

Vf
. (1)

The shape of the shear-lag perimeter C is illustrated in Fig. 1. Different shapes have been

considered by Pimenta and Pinho [22], but they found that the choice of shear-lag perimeter

had a reduced influence on the predicted strength of the bundle.

2.1.2. Stress redistribution80

The problem of stress distribution is easier to represent using polar coordinates, with the

origin positioned at the centre of the broken bundle, see Fig. 1. We can define two equivalent

radii, one for the entire bundle rt and a second one for the broken cluster rb, given as

πr2t = nts
2 ⇒ rt =

√
nt

π
s =

√
nt

Vf

φ

2
and (2)

πr2b = nbs
2 ⇒ rb =

√
nb

π
s =

√
nb

Vf

φ

2
. (3)
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Before their failure, the broken fibres carried a total force that can be expressed as

∆F = πr2bVfσ
∞, (4)

which needs to be redistributed to unbroken fibres. To choose an appropriate stress redistri-85

bution profile, we first examine the solutions of similar problems. Consider a cylinder loaded

in tension containing either a penny-shaped crack or a spherical cavity, both of radius a.

For the penny-shaped crack, the tensile stress field scales as (a/r)1/2 [36], whereas for the

spherical cavity it scales as A(a/r)3 +B(a/r)5, where A and B are two constants [37]. Based

on these two solutions, we anticipate that the stress redistribution around a cluster of broken90

fibres will take a similar power form: (rb/r)
α, where the value of the exponent α will be

determined later. Hence, we hypothesise that the stress concentration factor, as a function

of r, can be written as

k(r) =
σ

σ∞
= 1 + λ

(rb
r

)α
. (5)

For a given value of α, the constant λ can be solved by applying equilibrium:

∆F = πr2bVfσ
∞ =

∫ rt

rb

(σ − σ∞)Vf2πrdr, (6)

which gives95

λ =
1

2 ln(rt/rb)
for α = 2 and λ =

(2− α)r2−αb

2(r2−αt − r2−αb )
for α 6= 2. (7)

Therefore, Eq. (5) can be used to predict the stress concentration factor k(r) for a given

value of α, which will be determined below from the FE results. Finally, the closest fibre to

the broken cluster experiences the maximum stress concentration factor kmax given by

kmax = k(r = rc) = 1 + λ

(
rb
rc

)α
with rc =

s(
√
nb + 1)

2
, (8)

where rc is the distance from the centre of the broken cluster to the closest surviving fibre.

The expression for rc given in Eq. (8) is exact for odd values of nb, but approximate for even100

numbers of broken fibres.
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2.2. Description of the Finite Element model

All simulations analysing stress redistribution were performed using the implicit solver of

the commercially available FE code Abaqus (version 6.14). The geometry, mesh, boundary

conditions and material properties employed are described below.105

2.2.1. Geometry and mesh

All bundles considered were made of carbon fibres, of diameter φ = 5 μm, that were

squarely packed with a regular spacing s =
√
π/Vfφ/2 = 5.7 μm, corresponding to a fibre

volume fraction Vf = 60 %, see Fig. 2. The total number of fibres nt was varied from 16 to

900, but all bundles had a square cross-section (with
√
nt rows and columns of fibres) and110

a half-length L = 0.75 mm (which was significantly longer than the recovery length in all

cases).

The fibres were discretised using 2-node linear truss elements (T3D2 in the Abaqus li-

brary), whereas the resin was meshed with 8-node linear brick elements with reduced inte-

gration and hourglass control (C3D8R in the Abaqus library). Constraint equations were115

used to represent a perfect bonding between the fibres and matrix. This approach of mod-

elling the fibres with truss elements is more efficient than using continuum elements, and is

consistent with experimental fibre strength characterisation which considers fibres to behave

as one-dimensional entities. Both the fibres and matrix had a mesh size of 2φ = 10 μm along

the x-direction, and the matrix had a structured mesh in the y-z plane with two elements120

between fibres, see Fig. 2. A convergence analysis revealed that further mesh refinement had

a negligible effect on both the recovery length and the maximum stress concentration factor.

