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Abstract

In this article, three adaptation methods are compared based on how well they change the speaking style of a neural
network based text-to-speech (TTS) voice. The speaking style conversion adopted here is from normal to Lombard
speech. The selected adaptation methods are: auxiliary features (AF), learning hidden unit contribution (LHUC), and
fine-tuning (FT). Furthermore, four state-of-the-art TTS vocoders are compared in the same context. The evaluated
vocoders are: GlottHMM, GlottDNN, STRAIGHT, and pulse model in log-domain (PML). Objective and subjective
evaluations were conducted to study the performance of both the adaptation methods and the vocoders. In the subjective
evaluations, speaking style similarity and speech intelligibility were assessed. In addition to acoustic model adaptation,
phoneme durations were also adapted from normal to Lombard with the FT adaptation method. In objective evaluations
and speaking style similarity tests, we found that the FT method outperformed the other two adaptation methods. In
speech intelligibility tests, we found that there were no significant differences between vocoders although the PML
vocoder showed slightly better performance compared to the three other vocoders.

c© 2018 Published by Elsevier Ltd.
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1. Introduction

In noisy environments, human talkers modify their speaking style to make the spoken message more
understandable. This phenomenon is called the Lombard effect [32], and the resulting speech is called
Lombard speech or speech-in-noise. Both the acoustic and phonetic properties of speech are affected when
the speaking style used in a quiet environment is changed to Lombard speech in noisy environment. The
main acoustic modifications caused by the Lombard effect are an increase in vocal intensity and fundamental
frequency ( f0), a decrease in spectral tilt, and a change in formant frequencies and phoneme durations
[62, 27, 23, 22, 33]. Modifications in phonetic properties include, for example, increased prominence in
the production of vowels compared to consonants as well as in the production of vowels and consonants
compared to semivowels [27, 22].

Present text-to-speech (TTS) synthesis systems have reached a mature state where intelligibility of syn-
thetic speech corresponds to that of natural speech in a quiet environment. However, in real-life applications
(such as public address systems, vehicle navigation devices, and mobile phones), TTS is often used in
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conditions with severe background noise, and consequently the intelligibility is drastically reduced [11].
Therefore, there is a great need to improve the intelligibility of synthetic speech. This can be done by in-
corporating the Lombard effect to the development of TTS voices, in a similar manner as natural talkers
modify their speaking style in noisy environments. The current study focuses on adaptation to Lombard
speech using neural network based TTS systems.

Improvement of speech intelligibility in noise has been studied in many investigations, both in natural
(e.g., [73]) and synthetic (e.g., [26]) speech. Several of the previously developed intelligibility improve-
ment methods were evaluated recently in the Hurricane Challenge [10] by conducting a large-scale open
evaluation. A total of 14 algorithms were proposed for natural speech, and four systems were proposed for
synthetic speech. The performance of the algorithms were evaluated in the Hurricane Challenge using the
word error rate (WER) and the equivalent intensity change (EIC), that is, the gain (in dB) by which the level
of unmodified speech needs to be raised in order to obtain the same intelligibility score as that of modified
speech. The experiments reported in [10, 11] yielded an EIC value of 5.1 dB for natural speech and of 5.6 dB
for synthetic speech (using the intelligibility of unmodified synthetic speech as the reference), and reaching
up to 37 percentage points of absolute word accuracy improvement.

Most of the existing techniques used for normal-to-Lombard modification of synthetic speech are moti-
vated by the acoustic properties of speech that are affected in the Lombard effect. These techniques apply
signal processing methods to mimic the acoustic changes observed in the production of Lombard speech.
The methods utilized are cepstral modification using the glimpse proportion measure [59], spectral shaping
[18], and dynamic range compression [60]. These techniques typically do not require Lombard speech to
modify synthetic speech. However, there are a few studies that explicitly employed Lombard speech to
enhance the intelligibility of synthetic speech by using either voice conversion [31] or adaptation techniques
[41, 48, 39].

The previous adaptation studies in TTS, however, are all based on statistical parametric speech synthe-
sis (SPSS) systems utilizing hidden Markov model (HMM)-based speech synthesis, due to its adaptation
abilities and flexibility in changing voice characteristics (e.g., speaker, speaking style, and emotional cat-
egory) as well as its small memory footprint [57]. The HMMs trained on normal speech can be adapted
with a small amount of Lombard speech data using the technique called constrained structural maximum
a posteriori linear regression combined with maximum a posteriori (CSMAPLR + MAP) adaptation [68].
Previous studies have shown that the intelligibility of synthetic speech generated by the Lombard-adapted
TTS system is significantly higher in noisy environments than the corresponding synthetic speech of normal
speaking style [11, 41, 42].

The quality of HMM-based synthesis is, however, limited by two main factors: 1) accuracy of acoustic
modeling, and 2) quality of vocoders. Recently, deep neural networks (DNNs) were proposed as an alter-
native to HMMs in TTS to improve the accuracy of acoustic modelling. Many independent studies have
demonstrated that the quality of synthetic speech generated by DNNs is significantly better than that of
HMM-based systems (e.g., [72]). DNNs increase the robustness of acoustic modeling by better capturing
the complex dependencies between linguistic and acoustic features. DNNs have been further extended to
recurrent neural networks (RNNs), especially long short-term memory networks (LSTMs), to model the
sequential nature of speech [21, 71]. To improve the quality of vocoders, neural vocoders (e.g., WaveNet
[52]) have been proposed. TTS systems utilizing neural vocoders have yielded high fidelity of synthetic
speech, but these techniques also call for large amounts of training data and lots of computational resources.
Particularly the first requirement constitutes a severe limitation in synthesis of speaking styles of high vocal
effort, such as Lombard speech.

Until now, only a few studies have explored the DNN-based speaker adaptation for TTS, although DNNs
have shown promising results in speaker adaptation in the area of speech recognition. In principle, DNNs
can be adapted at three levels: input level, model level and output level. At the input level, speaker-specific
features, for example i-vectors, are used to augment the conventional textual information [46, 66]. At
the model level, the adaptation can be done by scaling the hidden-activation values or by fine-tuning the
whole or part of the network with adaptation data [50, 66, 20]. At the output level, a voice transformation
technique is typically applied. Using these adaptation methods, a DNN-based system has been shown
to outperform an HMM-based adapted system [66]. Recently, adaptation at the input level was utilized
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in [65] to adapt a speech synthesizer trained in a declarative speaking style to synthesize speech with an
interrogative style. However, to the best of our knowledge, the only previous TTS study on DNN-based
Lombard speech adaptation was the one published recently by the present authors [8].

