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Abstract: A novel approximate solution for catalyst effectiveness factors is presented. It is based on
carefully selected approximate reaction rate profiles, instead of typical assumption of composition
profiles inside the catalyst. This formulation allows analytical solution of the approximate model,
leading to a very simple iterative solution for effectiveness factor for general nonlinear reaction
stoichiometry and arbitrary catalyst particle shape. The same model can be used with all practical
Thiele modulus values, including multicomponent systems with inert compounds. Furthermore,
the correct formulation of the underlying physical model equation is discussed. It is shown that an
incorrect but often-used model formulation where convective mass transfer has been neglected may
lead to much higher errors than the present approximation. Even with a correctly formulated physical
model, rigorous discretization of the catalyst particle volume may have unexpectedly high numerical
errors, even exceeding those with the present approximate solution. The proposed approximate
solution was tested with a number of examples. The first was an equimolar reaction with first order
kinetics, for which analytical solutions are available for the standard catalyst particle geometries (slab,
long cylinder, and sphere). Then, the method was tested with a second order reaction in three cases:
(1) with one pure reactant, (2) with inert present, and (3) with two reactants and non-stoichiometric
surface concentrations. Finally, the method was tested with an industrially relevant catalytic toluene
hydrogenation including Maxwell-Stefan formulation for the diffusion fluxes. In all the tested
systems, the results were practically identical when compared to the analytical solutions or rigorous
finite volume solution of the same problem.

Keywords: reactive systems; effectiveness factor; diffusion; convection; catalyst; discretization

1. Introduction

Calculation of effectiveness factors for catalyst particles is one of the most classical problems
in Chemical Reaction Engineering [1–4]. It combines reaction kinetics with transport phenomena in
a nonlinear manner, making the solution far from trivial [5–7]. On one hand, catalyst development
aims towards increasingly active catalysts, but on the other hand, relatively large catalyst particles
are desired to minimize pressure drop in fixed beds or enhance catalyst separation in slurry reactors.
These two desires lead to situations, where reaction rates near catalyst surface will be very different
from that inside the particles. Therefore, it cannot be foreseen that this problem loses its importance.

Numerical solution of precise composition and reaction rate profiles in catalyst particles is in
principle rather straightforward with current computational resources, even when combined with
full reactor models [8], although calculation of effectiveness factors with very high precision is more
challenging than often appreciated. When combined with identification of reaction kinetic parameters,
process flowsheet optimization, or model based process control, computational effort becomes an
important issue. There are always competing interests for increasing process model sophistication.
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Whenever the full process model can be solved with sufficient accuracy but with reduced computational
effort, more details can be included elsewhere to improve the overall predictive power of the model.

Although mutual interactions between diffusion and reaction are traditionally addressed, another
mass transfer mechanism, namely convection, is more often than not forgotten from the problem
formulation, although its importance has been addressed in some very classical textbooks and
publications [1,4,9]. Moreover, most of the numerical approximations found from the literature
were based on physical models neglecting convective mass transfer [10–17]. This leads to a
situation where the resulting error is not only due to mathematical approximation of the underlying
differential equation (which is typically minimized by elegant mathematical manipulations), but in the
reaction-diffusion model itself, which does not take into account all the relevant physical phenomena.
The latter error can be much higher than the numerical approximation error.

In the classical numerical solutions found in the literature, the reaction rate is usually considered
to depend on the concentration of one component only. Furthermore, these solutions are often
kinetics-dependent, i.e., the order of reaction needs to be explicitly stated before applying the
method [7,10,18]. However, in reactive systems, the component concentrations are heavily coupled
due to the reactions, and usually, these systems cannot be properly described without considering
every chemical component simultaneously. Many reactions catalyzed by a solid surface also follow
reaction kinetics without a clear reaction order, such as the Langmuir-Hinshelwood model.

In this contribution, a novel method for effectiveness factor prediction is proposed. It is based
on assumed reaction rate profiles instead of traditional composition profile approach used in most
high-order numerical methods [5,7]. This novel approach allows analytical solution of the approximate
problem, and with a carefully selected reaction rate profile, effectiveness factor predictions with
comparable or in some cases even higher accuracy than much more rigorous numerical composition
profile solutions. The proposed method is equally suitable for any reaction rate regime, catalyst shape,
and reaction stoichiometry.

