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1 Context and Problem

Reinforcement learning (RL) for physical systems such as robots has gained great interest lately. Data
cost for physical systems is usually high due to required time, equipment cost, and safety limitations.
For that reason, the learning is often performed with simulation models. However, the quality of
simulations is limited for two reasons: First, a simulation model may capture only some of the
physical phenomena present. Second, the model may be imperfectly calibrated. In that case, the
simulation depends on parameters that may be directly unobservable in the physical system. Control
of the system can then be considered a partially observable Markov decision process (POMDP) with
respect to those parameters.

Problem Formulation We consider a nonlinear dynamic system described by the difference equa-
tion xt+1 = f(xt,ut,θ) +w , where xt is system state at time t, u is action, θ is set of parameters
and w is Gaussian noise. We assume that the system state is observable, dynamics is Markovian and
parametrized by parameters which are not directly observable in the physical world. However, the
set of parameters is observable (and controllable) in the simulation during training. The stochastic
dynamics is therefore described by Pxuθ ≡ p(xt+1 | xt,ut,θ), that is, the dynamics is Markovian if
the parameters are observable.

Considering that the dynamics results from simulation, it is not expressed in closed form and it is not
analytically differentiable such that optimal control approaches could be directly used. For the same
reason, the straightforward approach of constructing an estimator (such as a Kalman filter variant) for
the parameters is not applicable. Therefore, we use RL for training a feedback-based control policy.

Reinforcement Learning If the parameters are observable we can use RL [7] to train a deter-
ministic feedback-based policy u = π(x,θ), such that the policy maximizes the expected reward
R(θ) = Ext+1∼Pxuθ,x0∼p(x0) [

∑∞
t=0 r(xt+1) | θ], where r(·) is immediate reward at the state xt,

and x0 is start state sampled from a prior distribution p(x0). However, for unobservable parameters
we need to provide a policy which is independent of θ.

Domain Randomization Recently, the problem of unobservable parameters has received attention
from the point-of-view of domain randomization (DR) [9, 3]. In DR, the policy is optimized over
a distribution of parameters p(θ). The expected reward can be written as RDR = Eθ∼p(θ) [R(θ)].
Thus, the expectation is taken over the parameters in addition to the stochastic dynamics and start
states. We can use RL to train policy ut = πDR(xt), which maximizes RDR and is independent of
the parameters. However, domain randomization is usually limited in its ability to cope with large
variation of parameters in case of non-informative prior distribution.

Using Recent History The parameters could often be inferred from past observations either using
classical filtering techniques [6] if closed form dynamics is known or by trained estimators [4]
otherwise. However, training such an estimator is non-trivial. Therefore, we study the influence of the
recent history of states and actions [8] which is sufficient for many physical systems. Considering last
n states and actions, the policy is in form ut = πH(xt,xt−1,ut−1, . . . ,xt−n,ut−n) and is trained
to maximize RDR.

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.



2 Experiment and Discussion

To illustrate the influence of recent history, we consider a task consisting of a holonomic 2D mobile
robot with unknown but fixed orientation θ. The action is specified with respect to the robot frame
and we want to achieve a goal in the origin of the world coordinate frame. Therefore, the system
dynamics can be written xt+1 = xt+R(θ)ut+w, where R(θ) is a rotation matrix. Results in Fig. 1
illustrate that the policy πDR cannot provide a control strategy for whole range of θ because it cannot
infer the robot orientation from the current state only. However, the policy πH which considers the
previous state and action can generalize over whole range of θ.

Discussion Domain randomization is not sufficient for coping with parameter uncertainties in
physical systems such as robotic pushing with an unknown center of friction. In contrast, extending
the state with a limited history can make the system controllable [2] even without explicit parameter
estimation. Thus, existing RL approaches are sufficient to solve problems whose parameters are not
directly observable.

In this brief note we only consider the case where observability is global, that is, parameters can be
identified in any part of the state space. This is not the case in general; a parameter may be observable
only in a part of the state space. Under local observability, memory would be needed to track the
parameter, e.g. using recurrent neural network [1, 10, 5]. Memory or long history would also be
beneficial if there is significant noise in the dynamics.

However, for many physical systems using the recent history of states and actions [8] may also solve
the problem with an advantage of simplified policy representation and simpler training. Limited
history being sufficient stems from the fact that many physical systems follow dynamics described by
differential equations of low order. What are the system restrictions and how long the history should
be for the system to be controllable are subjects of our future work.

(a) Policy πDR for θ1 (b) Policy πDR for θ2 (c) Policy πDR for θ3

(d) Policy πH for θ1
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Figure 1: Top row visualizes the policy πDR by showing changes of system states (quivers). The
system converges towards the goal (green dot) for some values of theta (a), (b). However, it is not
able to generalize across all values which result in divergence from goal (c). The system converges
slowly for parameter θ2 which results in the lower expected reward for θ2 (e). With the policy πH , the
system converges to goal for all parameter values (e) as shown by the states evolutions in (d) and (f).
Note, that first action generated by πH may not lead toward the goal because the parameter value
is unobservable. After the first action is taken, the parameter value is inferred and the system
converges (see Appendix A).
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A Initial Action for Policy with History

Initially, the policy πH does not have enough information to infer the unobservable parameters
because history is not yet available. Therefore, the policy needs to take some action under partial
observability. The actions taken by the policy at various starting positions are shown in Fig. 2. The
policy takes non-zero action only if the system state is not near the goal. Therefore, the policy is not
estimating the parameters if that is not necessary for reaching the goal. This shows that knowing the
parameters does not have value as such, and the value is created by the ability to achieve the task,
analogous to POMDP solutions.

Figure 2: The initial change of system states when starting from different start states.
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