In the current study, normal-to-Lombard adaptation of speech synthesis is studied using deep neural
networks. This investigation is a sequel to our pilot study on the topic [8], and it extends the previous one
in many respects. Two main research goals are set as follows. The first goal is to find whether a particular
vocoder is more suited for the task of normal-to-Lombard adaptation. We hypothesize that some vocoders
might provide an acoustic space that is better suited for the task. For instance, if a vocoder provides a
parameter for an acoustic property (such as spectral tilt) that is modified by natural talkers when speaking
style is changed from normal to Lombard, one would expect the corresponding vocoder to work well also
in normal-to-Lombard adaptation of synthetic speech. To reach this goal, we evaluate the following four
vocoders: 1) GlottHMM [43], 2) GlottDNN [2], 3) STRAIGHT [29], and 4) PML [14]. There are also
other vocoders, such as WORLD [36], AHOCODER [17], Vocaine [1], and MagPhase [19]. However,
the chosen vocoders represent the main vocoder types used in current SPSS systems (see [3] for further
details): GlottHMM and GlottDNN belong to glottal vocoders, STRAIGHT uses mixed excitation with a
spectral envelope, while PML combines an advanced aperiodicity model rooted on sinusoidal vocoding with
a log-domain source-filter synthesis model. The second goal is to find what is the most successful adaptation
technique for the Lombard speaking style transformation. We hypothesize that some techniques might take
benefit of preexisting normal speaking style data and learn Lombard speaking style characteristics from a
small amount of data better than the other existing techniques. To reach this goal, we compared the following
three adaptation methods: 1) auxiliary features, 2) learning hidden unit contribution, and 3) fine-tuning.
Further, the current study conducts an extensive subjective evaluation, for the first time in DNN-based
synthesis, in speaking style adaptation by assessing the speaking style similarity between Lombard-adapted
synthetic speech and natural Lombard speech as well as between Lombard-adapted synthetic speech and
natural speech of normal speaking style. In addition, the study investigates whether there are differences
between the vocoding methods selected when they are used in normal-to-Lombard adaptation to improve
the intelligibility of of synthetic speech in various noise conditions.

A side goal of this article is to addresses the adaptation of duration model from normal to Lombard
speech. In traditional DNN-based SPSS systems, phoneme durations affect synthetic speech in two re-
spects: by changing speech prosody and by changing the feature positions in acoustic modeling. Tradi-
tionally in DNN-based SPSS systems, durations are estimated separately from HMMs as neural networks
require frame-level mapping, whereas HMMs can segment the utterance at the phoneme level in a weakly
supervised manner. However, recent more advanced neural networks, such as sequence-to-sequence models,
are able to learn the duration implicitly within models (for example, see Tacotron [64], DeepVoice [6], and
Char2Wav [47]). Previous studies on speaker adaptation in TTS have exclusively focused on the acoustic
model only. Since variations in durations also contribute to speaker characteristics, it is crucial to also adapt
these durations similarly to the acoustic model adaptation. This is particularly important to the two speaking
styles addressed in the current study, normal and Lombard, that show large differences in durations (e.g.,
vowel durations are elongated and consonant durations shortened when speaking style changes from normal
to Lombard). Some studies have even indicated that the Lombard effect can be mimicked by only changing
the durations [12]. Thus, it is considered crucial to adapt durations in a similar manner as is done in acoustic
model adaptation.

2. Statistical parametric speech synthesis (SPSS) system

The goal of a TTS system is to convert a given text input into natural sounding speech. A typical
TTS system consists of two main parts, the front-end and the back-end. In the front-end, the text input is
converted into a sequence of symbols, called the linguistic specification [53]. The back-end takes advantage
of an acoustic model which renders the speech waveform from the linguistic specification generated by the
front-end. Although the quality of TTS depends both on the front-end and back-end, this study focuses on
the latter. Two paradigms, unit-selection synthesis and statistical parametric speech synthesis (SPSS), are
prevalent in the back-end. Figure 1 shows a general block diagram of an SPSS system.
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Fig. 1. A schematic diagram of a recurrent neural network based statistical parametric speech synthesis system.

In TTS, the input vectors typically contain many levels of information, such as phoneme, syllable, and
words [53]. These linguistic features are language-dependent and extracted by the front-end (for example,
the Festival front-end [54] is used for English). The output vectors contain the corresponding acoustic
features. The acoustic features are extracted using a vocoder, Section 3 briefly describes a few state-of-
the-art vocoders employed in SPSS. In addition, duration information is needed to build a model between
text features and acoustic features, since these sequences are of different lengths (e.g., an utterance with 10
phonemes can have 200 frames at 5-ms frame rate).

Conventional DNN-based synthesis systems use a frame or state as the basic modeling unit, which makes
it difficult to capture the co-articulation effect. To overcome this shortcoming of DNN-based systems, the
use of standard sigmoid layers has been proposed to be replaced with recurrent neural networks (RNN) in
TTS [21]. However, conventional RNNs suffer from the vanishing gradient problem, which deteriorates
their ability to model long-time relations in sequential features. As a remedy, long short-term memory
neural networks (LSTMs) have been proposed [24].

The majority of current neural network based SPSS systems use HMM-based force alignment to model
the phoneme duration. The estimated phoneme or state durations are used to interpolate the textual features
at the frame level. However, at inference time, it is not always feasible or convenient to first predict durations
from HMMs and later use them to predict the acoustic features using LSTM-based systems. To address this
problem, a separate duration model was proposed recently in [71], using neural networks in sequence with
the acoustic model; thus both acoustic and duration models are in one pipeline.