2. Model Development

Mathematically, material balances within catalyst particles can be modeled with the following
reaction-diffusion-convection (RDC) Equation:

∂(c)
∂t

= − 1
rm

∂

∂r
(rm(N)) + (R) (1)

where the parameter m is a geometry factor which takes value 0 for slab, 1 for cylindrical, and 2 for
spherical geometry. The geometry factor can be generalized for other non-standard particle shapes as
proposed by [19,20]. See also [21] for analysis of commercial catalyst shapes. The shape parameter can
be estimated from:

m = L
A
V
− 1 (2)

where L is the characteristic length for the chosen geometry. This is the slab half thickness, the cylinder
radius, or the sphere radius for slab, cylindrical, and spherical geometry, respectively. A is the catalyst
particle surface area and V is its volume. Non-integer values may also be used for other than standard
geometries. A reasonable approximation may be obtained if the A/V ratio of a non-standard geometry
is used along with the smallest half thickness for L. [20,22,23].

Boundary conditions for the reaction-diffusion-convection model are symmetrical at the center
(∂/∂r = 0 at r = 0) and known catalyst surface compositions (c = cL at r = L). Additionally, an obvious
requirement is that the solutions are finite everywhere [2].

In this contribution, we were interested in steady state solutions, and time derivatives were set
to zero. Typically, the time scales for composition profile development are much faster than other
relevant time scales in the reactors, except in some rare cases, such as when analyzing particle scale
origins of detrimental reaction runaway [24].
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The mass transfer flux (relative to external reference coordinates) consists of diffusive flux (relative
to molar average velocity frame) and convective flux. The mass transfer flux can be written in the
following way:

(N) = −ct[D]
∂(x)
∂r

+ Nt(x) (3)

The first part on the right hand side describes diffusive and the second convective flux. Nt is the
sum of all individual mass transfer fluxes. For the diffusive part, there are also alternative formulations
besides the mole fraction gradient for the driving force. These could be incorporated in the present
model, but were left out here to avoid excessive complications in the model derivation [25]. Convective
flux within the pores typically originates from pressure gradients caused by non-equimolar reactions,
and could be modeled, e.g., with the dusty gas model [1]. However, in cases with closed catalyst
volumes, the pressure gradients were not easily determined and they were probably relatively low.
Therefore, it was better to formulate the model in such a way that pressure gradients were assumed
negligible, and the equation of state connecting molar volume, local compositions, temperature, and
(constant) pressure was valid everywhere within the catalyst particle [26].

As is typical in the literature with diffusion inside porous catalyst particles, the diffusion
coefficients were assumed to contain porosity and tortuosity effects as well as a constriction factor.
The effect of surface diffusion could be included in the model in a similar manner if a reliable model
was available for it. In case of very narrow pores, diffusion coefficients should be calculated based
on Knudsen diffusion; otherwise, bulk fluid coefficients should be used [1,3]. One often-neglected
restriction is that the diffusion fluxes must sum up to zero, as diffusion describes molecular movement
with respect to the average molar flow. This limitation should be incorporated in the matrix if
diffusion coefficients [D]. Unfortunately, with effective diffusion models, this limitation is typically
violated [25,26].

When spatial derivatives of diffusion coefficients and total concentration are assumed negligible
as compared to the other terms (corresponding to the linearized theory of mass transfer, or
Toor-Stewart-Prober assumption), we end up with the following reaction-diffusion-convection
equation:

ct[D]
∂2(x)
∂r2 + ct[D]

m
r

∂(x)
∂r
− m

r
Nt(x)−Nt

∂(x)
∂r
− (x)

∂Nt

∂r
= −(R) (4)

Reaction term (R) is an arbitrary function of compositions. It can also depend on other state
variables such as temperature and pressure; however, since in this contribution they were assumed
constant, their effect was assumed to be included in the reaction rate coefficients. Note that this RDC
equation is specified for all but one component. The last component mole fraction profile is obtained
from the obvious fact that the mole fractions sum up to unity.