The FE simulations performed in this study do not include debonding of the fibre-matrix

interface. While interfacial debonding is often observed in single fibre fragmentation tests,

there is no evidence of debonding occurring in composites with thousands or millions of125

fibres [2]. In addition, recent x-ray tomography images [21, 25] suggest that debonding may

not occur during the formation of clusters; in fact, the prevalence of planar clusters appear to

be incompatible with the formation of splits after each fibre breaks. In any case, debonding

could potentially be included in the FE model by adding cohesive elements at the fibre-matrix

interface. A few numerical studies have shown that debonding increases the recovery length130
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and slightly reduces the stress concentration factor [9, 16, 31].

2.2.2. Boundary conditions

Only half of the bundle’s length was modelled by applying symmetry boundary conditions

at x = 0, see Fig. 2. A displacement ux was prescribed at x = L. A cluster containing nb = 1

to 36 broken fibres was included at the centre of the bundle by removing the symmetric135

boundary conditions and the corresponding constraint equations at x = 0 for all broken

fibres. In each model, the broken cluster considered was square with
√
nb rows and columns

of broken fibres.

In reality, clusters of broken fibres are formed as loading is increased, but the boundary

conditions detailed above assume that all fibres are broken before loading is applied. This140

assumption is inconsequential for elastic models, but it could, in principle, have a significant

effect on the results when plasticity is included. Xia et al. [15] investigated this problem for

polymer and aluminium matrix composites, and their results indicate that the assumption

of an initial broken cluster is acceptable for carbon fibre reinforced polymers such as the one

considered in this study.145

2.2.3. Material properties

The material properties employed are summarised in Table 1 and were chosen to represent

the T800H/3631 carbon fibre prepreg. The T800H carbon fibres were modelled as linear

elastic whereas the 3631 epoxy was represented as a linear elastic perfectly-plastic solid in

accordance with J2 flow theory.150

The material models used for the fibres and matrix represent of course idealisations of re-

ality and other approaches have also been considered in the literature. For example, Swolfs et

al. [19] showed that modelling the fibres as transversely isotropic (instead of isotropic) results

in higher stress concentrations; these results were obtained for fibres embedded in an elastic

matrix and when matrix plasticity is included the effect of fibre anisotropy is reduced [15]. In155

the literature, the matrix has been modelled with a variety of constitutive behaviours such as

linear elastic [12, 17, 19, 25], non-linear elastic [10], linear elastic perfectly-plastic [13, 14, 18]

or linear elastic with linear strain hardening [38]. Results indicate that for the options enu-

merated above, matrix plasticity has a reduced effect on the stress concentration factor, but
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leads to longer recovery lengths [2]. However, our knowledge of the matrix behaviour is based160

on pure tension, compression or shear tests done on bulk epoxy, and these experiments are

unlikely to be representative of in situ conditions where a high stress triaxiality is present and

high strain-rates may occur following a fibre break. Therefore, in the absence of representa-

tive in situ test data, we modelled the resin as a linear elastic perfectly-plastic solid, which

is a reasonable compromise between simplicity and what is known of the resin’s response in165

this problem.

2.3. Results and discussion

The results of FE simulations are presented in this section, and compared to the analytical

predictions introduced earlier in Section 2.1. All results are shown for a remote fibre stress

σ∞ = 4.3 GPa (representative of the average measured strength of T800H carbon fibres [39]).170

2.3.1. Stress profile

We begin by examining how the stress in a fibre varies along its length (x-direction) for

the case of nb = 1 broken fibre in a bundle of nt = 25 fibres. The longitudinal tensile stress

σ, normalised by the remote fibre stress σ∞ = 4.3 GPa, is plotted in Fig. 3 as a function of

the distance from the break plane x, normalised by the fibre diameter φ = 5 μm. Results are175

shown for the broken fibre and its closest neighbour.

The stress in the broken fibre increases linearly up to x/φ ≈ 12. Subsequently, the

stress increases up to σ/σ∞ = 1 in a non-linear manner, which makes it difficult to identify

clearly the recovery length. In this article, the linear portion of the stress profile was used to

extrapolate the recovery length le as shown by the dashed line in Fig. 3. Other researchers180

[19, 26] have taken the recovery length as the distance where 90% of the remote stress is

recovered, but both definitions were found to give similar results.

As shown in Fig. 3, the closest fibre to the broken cluster experiences the maximum

stress concentration factor kmax = σmax/σ
∞ = 1.077. This value is in good agreement with

FE results reported in the literature: Nedele and Wisnom [17] found a value of 1.058 for a185

hexagonal fibre arrangement and Swolfs et al. [19] reported 1.075 for a square arrangement.