3. Vocoders

A vocoder is used to express a speech waveform with a parametric representation that can be converted
back into a speech waveform. Furthermore, the parametric representation enables the statistical modeling of
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speech, and it also makes possible to manipulate speech to enhance its intelligibility. These properties make
vocoders flexible tools that can be applied in several areas of speech technology such as statistical parametric
speech synthesis, voice transformation and modification, musical applications, and even low bit-rate speech
coding. The current study compares vocoders from three main categories (glottal, mixed-excitation, and
log-domain source-filter models rooted on sinusoidal vocoding). Altogether four individual vocoders were
included, which will be shortly described next.

3.1. GlottHMM

Glottal vocoders aim to parameterize speech according to the functioning of the real human speech
production mechanism. The oldest member of glottal vocoders, GlottHMM [43], is based on the source-
filter model of speech production that models the speech production mechanism as a cascade of linear
time-invariant filters excited by the glottal volume velocity waveform as follows:

S (z) = G(z)V(z)L(z), (1)

where S (z) is the Z-transform of the speech signal, G(z) is the Z-transform of the glottal excitation, V(z)
is the vocal tract transfer function, and L(z) is the transfer function of the lip radiation effect. GlottHMM
computes this speech separation by utilizing the iterative adaptive inverse filtering algorithm [5], and then
represents V(z) and the spectral tilt of G(z) as autoregressive filters parameterized as line spectral frequencies
(LSFs). Furthermore, the fundamental frequency f0, harmonic-to-noise ratio (HNR), and signal energy are
parameterized.

During synthesis, GlottHMM constructs the glottal excitation by modifying and concatenating a man-
ually selected glottal pulse, called the base pulse, according to the G(z) envelope, f0, HNR, and energy.
The unvoiced excitation is generated using white Gaussian noise. Finally, the excitation is filtered with the
autoregressive time-variant V(z) filter to obtain the synthesized speech signal.

3.2. GlottDNN

GlottDNN [3] is a more recent glottal vocoder that has been developed as a cumulative evolution from the
GlottHMM vocoder. GlottDNN utilizes the same source-filter model as GlottHMM, but has many updated
components. Most importantly, the source-filter separation in GlottDNN is computed with the quasi-closed
phase analysis glottal inverse filtering method [4]. In the analysis part, the rest of vocoding is done as in
GlottHMM.

In the synthesis part, GlottDNN uses a specific DNN to generate glottal excitations. This DNN, which is
trained as described in [2], maps the frame-level vocoder feature vector into a corresponding glottal closure
instant-centered, two-pitch period long glottal flow derivative waveform. The voiced excitation is generated
with the pitch-synchronous overlap-add (PSOLA) [37] procedure. Finally, the generated excitation is filtered
with the vocal tract filter V(z) to obtain the synthetic speech signal.

3.3. STRAIGHT

STRAIGHT [29] utilizes the conventional source-filter model of speech where the entire spectral enve-
lope (S U(z)) is driven by a spectrally flat excitation signal (I(z)) as follows:

S (z) = I(z)S U(z). (2)

STRAIGHT aims to obtain this separation by minimizing the periodicity interference within and be-
tween analysis frames (i.e., obtain a smooth spectrogram in both time and frequency axes). This is computed
with a pitch-adaptive analysis scheme that utilizes two complementary analysis windows. As the spectral
information in STRAIGHT is encoded in the representation of S U(z), the parameters of speech left for the
excitation are f0 and HNR (called aperiodicity in STRAIGHT). STRAIGHT computes the aperiodicity mea-
sure for each bin of the magnitude spectrum based on a smoothed table look-up operation that has the ratio
of the lower and upper envelope as input and refers to a database of known aperiodicity measurements.
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The inherent STRAIGHT parameters are thus f0 and magnitude spectrograms representing the spectral
envelope and aperiodicity. In SPSS, the spectrogram parameters (i.e., frequency bins for each frame) are
commonly transformed into mel-generalized cepstral coefficients [56] for the purpose of data compression.
The synthetic speech signal is generated in STRAIGHT by synthesizing the minimum phase spectrogram
based on the vocoder parameters, and then performing the inverse Fourier transform and overlap-adding the
obtained waveforms.

3.4. Pulse model in log-domain (PML)

The PML vocoder [15] utilizes frequency-domain pulse synthesis techniques from parameters that are
obtained from sinusoidal analysis. In the analysis part, first a continuous f0 contour and an estimate of the
spectral envelope (S U(z)) is obtained. S U(z) can be based on the interpolation of harmonic peak amplitudes,
or its computation can be out-sourced, for example, to STRAIGHT analysis. Finally, a specific phase
distortion deviation (PDD) is computed with the help of harmonic phase distortion (PD) values:

PDi,h = φi,h+1 − φi,h − φi,1, (3)

where φi,h is the phase value at frame i and harmonic h. The PD values are then linearly interpolated to
obtain PDi(ω), a continuous spectral representation of phase distortion. PDDi(ω) is then computed as the
short-term standard deviation of PD:

PDDi(ω) =

√√
−2 log

∣∣∣∣∣∣∣ 1
N

∑
n

e j(PDn(ω))

∣∣∣∣∣∣∣. (4)

PDD values show, in a normalized representation, how much phase distortion there is in each frequency
bin compared to the estimated f0. To simplify this model for SPSS, the PDD values are quantized into binary
values known as the binary noise mask Mi(ω).

The synthesis part in the PML vocoder is performed in the frequency domain. Based on the (continuous)
f0 contour, a single minimum phase pulse S i(ω) of length 1

f0
is generated at each pitch mark ti. The spectrum

is set as the minimum phase response of the spectral envelope Vi(ω), and the phase spectrum values are
replaced with random noise at frequency bins where Mi(ω) = 1:

S i(ω) = e− jωti · Vi(ω) · Ni(ω)Mi(ω). (5)

where Ni(ω) is the Fourier transform of Gaussian noise.

4. Adaptation methods

Building a DNN-based standalone TTS system from scratch requires a considerable amount of training
data uttered in a specific speaking style. The data scarcity issue for a challenging speaking style (such as
Lombard) can, however, be addressed by taking advantage of adaptation and data of another widely avail-
able speaking style (such as normal). DNN-based adaptation of TTS is more complex than HMM-based
adaptation, since the number of parameters in DNNs is large and the parameters of the DNN model cannot
be interpreted as directly as the parameters of the HMM model. In this section, the DNN-based adaptation
methods employed in the current study are described. The study takes advantage of three adaptation tech-
niques: 1) auxiliary features (AF), 2) learning hidden unit contribution (LHUC), and 3) fine-tuning (FT).
Figure 2 demonstrates the block diagram of each adaptation method employed in the study.