2.1. Reaction Rate Profile Approximation

Classical numerical solutions to the reaction-diffusion equation are based on polynomial
approximations for the composition profiles [5,7]. These solutions typically neglect convective part for
mass transfer, which could be significant in case of non-equimolar reactions. From a mathematical
point of view, erroneous numerical solution can be seen when mole fractions do not up to one, or when
the solution is written in terms of component concentrations instead of mole fractions, the resolved
concentrations within the catalyst particle do not satisfy the equation of state. The total flux at any point
of the catalyst could be calculated by integrating reaction rates from the catalyst particle center up to
that point. Another option is to solve the model so that total flux is calculated based on the requirement
for mole fractions summing up to one. This transforms the model into algebraic-differential equation;
however, since nonlinear reaction kinetics already calls for an iterative solution, this does not change
the final nature of the equations to be solved. The third option is to calculate total flux explicitly
based on diffusion fluxes of any of the reacting components and reaction stoichiometry; however, this
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approach easily leads to poorer convergence of the whole set of nonlinear equations although the
number of iterated variables would be less.

In this contribution, the reaction rates were assumed to be of the following polynomial form:

(R) = R(c) = R(r) = (a) + (b)rn (5)

These rates are the true formation or consumption rates for each component (including
stoichiometry), not reaction extent rates. Although the reaction rate expression is explicitly written
based on the location instead of concentrations, parameters a, b, and n depend on concentrations; thus,
the applied expression takes concentration dependency into account.

This functional form is quite flexible for approximate description of various reaction rate profiles
found in practical situations. Nearly constant reaction rate profiles can be observed when the
diffusional mass transfer compensates concentration changes caused by the reaction. Low values of
parameter n describe these systems well, and the constant term (a) dominates the reaction rate profile.
If the reaction rate is rapid compared to the diffusional mass transfer, the limiting reagent is consumed
near the surface, leading to steep profiles also for the reaction rates. In these cases, parameter n is
high, and the second term of the reaction rate profile approximation dominates. This may also be
formulated so that constant reaction rate can be found in systems with low values of Thiele modulus,
while steep reaction rate profiles can be found in systems with high values of Thiele modulus [4,9].

After assuming a profile for the reaction rate as a function of location (independent variable)
instead of composition (dependent variable), the RDC model transforms into a linear differential
equation also in cases of nonlinear reaction kinetics. This allows for an analytical solution.
The remaining problem is to find the three unknown reaction rate profile parameters (a, b and n) in
such a way that the reaction rate profile is as close as possible to the true solution. Parameter n is a
single scalar specific to the reaction, and parameters a and b are vectors (scalars for each component).

For the simplified model, we made some further assumptions. The last three terms on the right
hand side (the convection terms) are assumed spatially invariant:

m
r

Nt(x) ≈
m
L

Ntc(xc) (6)

Nt
∂(x)
∂r
≈ (m + 1)Ntc

L
((xL)− (x0)) (7)

x
∂Nt

∂r
≈ Ntc

L
(xc) (8)

where (xc) is a vector of average convective mole fractions and Ntc is the average total flux for the
convective term. Average convective mole fractions are calculated here with the following empirical
formula:

(xc) =
(f− 1)(xL) + f(x0)

f
(9)

where:

f =
n(2m + 1)

5
(10)

Reasonable results could be obtained also with other convective compositions, e.g., by using
surface compositions; however, the previous weighted average proved to be somewhat better in
preliminary tests. Total flux Nt is also assumed constant for the approximate method to simplify the
solution. Its calculation is discussed later.

After these approximations, we end up with:

∂2(x)
∂r2 + m

r
∂(x)
∂r = [B]

(
Ntc
L (m + 1)(xc + xL − x0)− (a)− (b)rn

)
= [B]((k)− (a)− (b)rn)

(11)
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Based on the previous discussion, the vector:

(k) =
Ntc

L
(m + 1)(xc + xL − x0) (12)

was assumed constant along the spatial coordinate to simplify the solution. [B] is a combined notation
for [D]−1/ct.