We note that these two studies have used continuum elements to mesh the fibres whereas

truss elements were employed here. Using truss elements allowed us to efficiently consider
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significantly larger bundles than those previously reported in the literature; we modelled

bundles with nt = 900 fibres and L = 0.75 mm whereas results available in the literature190

were for at the most 125 fibres and a length of 0.14 mm [19].

Now that both the recovery length le and the maximum stress concentration factor kmax

are clearly defined, we proceed by examining how these quantities vary with the number of

broken fibres nb.

2.3.2. Recovery length195

The recovery length le, normalised by the fibre diameter φ = 5 μm, is plotted in Fig. 4a as a

function of the total number of fibres in the bundle nt. Results are shown for selected numbers

of broken fibres nb and, as mentioned earlier, le is taken at a remote stress σ∞ = 4.3 GPa.

The error bars in Fig. 4a show the minimum/maximum recovery length for all broken fibres

in the cluster. The very small scatter indicates that defining le for the cluster as the average200

of all broken fibres is justifiable.

The results in Fig. 4a show clearly that the recovery length (i) increases with increasing

number of broken fibres nb and (ii) is insensitive to the bundle size nt (provided that the

bundle is sufficiently long). These FE results are compared to Eq. (1) in Fig. 4b, where le/φ

is plotted as a function of the number of broken fibres nb for the largest bundle considered205

with nt = 900 fibres. There is an excellent agreement between the FE predictions and Eq. (1)

for the wide range of nb considered in this study.

Note that Eq. (1) can be particularly useful for models predicting the strength of fibre

bundles. While some fibre bundle models [22] take into account the dependency of le with

nb, others [40, 41] assume that the recovery length is insensitive to the size of the broken210

cluster. The results in Fig. 4 show that this assumption significantly underestimates le, and

this error would lead to overestimating the bundle strength. Implementing Eq. (1) in fibre

bundle models would eliminate this error as it offers an efficient and accurate way to capture

how le varies with nb.

2.3.3. Maximum stress concentration factor215

The maximum stress concentration factor kmax, defined as the highest value of k for all

unbroken fibres, is plotted as a function of the total number of fibres in the bundle nt in
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Fig. 5a for different broken cluster sizes nb. At first glance, the data is not as smooth as one

would expect, especially for nb = 4 to 16. This is because depending on the combinations of

nt and nb, the centre of the broken cluster does not always coincide with the centre of the220

bundle (e.g. when nt = 16 and nb = 4 they coincide, but when nt = 25 and nb = 4, they do

not).

The results in Fig. 5a show that kmax is sensitive to both the number of broken fibres nb

and the total number of fibres in the bundle nt. For a given bundle size nt, kmax increases with

increasing number of broken fibres nb. However, for a given broken cluster size nb, the stress225

concentration factor kmax decreases with increasing bundle size nt, until an asymptotic value

is reached when nt ≈ 25nb. The dependency of kmax upon the total number of fibres nt has

important implications: some FE predictions [10] of the stress concentration factor around

a single broken fibre have been obtained with bundles containing 9 fibres, and the results

in Fig. 5a indicate that considering such small bundles may overestimate kmax. However, if230

these results for nt = 9 and nb = 1 were generalised to be representative of clusters of broken

fibres, then kmax would be underestimated.

The asymptotic value of kmax, for a large bundle with nt = 900 fibres, is plotted as a

function of the number of broken fibres nb in Fig. 5b. The size of the broken cluster has a

strong effect on the maximum stress concentration factor; for example, increasing nb from 1235

to 16 increases kmax from 1.06 to 1.17. The predictions of Eq. (8) are also included in Fig. 5b

for comparison. These analytical predictions were obtained by setting the exponent α = 2,

and we show later in Section 2.3.4 how this value was obtained. Considering its simplicity,

the analytical model captures reasonably well how kmax varies with nb, especially for small

values of nb.240

2.3.4. Stress redistribution

In the previous section, we examined how the maximum stress concentration factor kmax

varies with the size of bundle and of the broken cluster. In this section, we take a closer look

at the entire stress redistribution that occurs in the plane containing the broken cluster. The

relative increase in stress experienced by each unbroken fibre is given by k−1 = (σ−σ∞)/σ∞245

and is plotted in Fig. 6a as a function of the normalised distance r/s from the centre of the
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broken cluster (see Fig. 1). Plots are in logarithmic scale and results are shown for different

broken cluster sizes nb inside a bundle of nt = 900 fibres.