4.1. Auxiliary features (AF)

In this method, the speaking style specific auxiliary features are concatenated to the input linguistic
features in the training of an acoustic model. Thus, the AF method does not involve any model adaptation
per se. The model utilizes the knowledge provided in the input features to discriminate speaking styles.
This approach has an advantage that it can be easily applied to a range of deep acoustic models, such as feed
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Fig. 2. Illustration of the synthesis systems compared. (a) Normal speaking style TTS system. Adapted systems based on (b) auxiliary
features (AF), (c) learning hidden contribution (LHUC), and (d) fine-tuning (FT). Adapted systems LHUC and AF use the normal
speaking style TTS system as an initial system.

forward neural networks, LSTM-RNNs, and even waveform generation models (e.g., WaveNet [61]). AF
has been used for speaker adaptation in both speech recognition [46] and synthesis [66, 16]. Features like
i-vectors [66] or d-vectors [16] have been used to convey the speaker-specific information in adaptation.
Typically, these features are estimated with a separate model, for example, the Gaussian mixture model-
universal background model (GMM-UBM) for i-vector extraction and another DNN for d-vector extraction.
Altering these auxiliary features changes the output acoustic features to correspond to the desired target
speaking style. One-hot vectors, the simplest representation for speaker variability, have also been studied
in this context [35]. Some studies [63] have integrated the learning of auxiliary features into the acoustic
model. In the current study, one-hot vectors are used as auxiliary features to capture the style-specific
information. Since the study includes two speaking styles, normal and Lombard, two-dimensional one-hot
vectors are derived as follows:

code = 1 0 Normal
= 0 1 Lombard

Figure 2(b) illustrates adaptation based on using one-hot vectors as auxiliary features, where the style-
specific codes are provided along with input features.

4.2. Learning hidden unit contribution (LHUC)

The LHUC method assumes that hidden representations of a neural network are basis vectors learned
to represent the acoustic space of many speakers or speaking styles when trained on a large amount of
speech data which comprised many speakers and styles. Thus, we can represent new speaking styles by
scaling these hidden representations. This method was originally proposed for speaker adaptation in speech
recognition with little data [50] and has also been used in speech synthesis for speaker adaptation [66].
However, to the best of our knowledge, this adaptation method has not been previously used in TTS for
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speaking style adaptation, except for a pilot study [8] by the current authors. This method has several
advantages, including unsupervised speaker adaptation using small data (see, e.g., [49]). First, an SPSS
system is built using normal speaking style, and later we borrow parameters from this network to learn a new
set of parameters, denoted by c, with Lombard speech, as shown in Figure 2(c). The hidden representations
of the SPSS system trained with normal speech are scaled by the newly learned parameters c as follows:

h′l = hn ◦ c (6)

where ◦ operation represents the Hadamard product, hn represents the hidden representations of normal
speech and h′l represents the hidden representations of Lombard speech. We can scale all layers or any
particular layer based on the task.

4.3. Fine-tuning (FT)

This method falls into the category of transfer learning [38], where the knowledge learned in one task
can be used in another similar task. For instance in speech synthesis, one can train an average voice model
(AVM) on a large group of speakers and later use the same network to adapt to the new speaker with less
data [20]. Since the AVM learns most of the relations between the text and acoustic features, it is easy
to shift some of the parameters by training the whole network or a part of it (mostly top layer) with new
speaker data. This method, however, might suffer from overfitting. Thus, the cost function is typically
regularized with some constraint. The FT method has its origins in the renaissance of deep learning, where
deep architectures are pre-trained in an unsupervised manner and later fine-tuned in a supervised fashion. In
a few previous TTS studies, the effectiveness of FT has been demonstrated in speaker adaptation [51, 13]. In
[51], it was reported that this method outperformed LHUC and an HMM-based adaptation method in terms
of both objective and subjective evaluations. The FT adaptation technique used in the current study is slightly
different from unsupervised pre-training. Namely, we first train the network on a task with plenty of data
(normal speech), and later the same network is trained on a similar task (Lombard speech). This is illustrated
in Figure 2, where the normal speaking style TTS system (which is trained first) is shown in Figure 2 (a) and
its parameters are W1

n,W2
n, . . .Wl

n,b1
n,b2

n, . . .bl
n. In the adaptation, shown in Figure 2 (d), all the parameters

of the normal speaking style system are updated to a new set of parameters W1
f ,W

2
f , . . .W

l
f ,b

1
f ,b

2
f , . . .b

l
f

using Lombard speech.

5. Experiments

Multifaceted experiments were designed in the current study in order to compare the four selected
vocoders described in Section 3, along with the three adaptation methods described in Section 4 in normal-
to-Lombard adaptation of TTS. In this section, the main parts in the design of the experiments are described
by first explaining the database and the TTS system used, after which we describe the procedures adopted
in the objective and subjective evaluations.

5.1. Database

We employed the Hurricane Challenge database, which can be freely downloaded from the web [9]. The
data consists of sentences spoken both in normal and Lombard styles. The speech data was produced by
a male professional British voice talent. To elicit the Lombard effect, noise was played in the talker’s ears
via headphones at a constant level of 84 dB. The text prompts were borrowed from the Harvard phonetic
balance text corpus [45]. The number of utterances in the database is 2542 and 720 in normal and Lombard
speaking styles, respectively. The data is sampled at 16000 Hz. There was an overlap of 500 utterances in
text in the Lombard and normal corpus. For the purposes of the present study, the data was divided into
three categories: the training set, the development set, and the test set, as shown in Table 1.
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Table 1. Partition of the data (in number of utterances) used in the current study.
Style Train Development Test
Normal 2400 70 72
Lombard 500 100 120

5.2. Systems built

Two types of TTS systems (style-dependent systems and adapted systems) were built using the Merlin
speech synthesis toolkit [67] with minor modifications1. HMM-based forced alignment was conducted
at the state level to get the phoneme durations. The HMMs were trained with the HTS toolkit using the
STRAIGHT-based acoustic features. The Festival toolkit was employed to convert the mono-phoneme
labels to the full contextual labels. The full contextual labels were mapped onto binary and real values at the
frame level using an HTS-style question file. The dimension of linguistic features was 326. A total of nine
duration features, containing phoneme state level durations and location of the current frame in the current
phoneme, were appended to the linguistic input features. These features were extracted from natural speech
at training time from the HMM subphone forced alignment information and predicted from text at synthesis
time using the duration model. The resulting total dimension of the input feature vector was 335. The input
features were normalized by the min-max normalization technique to the range of [0.01 to 0.99].