As discussed earlier, the last component diffusion flux needs to be calculated from the restriction
that the diffusion fluxes sum to zero. In the present approximate formulation, this was obtained by
calculating effective diffusion coefficient for the last component so that average diffusion fluxes in the
catalyst sum to zero:

Dnc =

−
nc−1

∑
i=1

[D](xL − x0)

xL,nc − x0,nc
(13)

The previous reaction-diffusion-convection equation can be solved, e.g., with the I-factor
method [6] or by finding a suitable trial solution. In any case, the solution for composition profiles for
nc − 1 components is:

(x) = (p1)r
2 + (p2)r

n+2 + (cx) (14)

where:

(p1) = [B]
(a)− (k)
2(m + 1)

(15)

(p2) = [B]
(b)

(m + n + 1)(n + 2)
(16)

where (cx) is a constant of integration. The solution for the above set of equations was obtained as
follows. We used the center as a collocation point, i.e., the differential equation was satisfied with
x0 at the center. This fixed the constants of integration to the center mole fractions, i.e., (cx) = (x0).
The reaction rate was calculated at the two known points, namely at the surface and at the center, as:

(R0) = R(x0) = (a) (17)

and:
(RL) = R(xL) = (R0) + (b)Ln (18)

Thus, the parameters a and b are obtained as:

(a) = (R0) and (b) = L−n (RL − R0) (19)

The surface mole fractions, and thus surface reaction rates, are known, because the surface
conditions are the boundary conditions for the model. The center mole fractions are iterated and used
to calculate the center reaction rates.

Since the mole fractions at the catalyst surface are known, the final equations from where the
center compositions can be solved is:

(xL) = (p1)L
2 + (p2)L

n+2 + (x0) (20)

After solving for the center point mole fractions (x0), the mass transfer fluxes at the surface can be
calculated by integrating the reaction rate profiles as:

Roverall,iV =

L∫
0

Ri(r)A(r)dr =
L∫

0

(
R0,i +

rn

Ln (RL,i − R0,i)

)
A(r)dr =

Lm+1(nR0 + (m + 1)RL)

(m + 1)(n + m + 1)
(21)
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(N) =
(Roverall)V

A
=

L(nR0 + (m + 1)RL)

(m + 1)(n + m + 1)
(22)

Additional constraint needed to solve the average total flux in the convective part is obtained by
requiring that the mole fractions at the center sum up to unity:

∑ x0,i = 1 (23)

The center mole fractions can be found with a numerical solution of the nonlinear algebraic
set of equations. A reasonable approximation results by using linearized reaction rate with
analytical solutions without convection; however, in practice, starting with slightly perturbed surface
compositions leads to very rapid convergence as well.

Finally, the effectiveness factors for each component can be calculated from the overall reaction
rate as:

ηi =
Roverall,i

RL,i
=

n R0,i
RL,i

+ m + 1

n + m + 1
(24)

This value is not necessarily needed in practical reactor modeling, as mass transfer fluxes at the
surfaces of the catalyst particles are already available for reactor material balances. These effectiveness
factors are used in this paper to compare the present approximation with analytical solutions if
available, or rigorous numerical solutions in more general cases. For those components that do not
take part in the reaction (i.e., inert components), the predicted effectiveness factor is not defined. It is
interesting to note that the above definition for effectiveness factor reduces to the known asymptotic
values for high Thiele modulus values with first order equimolar reaction:

ηi =
m + 1

Φ
(25)

if the reaction rate power n is replaced by the Thiele modulus. We will also find this asymptotic
behavior later in numerical tests.

2.2. Choosing the Reaction Rate Profile

The reaction profile was assumed to be of a polynomial form with two terms. One is a constant,
and the other is raised to a power depending on the relative reaction rate. It is expected that high
values for this parameter will be encountered at high Thiele modulus values, and smaller values at
low Thiele modulus values.