The results in Fig. 6a show that increasing the number of broken fibres nb increases not

only kmax but the entire k versus r/s curve. Using a logarithmic scale emphasises that, for250

a given value of nb, k − 1 decreases exponentially with increasing r/s, where the slope in

logarithmic coordinates corresponds to the value of the exponent α in Eq. (5). A slope of

α = 2 offers a good fit to the results shown in Fig. 6a. Now that the value of the exponent α

is set to 2, we can compare the predictions of the analytical model presented in Section 2.1.2

to the FE data shown in Fig. 6a. According to Eq. (5), all FE data should collapse on a single255

curve when plotted as (k−1)/λ versus r/rb. To test the accuracy of our analytical prediction,

the data shown earlier in Fig. 6a is replotted using this new normalisation in Fig. 6b. Clearly,

there is an excellent agreement between the FE results and the analytical predictions over

the entire stress distribution and for the wide range of nb considered in this study. Hence,

Eq. (5) offers an efficient and accurate prediction of the stress redistribution around clusters260

of broken fibres.

3. Monte Carlo Finite Element predictions

3.1. Description of the Finite Element model

The FE model described in Section 2.2 was adapted to predict the survival probability of

fibre bundles. These simulations are compared below to two different sets of experiments on265

microcomposites: the first set consists of four squarely packed AS4 carbon fibres in a blend of

DER 331 and 732 epoxies (50:50) [33], whereas the second set has a hexagonal arrangement

of seven IM6 carbon fibres embedded in a DER 331 epoxy [34].

The fibre bundles modelled had a length L = 10 mm, as used in the experiments [33, 34].

All degrees-of-freedom were constrained to zero at x = 0, whereas a prescribed displacement270

was applied at x = L, see the reference frame introduced earlier in Fig. 2. The elements used

and the mesh were the same as those described previously in Section 2.2 and are therefore

mesh-converged.

The matrix was represented again as a linear elastic perfectly-plastic solid, but the fibres

were modelled as linear elastic with failure (element deletion) when a maximum stress is
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reached. The strength of each fibre element σel was assigned to follow a Weibull distribution

and scale according to weakest link theory such as

Sel = exp

[
−Lel

L0

(
σel
σ0

)m]
⇒ σel = σ0

[
−L0

Lel

ln (Sel)

] 1
m

, (9)

where Lel is the element length; the survival probability Sel is a randomly generated

number; and σ0 and m are the Weibull scale and shape parameters obtained from single275

fibre tensile tests at a gauge length L0. All material properties employed are summarised in

Table 2, and these were all obtained from experiments [33, 34].

All computations were performed in Abaqus using the dynamic implicit solver with the

quasi-static option. To ensure convergence of the solution, the matrix included Raleigh

material damping where αm = 1.57e7 s−1 and βm = 1.06e-4 s are the mass and stiffness280

proportional factors, respectively. At the peak stress, the energy dissipated by damping was

less than 3% of the total strain energy which indicates that damping helped convergence

of the solution without compromising the results. It is worth noting that the fibre element

deletion process accounts for only 5% of the energy dissipated by the model. Therefore,

although element deletion is intrinsically mesh size dependent, this effect is minimal in this285

problem.

3.2. Comparison with experiments

The survival probability of a bundle was obtained with 100 Monte Carlo FE simulations,

and these predictions are compared to experiments on microcomposites in Fig. 7. Results

are shown for a bundle with four AS4 fibres in part (a) and for one with seven IM6 fibres290

in part (b). The analytical predictions from the hierarchical fibre bundle model of Pimenta

and Pinho [22] are also included for comparison.