Since the study involved four different vocoders, the output features in acoustic modeling depend on
the vocoding method used. For STRAIGHT and PML, the spectral envelope was parameterized as mel-
generalized cepstral coefficients (MGCs) with dimension of 60. For GlottDNN and GlottHMM, the vocal
tract filter was parameterized with a linear spectral frequency (LS F) representation with the dimension of
50. Additionally, the glottal vocoders used a filter of the order m = 10 to represent the spectral tilt of the
glottal excitation (parameterized as LS Fs). To represent the aperiodicity, the STRAIGHT vocoder used
band aperiodicity (BAP), the PML vocoder used phase distortion deviation (PDD), and glottal vocoders
used harmonic-to-noise (HNR). The SPTK toolkit [30] was used to extract f0 values. The same f0 values
were used by all the vocoders in order to avoid discrepancies caused by the f0 extraction. The f0 values
were linearly interpolated in unvoiced regions, and a binary value was used to keep track of the voiced and
unvoiced frames. The acoustic parameters were extracted in 5-ms framerate. The output features consisted
of static, delta, and delta-delta features. The mean variance normalization technique was applied to the
output features.

LSTM recurrent neural networks were used as acoustic models. The architecture used consisted of three
hidden layers followed by a linear layer at the output. The three hidden layers consisted of two feed-forward
layers at the bottom and one simplified LSTM layer on top. The bottom feed-forward layers were intended
to act as feature extraction layers, with 512 hidden units using the tangent activation function in each layer.
The top hidden layer had 256 LSTM blocks. The network parameters were optimized by minimizing the
mean square error between the actual and predicted acoustic features using the standard stochastic gradient
descent (SGD) optimization algorithm. The initial learning rate was set to a constant value of 0.02 for the
first 10 epochs, and afterwards it was decreased by half for each epoch. The mini-batch size was set to 256,
and models were trained for 25 epochs with an early stopping criterion.

At synthesis time, the parameters of the test set were predicted from the trained acoustic model. The
predicted parameters were further processed by the maximum likelihood parameter generation (MLPG) al-
gorithm [58], and finally, straightforward post-filtering [69] was applied to the spectral features to increase
formant dynamics. For GlottDNN and GlottHMM, the spectral valleys of the synthesized vocal tract mag-
nitude envelopes were multiplied by a constant of 0.3 [40]. For PML and STRAIGHT, the values of the first
two cepstral coefficients were multiplied by a constant of 1.4 to increase formant dynamics [70].

Five TTS systems (two style-dependent and three adapted) were created for the experiments as follows:

1. Normal: The TTS system trained using only speech data of normal speaking style. Two of the

1code is uploaded to Merlin https://github.com/CSTR-Edinburgh/merlin/tree/master/egs/speaker_adaptation
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Fig. 3. An example of windowed two-period glottal flow derivative waveforms in both time (left) and frequency (right) domain for
normal and Lombard speech.

adaptation methods under comparison (LHUC and FT) use this system as the initial system in the
adaptation process.

2. Lombard: The standalone Lombard TTS system, where an LSTM-based SPSS system was trained
using only Lombard speech data without any adaptation. This system is used as a baseline against
which different normal-to-Lombard adaptation systems can be compared.

3. AF: The adapted system trained with both Lombard and normal speech, where the speaking style
discriminate features are added at the input level.

4. LHUC: The adapted system that uses the TTS of normal speaking style as an initial system and
Lombard speech to learn the scaling parameters (c in Eq. 6).

5. FT: The adapted system that uses Lombard speech data to fine-tune all the parameters of the TTS
system trained with normal speaking style.

These five systems are developed for each vocoder. Thus, a total of 20 systems (5 systems x 4 vocoders)
were built in the experiments.

5.3. Duration model

The durations were modeled using a recurrent LSTM neural network. Initial durations were estimated
from HMMs using force alignment. The estimated durations correspond to each monophone and are rep-
resented at the state level. The model has two hidden layers. The first layer has 128 linear units with the
tangent activation function, and the second layer has 128 LSTM cells. The dimension of input is 326, which
contains information on linguistic features as described in 5.2. The dimension of output is 5, which contains
the durations of each HMM state. The duration model is trained similarly to the acoustic model described
in 5.2.

5.4. Glottal model

Figure 3 illustrates an example of the windowed two-period glottal flow derivative waveform in both
time and frequency domain for normal and Lombard speech. Previous studies have shown that the Lombard
effect manifests itself also in the spectral tilt of speech [34]. The spectral tilt of speech signals is in turn
determined by the characteristics of the glottal excitation. In production of normal speech, the (long-time)
spectral envelope of the glottal excitation typically tilts more towards higher frequencies compared to the
spectral envelope of the glottal excitation in Lombard speech, as shown in Figure 3. Since two of the
vocoders included in the current study (GlottHMM and GlottDNN) use glottal pulses as synthesis excitation
waveforms, modelling the glottal model in terms of its spectral tilt was considered justified. The GlottHMM
vocoder uses a pre-computed, representative glottal pulse and a few other source-related acoustic features
to create the excitation signal. GlottDNN uses instead a deep neural network to compute the time-domain
glottal waveform from acoustic parameters. In the current study, we developed a separate glottal model
using DNNs, as described in [8].
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5.5. Objective evaluations

Due to the large scale of the study, it is not feasible to conduct subjective speech intelligibility tests
for all the systems. Therefore, we conducted objective evaluations to reduce the number of systems to be
compared. Objective evaluations were carried out on the test set by computing the following metrics2:

• MCD: Mel-cepstral deviation to measure MGC prediction performance in STRAIGHT and PML.

• BAP: A distortion measure for BAPs in STRAIGHT.

• PDD: A distortion measure for PDDs in PML.