As the power n depends on the steepness of the reaction rate profile near the catalyst surface, its
value can be obtained by setting reaction rate profile gradient at the surface equal to the linearized
reaction rate multiplied by the composition profile gradient at the surface. The composition profile
gradient is obtained with the present solution to the RDC equation (Equation (13)). This can be
expressed as:

dR
dr

=
dR
dx

dx
dr

(26)

After inserting all the terms at the catalyst surface conditions:

nbiLn−1 =
dRLi

dx

(
2p1iL + (n + 2)p2iL

n+1
)

(27)

For the selection of appropriate reaction rate profile, convective part in p1 (k in Equation (14)) was
neglected to allow for explicit solution, although it was not neglected in the underlying RDC model.
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When the values for p1 and p2 were inserted, the non-linear terms (Ln) cancel out favorably, leaving us
a quadratic polynomial for n to be solved. The solution is:

ni =
ϕi − (m + 1) +

√
(m + 1−ϕi)

2 + 4
(
Φ2

i + (m + 1)ϕi
)

2
(28)

where the larger root was chosen for a physically meaningful solution. Maximum of the predicted ni

values for each component is selected, with a minimum set to n = 2.
In the previous equation, the following terms were defined:

ϕi =

(
[B]

dRL

dx

)
i

R0,i

(Rs,i + R0,i)(m + 1)
(29)

and:

Φ2
i =

(
[B]

dRL

dx

)
i
L2 (30)

The latter is a square of the Thiele modulus for multicomponent systems in case of a first order
reaction. Here, it was defined for each component separately. In this formulation, the reaction
stoichiometry will be included in the modulus: it is based on the true formation rate of a component of
interest, not the extent of reaction rate. With this approach, scaling of the stoichiometric ratios does
not affect numerical values of the modulus. Diffusional interactions were also accounted for with
non-diagonal elements of [B] [25]. For other than first order reactions, the present definition deviated
from the original definition of the Thiele modulus by a constant factor, appearing due to differentiation
of nonlinear reaction rates. However, in all cases, the present definition is directly proportional to the
classical definition of Thiele modulus, and thus expresses the same physical ratio.

It can be seen from Equations (25)–(27) that when reaction rates were very high near the catalyst
surface as compared to the center (high Thiele modulus values), the reaction rate profile exponent n
became equal to the Thiele modulus. This can also be expressed so that at the diffusionally limited
regime, the reaction rate is proportional to the distance from the catalyst center raised to a power equal
to the Thiele modulus.

2.3. Finite Volume Solution

In order to validate the present approximation in general non-linear cases where analytical
solution is not available, a reference solution with finite volume method was used. The finite
volume method was formulated by dividing the catalyst particle into a number of control volumes
following the catalyst particle symmetry as “shells”. The balance equations are constructed as follows:
diffusion fluxes for nc-1 components at the control volume boundaries were calculated with central
differences (compositions known at the center points of the control volumes, but fluxes needed at the
boundaries) as:

(J)j+1/2 = ct[D]
(x)j+1 − (x)j

rj+1 − rj
(31)

(J)j+1/2,nc = −
nc−1

∑
i=1

(J)j+1/2,i (32)

(N)j+1/2 = (J)j+1/2 + Nt,j+1/2
(x)j+1 + (x)j

2
(33)

where at the center of the particle, fluxes are set to zero due to symmetry. Here, subscript j refers to the
control volume number and i to component number.

Steady state material balances are then obtained from:

Aj−1/2(N)j−1/2 −Aj+1/2(N)j+1/2 + (R)jVj = (0) (34)
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Additionally, mole fraction summation equations for each control volume are needed:

nc

∑
i=1

xj,i = 1 (35)

This set of equations (nc material balances and one summation equation) was solved for each
control volume. The variables to be solved were the mole fractions of each component in each control
volume, and total flux at each control volume boundary.

The effectiveness factors for finite volume method were obtained by first discretizing the particle
radial coordinate with 100 and 200 equal size control volumes, and solving for mole fractions and total
flux in each control volume. Effectiveness factor for each case was calculated by summing up each
control volume reaction rates, and using Richardson extrapolation to these two discretized solutions
for estimating the final effectiveness factor by assuming second order convergence. This was found
to result in accurate enough effectiveness factors for our purposes when the Thiele modulus was not
extremely high. With higher Thiele modulus values, non-uniform grid should be used so that smaller
control volumes would be positioned near the catalyst surface where the reaction rates are the highest.