In both cases, the Monte Carlo FE simulations are slightly overestimating the measured

survival probabilities, see Fig. 7. This could be due for instance to the difficulty to measure

accurately the constituent properties and the bundle strength, or the fact that fibre debond-295

ing is not included in the simulations. Nevertheless, the predictions are in good agreement

with experiments, therefore validating our modelling approach. There is also a good agree-

ment between the analytical and Monte Carlo FE predictions, which is encouraging evidence

supporting the hierarchical failure approach used by Pimenta and Pinho [22].
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4. Conclusions300

A Finite Element model was developed to investigate how stress redistribution in com-

posites varies with the number of broken fibres in a cluster. The results showed that both

the recovery length and stress concentration factor increase with increasing broken cluster

size. More specifically, the relative stress increase in the fibre adjacent to the broken cluster

nearly tripled (from 6% to 17%) when the number of broken fibres was increased from 1 to305

a representative critical cluster size of 16.

Analytical equations were developed to predict how the recovery length and stress concen-

tration factor vary as a function of the number of broken fibres. These analytical predictions

were found to be in good agreement with our Finite Element simulations for all broken clus-

ter sizes considered. These results provide an accurate and effective representation of stress310

redistribution in composites, and may prove valuable for some fibre bundle models.

Finally, our Finite Element model was extended to predict the survival probability of fi-

bre bundles using Monte Carlo simulations. Our approach of modelling the fibres with truss

elements and meshing the matrix with continuum elements increased significantly the com-

putational efficiency and allowed direct comparison with experiments on microcomposites.315

The survival probabilities predicted by these Monte Carlo simulations were found to be in

good agreement with experimental data therefore validating our modelling approach.
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Table 1: Material properties employed in the Finite Element simulations to analyse stress redistribution.

These are representative of the T800H/3631 carbon fibre prepreg.

Material property Value Reference

Fibre Young’s modulus Ef 294 GPa [39]

Matrix shear modulus Gm 1.2 GPa [39]

Matrix Poisson’s ratio νm 0.40 [19]

Matrix shear yield strength τy 52.4 MPa [39]

Table 2: Material properties employed in the Monte Carlo Finite Element simulations.

Fibre properties Matrix properties

Fibre/Epoxy φ Vf Ef σ0 m L0 Gm νm τy

(μm) (GPa) (GPa) (mm) (MPa) (MPa)

AS4/DER 331+732 6.85 0.70 231 4.493 4.8 10 179.3 0.4 4.0

IM6/DER 331 5.63 0.56 280 5.283 5.4 10 604.5 0.4 46.6
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Figure 1: Fibre bundle loaded in tension by a remote fibre stress σ∞. The bundle has nt fibres and contains,

at its centre, a cluster of nb broken fibres highlighted in grey. All breaks are contained in the A-A’ plane.

Quantities used in our analytical model are also shown: the assumed shear-lag perimeter C and the equivalent

radii of the bundle rt and of the broken cluster rb.
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Figure 2: Finite Element model developed to analysed stress redistribution: a bundle with nt = 9 fibres

containing nb = 1 broken fibre is shown here as an example. The fibres, modelled with truss elements, are

perfectly bonded to the matrix, meshed with continuum elements, using constraint equations.
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Figure 3: Stress profiles along the length of the fibres: the normalised longitudinal stress σ/σ∞ is shown as

a function of the normalised distance from the fibre break plane x/φ for the broken fibre (labelled 1) and

its closest neighbour (labelled 2). Results are shown for a remote tensile fibre stress σ∞ = 4.3 GPa, and the

recovery length le is identified.
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Figure 4: Normalised recovery length le/φ as a function of (a) the total number of fibres in the bundle nt

and (b) the number of broken fibres nb for a bundle with nt = 900 fibres. Results are shown for a remote

tensile fibre stress σ∞ = 4.3 GPa.
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Figure 5: Maximum stress concentration factor kmax as a function of (a) the total number of fibres in the

bundle nt and (b) the number of broken fibres nb for a bundle with nt = 900 fibres.
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Figure 6: (a) Stress concentration factor k as a function of the normalised distance from the broken cluster

r/s. (b) The same FE results are plotted with a different normalisation and compared to the predictions of

Eq. (5). In both parts, results are shown for a bundle with nt = 900 fibres and for selected number of broken

fibres nb.
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Figure 7: Survival probability S as a function of the remote tensile fibre stress σ∞ for microcomposites with:

(a) four AS4 carbon fibres in a blend of DER 331 and 732 epoxy (50:50) and (b) seven IM6 carbon fibres

in a DER 331 epoxy. Monte Carlo FE predictions are in good agreement with experimental [33, 34] and

analytical [22] results.
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