• LSF, LSFsource: A distortion measure for LSFs in GlottHMM and GlottDNN.

• HNR: A distortion measure for HNRs in GlottHMM and GlottDNN.

• Gain: A distortion measure for Gains in GlottHMM and GlottDNN.

• f0 − RMS E: Root mean square error (RMSE) to measure the prediction of f0. We note that f0 was
modelled on a log scale, but the error was calculated on a linear scale.

• f0 −CORR: Correlation between the predicted and actual f0 contours.

• VUV: Voiced/unvoiced error.

The error metrics chosen are widely used in TTS evaluations (e.g., [8, 66]). In all the metrics, a low score
indicates better performance except in f0 − CORR, for which a high score indicates better performance.
Natural speech durations were used to create the predicted features so that original and predicted sequences
were aligned.

5.6. Speaking style similarity test

In TTS style adaptation, the goal is to convert synthetic speech of one style (source style, i.e., normal
speaking style in the current study) to resemble speech spoken in another style (target style, i.e., Lombard in
the current study) without sacrificing the quality or speaker similarity of the corresponding synthetic voice.
In the literature, various types of similarity tests have been conducted (for example, see the Blizzard test
evaluations in [7]). To be used in the evaluation of the Lombard-adapted speech signals of the current study,
we modified the setup used in [55] to measure speaker similarity. Each stimulus consists of two utterances,
a natural speech signal (either normal or Lombard) and a synthesized signal. The subjects were asked to
compare the second utterance to the first one following this instruction:

Do you think that these two samples have been produced using the same speaking style? Some of the
samples may sound slightly distorted. Please try to ignore the distortion and concentrate on identifying the
speaking style. You have four options to indicate your opinion.

• Speaking style sounds the same, I’m absolutely sure

• Speaking style sounds the same, but I’m not completely sure

• Speaking style sounds different, but I’m not completely sure

• Speaking styles sounds different, I’m absolutely sure

2https://github.com/CSTR-Edinburgh/merlin/blob/master/src/utils/compute_distortion.py
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The speaking style similarity test was conducted on a crowdsourcing platform, CrowdFlower, since
it is hard to find an adequate number of native speakers of English in the country where this study was
conducted (Finland). The test was made available only to English-speaking countries and countries which
have a high rank in English proficiency website. In order to separate representative listeners from outliers,
a pre-screening test was conducted, where the subjects must get at least 90% of the answers correct. The
samples in the pre-screening test were built to be easily recognizable by using original speech and highly
distorted signals. A total of 13 utterances were employed in the pre-screening test. A total of 10 sentences
were selected from the test set to evaluate the each adaptation method. Each utterance was rated by 50
listeners. The order of the test sentences was randomized for each subject automatically.

5.7. Speech intelligibility test

Since Lombard speech is used in natural communication situations to enhance speech intelligibility in
noisy conditions, it is important to evaluate the different adaptation methods in terms of speech intelligi-
bility. For this purpose, we followed the Hurricane Challenge setup [10]. Speech intelligibility tests are
more laborious compared to speaking style similarity tests. Thus, we used for each vocoder only the best
adaptation technique among the three adaptation methods (AF, LHUC, and FT) based on their performance
in objective evaluations and style similarity tests. Two noise conditions were created to corrupt synthetic
speech signals in the intelligibility test, using the same noise signals from [10]. The first one was a sta-
tionary, speech-shaped noise (SSN) condition, where the long-term average speech spectrum of a female
speaker was used to model the noise spectrum envelope. The second one was a non-stationary, competing
speaker (CS) noise condition, where a female speaker interferes with the synthetic male voice. In each noise
condition, three SNRs were employed: high SNR (snrHi), medium SNR (snrMid), and low SNR (snrLo).
The SNR values in the SSN condition were -1dB, -4dB, and -9dB, whereas in the CS condition, the SNRs
were -7dB, -14dB, and -21dB, following the numbers chosen in [10]. To create a stimulus, the speech signal
was scaled according to the required SNR value and summed with the corresponding noise signal. The test
was conducted in a quiet listening booth by playing the noise-corrupted speech stimuli to the listeners’ ears
via headphones. In the speech intelligibility test, 24 systems were evaluated: 4 vocoders (each combined
with the best adaptation method) x 3 SNRs x 2 noise conditions. For each combination, 5 utterances were
used. Thus, each listener evaluated a total of 120 utterances. These 120 utterances were divided into 6
blocks. Each block consisted of 20 utterances with the same noise condition in order to avoid discomfort
from noise condition changes during a block. Note that the intelligibility test was designed to compare the
four vocoders when they are used with the best adaptation method in various noise conditions, but the test
did not compare the Lombard-adapted systems against the normal speaking style TTS system. The normal
speaking style TTS system was not included because: (1) there are previous studies indicating that normal-
to-Lombard adaptation improves intelligibility in TTS [10, 26] and (2) we wanted to keep the test time for
each listener under 1 hour.

The test was conducted in single-walled listening booths with a background noise level less than 10 dB
in the frequency range of the test samples. Listeners used circumaural Sennheiser HD650 headphones and
they were allowed to adjust the loudness to a comfortable level in a small practice session before the test,
after which the volume setting was kept unchanged throughout the intelligibility test. Each stimulus was
presented once. Listeners were instructed to type on a computer screen what they had heard irrespective of
grammatical structure, after which the subsequent stimulus was presented. The test user interface used in
the test is same as in the Hurricane Challenge. The test required around 45 minutes to complete per listener.
A total of 13 native English-speaking subjects participated in the test.

5.8. Pilot test of the WaveNet vocoder

A separate, small-scale preliminary experiment was carried out in order to demonstrate the naturalness
that is achieved with the WaveNet vocoder when this vocoder is trained with the small amount of Lom-
bard speech available in the current study. In other words, instead of including WaveNet directly to the
formal similarity and intelligibility tests described above, we decided to first conduct an informal test to
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Table 2. Objective evaluation results of the STRAIGHT and PML vocoders.