3. Results and Discussion

The predictive capability of the proposed approximate method was assessed with several
numerical comparisons, each with different characteristic behavior. The first test was carried out
with a first order reaction in three standard geometries for which analytical solutions are available:
slab, cylinder, and sphere. The second test assumed elementary second order kinetics with a single
reactant, again in the three standard geometries. This case was evaluated first by assuming that there
was only pure reactant outside the catalyst, and then with reactant and 50% inert. The third test case
was with elementary reaction for two reactants and non-stoichiometric surface compositions, which
led to the depletion of one of the components and gradual change from second to pseudo-first order
reaction as the reactants diffuse towards the catalyst particle center. The final test case was a realistic
hydrogenation reaction, where the catalyst size effect was tested. For the test Cases (1) to (3), equal
diffusivities of 10−9 m2/s were used with a total concentration of 50,000 mol/m3 and particle size of L
= 0.001 m. Reaction rate coefficient was varied in order to vary the Thiele modulus values. Precise
values of these physical parameters were not highly important in order to draw relevant conclusions,
as they will always be lumped together in the model. For the final test case, realistic physical properties
for the practical system were used, along with the Maxwell-Stefan diffusion model.

3.1. First Order Elementary Reaction A→ B

The present approximate solution was first compared to the analytical solutions for a first order
irreversible reaction. The reaction rate expression is:

R = krxA (36)

The test was carried out in various geometries: slab, cylinder, and spherical, as functions of a
wide range of Thiele modulus values. The analytical solutions are:

η =
tanh(Φ)

Φ
for slab (37)

η =
2I1(Φ)

ΦI0(Φ)
for cylinder (38)

η =
3(Φcoth(Φ)− 1)

Φ2 for sphere (39)
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In this test case, diffusional interactions are neglected: matrix [B] is diagonal, and it was further
assumed that all the diffusion coefficients for each component were the same. Thus, the Thiele modulus
in this case is:

Φ = krBL2 (40)

In Figure 1, the relative errors are shown for the three standard geometries.
It can be seen that the approximate solution approached the analytical solution asymptotically

both for relatively low and very high Thiele modulus values. For the intermediate regime, the
maximum relative error was around 3% and the maximum absolute error around 0.01 for predicted
effectiveness factors. For cylindrical geometries, analytical solution was not possible above Thiele
modulus values above 700 due to problems in the Matlab function “besseli” (the present approximate
solution was nevertheless found rapidly); however, already smaller Thiele modulus values proved
that the asymptotic behavior observed in Figure 1 holds also for cylinders.

Figure 1. Relative errors in the effectiveness factors for the three standard geometries as functions of
Thiele modulus.

Interestingly, as an example, the finite volume solution required at least 320 control volumes to
achieve comparable accuracy with the suggested approximate solution with Thiele modulus of 100
for a spherical geometry. It took orders of magnitude more computational time to solve composition
profiles even for a single catalyst particle compared to the approximate solution. It is highly probable
that in practice, a much lower number of control volumes would be used to discretize the catalyst
radius dimension than required for reasonable accuracy. This would lead to erroneous solution,
although the control volume or other similar discretized solutions are expected to be “rigorous”.

In Figure 2, the profile power n is shown for spherical geometry. Powers for all geometries are
very close to each other.
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Figure 2. Reaction rate profile power as a function of Thiele modulus for spherical geometry.

The asymptotic behavior of reaction profile power discussed earlier can be again seen
from Figure 2. At high Thiele moduli, the reaction rate profile parameter n approaches Thiele
modulus values.

Effect of particle geometry was also studied for this case. Intermediate Thiele modulus value
(10 in this case), for which the relative error in the approximate method is the largest, was selected as
a test case in order to emphasize potential discrepancies. The shape parameter was varied between
−1/5 to 5, as suggested by [27]. As there is no analytical solution for the full range of shape factors,
the finite volume solution was used as the reference. The results are shown in Figure 3.

Figure 3. Effectiveness factor as a function of particle shape factor with Thiele modulus value of 10 for
the finite volume (FV) and the present approximate solutions.

It can be seen that the present approximation predicts effectiveness factors very accurately over a
very wide range of particle shape factors.

3.2. Second Order Reaction 2A→ B

The second case was a simple second order elementary reaction with the following reaction rate:

R = krx2
A (41)
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Although this case may seem to be close to the first test case, the reaction was non-equimolar
inducing total convective flux towards the catalyst center. In this case, total flux increased effectiveness
factor as net convection towards catalyst center carries reactants further along with diffusion.
In Figure 4, the effectiveness factors predicted by the finite volume method and the corresponding
effectiveness factors predicted by the present approximate solution are shown as functions of Thiele
modulus. Here, the classical definition of Thiele modulus [4] was used for x-axis instead of definition
by Equation (27). Maximum error in the effectiveness factors were 0.028 for slab and cylinder and
0.038 for sphere. For comparison, the effectiveness factors calculated with the finite volume method
but neglecting convective mass transfer are shown. This was done so that the total fluxes in the finite
volume solution were set to zero and the last material balance was replaced by the summation equation.
Without this replacement, the finite volume model did not converge. However, it must be noted that
the RDC equation was not satisfied for the last component after this modification. The maximum
error in the effectiveness factor when neglecting total flux was around 0.11, and it was the same for
all geometries. Results for the slab geometry are shown to keep the graph simple. It can be seen that
the present approximation follows the rigorous solution closely, with the error being much smaller
compared to the error caused by a regrettably common assumption of negligible convective flux.

Figure 4. Effectiveness factors for second order elementary reactions in three geometries with finite
volume and approximate method. Effectiveness factor for slab when convective flux is neglected is
shown for reference.

Further tests were carried out with the same reaction scheme as before; however, specifying
surface compositions as 50 mol % reactant A and 50 mol % of inert. This deviates from the previous
case since inert is accumulating in the catalyst interior due to convective flux; its convective flux
towards the center was balanced by a diffusion flux out. This behavior (solution of composition
profiles with the FV model) with Thiele modulus of 10 and m = 2 (spherical geometry) are shown in
Figure 5.

The maximum errors in effectiveness factors calculated with the proposed approximate solution
with a wide range of Thiele modulus values were 0.027, 0.027, and 0.034 for slab, cylinder, and
sphere, respectively.
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Figure 5. Composition profiles for second order elementary reaction 2A→ B with inert compound.

3.3. Second Order Reaction A + B→ C

In this case, the reaction rate expression is:

R = krxAxB (42)

If concentrations of A and B outside the particle are the same, the results are equivalent to the
case 2A→ B. However, if the mole fractions of A and B are not equal outside the catalyst particle,
the reaction remains practically of second order near the surface, but in cases of high reaction rates
becomes a pseudo-first order deeper in the catalyst where the limiting component has been almost
fully consumed. In order to study this behavior, the surface mole fractions were set to 0.6 for A and
0.4 for B. Results are shown in Figure 6. Maximum errors in the effectiveness factors in this case were
0.035, 0.024, and 0.019 for the slab, cylinder, and sphere, respectively.

Figure 6. Effectiveness factors for second order elementary reaction A + B→ C with non-stoichiometric
feed in three geometries with finite volume and approximate method. Effectiveness factors for slab
when convective flux is neglected is shown for reference.
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3.4. Effect of Catalyst Size on Toluene Hydrogenation

The final test case is hydrogenation of toluene inside porous catalyst particles. This case is just an
illustration when the present model was applied to a real case where kinetic expression is known; any
other industrially relevant case could have been selected as well.

The kinetics of this reaction were given by [28] (Model I, heterogeneous reactor model, dissociative
adsorption of hydrogen, temperature equal to the reference temperature of 100 ◦C), and they follow
Langmuir-Hinshelwood kinetics. The stoichiometry of this reaction is:

C7H8 + 3H2 → C7H14 (43)

The reaction rate per total solid catalyst mass is:

Rm =
k1KAKHcAcH(

3KAcA + (KHcH)
0.5 + 1

)3 (44)

where k1 = 2.1 mol/(s kg); KA = 2.5 × 10−4 m3/mol; KH = 3.69 × 10−2 m3/mol.
Here, A refers to the aromatic compound (toluene) and H to hydrogen. The dimension of Rm was

mol/(s kg catalyst). The density of catalyst was 1300 kg/m3 and porosity 0.5, so that total reaction rate
per volume of fluid inside catalyst was:

R = Rm
ρC

1− ε (45)

Cylindrical catalyst particles were assumed in this study. The cylinders were assumed long
compared to the diameter, so that we have m = 1 for the geometry parameter. The surface mole
fractions were assumed to be 0.1 for hydrogen, 0.7 for toluene, and 0.2 for methylcyclohexane.