STRAIGHT

System MCD (dB) BAP (dB) f0-RMSE (Hz) f0-CORR VUV (%)
Normal-Normal 4.301 2.196 9.890 0.801 2.62
Normal-Lombard 7.339 2.587 45.377 0.773 4.113
Lombard 5.311 2.124 16.5 0.844 3.79
AF 5.366 2.147 20.17 0.765 3.177
LHUC 5.951 2.289 19.504 0.767 4.16
FT 4.88 2.06 15.72 0.858 2.73

PML

System MCD (dB) PDD (dB) f0-RMSE (Hz) f0-CORR VUV (%)
Normal-Normal 4.298 1.064 9.908 0.801 3.044
Normal-Lombard 7.359 1.281 45.657 0.772 4.471
Lombard 5.320 1.054 17.431 0.823 4.024
AF 5.602 1.075 22.201 0.713 4.591
LHUC 5.889 1.237 19.524 0.762 4.521
FT 4.869 1.0 16.072 0.855 2.784

Table 3. Objective evaluation results of the GlottDNN and GlottHMM vocoders.

GlottDNN

System Gain (dB) LSF LSFsource HNR f0-RMSE (Hz) f0-CORR VUV (%)
Normal-Normal 2.609 0.182 0.142 6.49 9.838 0.805 2.326
Normal-Lombard 4.687 0.284 0.187 11.308 45.991 0.763 3.252
Lombard 3.339 0.209 0.150 8.787 17.002 0.834 3.101
AF 3.231 0.207 0.147 8.694 18.299 0.812 2.402
LHUC 3.881 0.226 0.157 9.561 18.491 0.782 3.07
FT 3.148 0.199 0.143 8.415 15.621 0.859 2.234

GlottHMM

System Gain (dB) LSF LSFsource HNR f0-RMSE (Hz) f0-CORR VUV (%)
Normal-Normal 2.576 0.176 0.052 4.814 9.867 0.804 2.336
Normal-Lombard 4.671 0.303 0.079 9.338 46.382 0.765 3.270
Lombard 3.375 0.205 0.064 7.145 17.159 0.831 3.424
AF 3.626 0.217 0.067 7.562 23.107 0.691 3.345
LHUC 3.841 0.227 0.072 7.933 18.878 0.773 3.334
FT 3.13 0.195 0.060 6.808 15.753 0.857 2.229

evaluate whether the naturalness achieved with WaveNet is at all comparable to that of the other vocoders
studied. We used a WaveNet configuration similar to [28], i.e., three repetitions of a 10-layer convolution
stack with exponentially growing dilations, 64 residual channels, and 128 skip channels. The resulting re-
ceptive field was 3071 samples. The model was trained using 8-bit categorical cross entropy on quantized
µ−law companded signals. The STRAIGHT acoustic parameters (MGC, BAP, and l f 0) were used in local
conditioning. Since the amount of Lombard data available to train the WaveNet vocoder was little (i.e., 30
mins), the synthetic speech samples generated were, as expected, unintelligible (the samples are available
for listening at http://tts.org.aalto.fi/lombard_wavenet/). Thus, we decided not to include the
samples generated by the WaveNet vocoder in our formal experiments.

6. Results

6.1. Results of objective evaluations
Objective evaluation results are shown for STRAIGHT and PML in Table 2 and for GlottDNN and Glot-

tHMM in Table 3. Rows correspond to six different systems built for this evaluation, which are described
as follows. The acoustic parameters predicted by the TTS system trained with normal speaking style only
(denoted as Normal in 5.2) were compared with the corresponding parameters extracted from natural nor-
mal speech and natural Lombard speech; these results are denoted, respectively, as Normal-Normal and
Normal-Lombard in the tables. The row denoted as Lombard includes objective scores computed between
the acoustic parameters predicted by the standalone Lombard TTS system (denoted as Lombard in 5.2) and
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the corresponding parameters extracted from natural Lombard speech. The remaining rows include objec-
tive scores computed between the acoustic parameters predicted by the three Lombard-adapted systems and
the corresponding parameters extracted from natural Lombard speech. The name of the row denotes the
adaptation method employed.

As expected, the results computed using natural Lombard speech as reference (Normal-Lombard) are
much worse than the results obtained by using natural normal speech as reference (Normal-Normal) when
the acoustical parameters were predicted with a TTS system trained with normal speaking style. By com-
paring the three adaptation systems, it can be seen that FT gave the best result for all vocoders and in all
metrics. The baseline TTS system Lombard performed slightly better than AF and LHUC in the mel-cepstral
distortion (MCD), line spectral frequency distortion (LS F), and line spectral frequency distortion of glottal
source (LS Fsource) metrics. LHUC performed worst in the MCD, LS F, and LS Fsource metrics, whereas
AF performed worst in the fundamental frequency ( f0 − RMS E), f0 correlation ( f0 − CORR), and voiced
and unvoiced error (VUV) metrics.

In glottal vocoders, GlottHMM showed lower distortion scores than GlottDNN with the exception of
f0−RMS E and f0−CORR, whereas the PML vocoder received lower MCD values compared to STRAIGHT.

The f0 and VUV features are common for all the vocoders and are extracted using the SPTK toolkit.
The differences in the f0 − RMS E and VUV error metrics are very small across all the vocoders. These
differences can result from model initializations. Interestingly, all the vocoders showed a similar trend in
the objective evaluations, i.e, FT is the best followed by Lombard, AF, and LHUC. The best scores showed
by the Lombard-adapted systems are still far from the corresponding scores achieved by the TTS system of
normal speech (Normal-Normal), which indicates that there is still room for improvement.

6.2. Results of subjective evaluations

6.2.1. Speaking style similarity test
Figure 4 shows the results of the style similarity test for each vocoder. Here we show the results when

comparing the five TTS system to natural Lombard speech (left) and to natural normal speech (right). The
vocoders are separated into four rows, and in each figure the five systems are separated into columns. The
motivation to compare the adapted samples to normal speech was to analyze whether the adaptation meth-
ods are able to produce the Lombard effect into the synthesized speech. In the ideal case, the Lombard-
synthesized speech should sound clearly different from the natural normal speech and, vice-versa, the syn-
thesized samples of normal speaking style should be easily distinguished from natural Lombard speech.
This ideal case manifests itself as a general trend in Figure 4: the blue bars of Lombard, AF, LHUC, and FT
in the right panes are high, and the blue bars of Normal in the left panes are also high. As in the objective
evaluations, FT performed best among the proposed adaptation and baseline systems. Most of the listeners
found speech produced by FT sounding similar to natural Lombard speech and different from natural normal
speech. This adaptation method performed best in all vocoders. The other two adaptation systems (AF and
LHUC) performed more or less equal to the baseline Lombard system.