Binary diffusion coefficients were estimated with Wilke-Chang method [29]. Those binary
diffusion coefficients where hydrogen should have been assumed as a solvent were neglected, and the
binary diffusion coefficient matrix was assumed symmetrical. The binary diffusion coefficients were:

DHA = DAH = 1.32504 × 10−8 m2/s (46)

DHS = DSH = 1.21466 × 10−8 m2/s (47)

DAS = DSA = 5.18374 × 10−8 m2/s (48)

where subscript S refers to the saturated product (C7H14). Maxwell-Stefan diffusion coefficient matrix
[D] was calculated as in [25]. For the discretized control volume model, mole fractions from each control
volume were used separately; however, for the simplified method based on reaction rate profiles, mole
fractions at the particle surface were used. In this way, we avoided updating the diffusion coefficient
matrix during the iteration. This is consistent with suggestions for the Maxwell-Stefan approach for
the film model [30]. The average total concentration for this system was assumed to be constant,
9000 mol/m3.

Predicted effectiveness factors with the proposed approximation as well as finite volume method
are shown in Figure 7.
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Figure 7. Effectiveness factors for toluene hydrogenation case as functions of particle size.

It can be seen that the present model approximates effectiveness factors extremely well.
The maximum absolute error in the predicted effectiveness factor was 0.013 and relative error 4%
with a very wide range of catalyst diameters studied. The real hydrogenation process was possibly
partially limited by diffusion in catalyst within industrially relevant catalyst size ranges, as also noted
by [28]. Hence, it is important to have a reasonable estimate for the effectiveness factors in practical
reactor simulations. The approximate method proposed in this work gives opportunity to do this in an
efficient manner.

4. Conclusions

An approximate method for solving reaction-diffusion-convection problems within catalyst
particles was developed in this work. The underlying idea behind the present approximation was that
the reaction rate profile as a function of location was assumed instead of the traditionally assumed
composition profiles. This allowed a simple analytical solution of the reaction-diffusion-convection
equation with the approximate profiles. The reaction rate profile was found by setting the reaction rate
gradients at the catalyst surface equal to the linearized reaction kinetics. Intrinsic chemical kinetics
were also used for the reaction rate profile coefficients.

The present method was compared with available analytical solutions as well as with rigorous
finite volume solution, first in a number of ideal reaction schemes and then with an industrially
important catalytic reaction for toluene hydrogenation. It was shown that the present approximation
was capable of describing a variety of multicomponent reactions in various catalyst geometries with
excellent accuracy. Furthermore, it was shown that significant errors could result from neglecting the
convective flux in the model for non-equimolar reaction stoichiometries. Thus, improper but common
model formulation was expected to lead to more erroneous results than the approximate solution
proposed here.
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Abbreviations

a parameter in reaction profile (mol/m3s)
A area (m2)
B support variable, B = D−1/ct (ms/mol)
b parameter in reaction profile various
c concentration (mol/m3)
ct total concentration (mol/m3)
D diffusion coefficient (m2/s)
J diffusion flux (flux relative to molar average velocity frame) (mol/m2s)
k convection variable (mol/m3s)
KA, KH reaction rate constants (adsorption coefficients) (m3/mol)
kr reaction rate constant (mol/kgs)
L diameter of the reactive region (radius or half thickness) (m)
m geometry factor ( )
N mass transfer flux (flux relative to stationary coordinates) (mol/m2s)
n parameter in reaction profile ( )
nc number of components ( )
Nt total flux (mol/m2s)
r length dimension (m)
R, R0, RL reaction rate, reaction rate at the center, reaction rate at the surface (mol/m3s)
t time (s)
V volume (m3)
Vm molar volume (m3/mol)
x, x0, xL mole fraction, mole fraction at the center, mole fraction at the surface ( )
xc convective mole fractions ( )
φ Thiele modulus, as defined by Equation (27) ( )
η effectiveness factor ( )
[] square matrix various
( ) column matrix various
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