Statistical significances of the similarity test were analyzed using the non-parametric Mann-Whitney U-
test, as recommended in [44]. The results of the statistical tests are shown in the Appendix Tables A.7, A.8,
A.9 and A.10. This data shows that the FT method performed significantly better than the two other adap-
tation methods (AF and LHUC) and also significantly better compared to the baseline (Lombard) system
when the reference was natural Lombard speech.

In order to better describe vocoder differences for the best performing adaptation method (i.e., FT), the
results of the speaking style similarity test are shown separately for each of the four vocoders in Figure 5.
The bars on the left show that a slightly larger number of ‘Same’ responses were given to the Lombard-
adapted samples produced by the PML vocoder than to those generated by the other three vocoders. This dif-
ference, however, was not statistically significant, as shown in Table A.11. When comparing the Lombard-
adapted synthetic samples w.r.t natural normal speech (Figure 5, right pane), GlottHMM shows the lowest
performance, and this degradation is also significantly different from the other vocoders (see Table A.11).
This indicates that the listeners did not pay as much attention to the subtle differences between vocoders
when Lombard-adapted synthetic speech was compared to the natural Lombard reference. However, when
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Table 4. Speech intelligibility scores in WER (%) of the FT adaptation method in competing speaker (CS) noise condition.
Vocoder snrHi snrMid snrLo
GlottDNN 27.2 49.1 79.3
GlottHMM 30.0 43.8 79.5
PML 26.5 53.0 77.0
STRAIGHT 27.7 46.6 79.9

Table 5. Speech intelligibility scores in WER (%) of the FT adaptation method in speech shaped (SSN) noise condition.
Vocoder snrHi snrMid snrLo
GlottDNN 14.5 31.9 74.7
GlottHMM 13.5 28.4 72.6
PML 13.4 31.8 72.0
STRAIGHT 13.9 27.7 71.0

the reference was switched to natural normal speech, one of the vocoders (GlottHMM) was significantly
worse.

6.2.2. Speech intelligibility test
The results of the speech intelligibility test are shown in Table 4 and Table 5. Due to the laborious nature

of the test, the number of adaptation methods was limited to one per vocoder. We used FT as the adaptation
method for each vocoder since it obtained the best scores in both the objective evaluations as well as in the
subjective style similarity tests. Table 4 shows the word error rate (WER) in the competing speaker (CS)
noise condition, and Table 5 shows WER in the speech-shaped noise (SSN) condition. In computing WER,
we removed the most common words such as a, an, the, in, to, on, is, and, of, for, and at and manually
corrected the spelling mistakes. WERs were computed using a Python package called ‘wer’ 3.

We can observe that the WERs obtained in the SSN condition are lower than in the more challenging CS
noise condition. In the SSN condition, the PML vocoder achieved the best WER in both the snrHi and snrLo
conditions, whereas GlottHMM achieved the best WER in the snrMid condition. In the CS noise condition,
GlottHMM, PML, and STRAIGHT perform equally well in snrHi, but in snrMid, GlottHMM performed
best, and in snrLo STRAIGHT performed best. Overall, the PML vocoder gave the best WER scores in
both noise conditions.

To evaluate the intelligibility test significance, we performed a 3-way ANOVA for vocoder, noise type,
SNR, and all their interactions. The main effects for noise type and SNR, as well as their interaction were
statistically significant with p < 0.05 (F = 69.74, 452.98, 6.029, respectively). For vocoders, neither the
main effect nor any interaction effects were significant.

6.3. Results of duration adaptation

Since the FT method showed the best performance both in all objective tests and in all subjective style
similarity evaluations, we used this method for duration adaptation. Table 6 shows the duration adaptation
scores. We computed RMSE (frames/phoneme) between the actual durations, which are estimated using
force-alignment from HMMs and the predicted durations on the test set. It is not surprising that the scores
obtained for the TTS system Normal are very high, as the reference is duration extracted from Lombard
speech. The next row shows the improved scores obtained for the standalone TTS system Lombard. The
lowest objective scores were given by the FT method.

3https://github.com/belambert/asr-evaluation [last accessed in July, 2018]
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Fig. 4. Results of the style similarity test for the GlottDNN (first row), GlottHMM (second row), PML (third row), and STRAIGHT
(fourth row) vocoder. The left column shows the results compared to the natural Lombard reference, and the right column shows the
results compared to the natural normal reference.
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Fig. 5. Results of the style similarity test. For each vocoder, the FT adaptation method was used.

Table 6. Objective scores of duration model adaptation using the FT method.
System RMSE (Frames) CORR
Normal 9.691 0.618
Lombard 7.951 0.737
FT 6.970 0.805

7. Summary and Conclusions

There is a great need for TTS systems that are capable of improving the intelligibility of synthetic speech
in noisy environments. An effective technique to improve the intelligibility of synthetic speech in noise is
to adapt the synthesizer’s speaking style from normal to Lombard, as shown in previous studies on HMM-
based TTS systems [41, 48, 39]. This study investigated normal-to-Lombard adaptation of neural network
based TTS. The DNN-based adaptation methods studied utilized auxiliary features (AF), learning hidden
unit contribution (LHUC), and fine-tuning (FT), which were originally introduced for speaker adaptation in
both speech synthesis and recognition. Since vocoding is known to affect the quality of synthetic speech
in SPSS, the current study also investigated the role of vocoding in normal-to-Lombard adaptation. The
vocoders selected were: two glottal vocoders (GlottHMM and GlottDNN), one mixed excitation vocoder
(STRAIGHT), and one log-domain source-filter vocoder rooted on sinusoidal vocoders (PML). To evaluate
the performance of each adaptation and vocoder method, we conducted both objective tests and two types
of subjective evaluations (a speaking style similarity test and a speech in noise intelligibility test). In the
similarity test, apart from the three adapted systems, two baseline systems trained with normal and Lombard
speech were also included. All combinations of systems and vocoders were evaluated. In the speech intelli-
gibility test, we compared the different vocoders using the FT adaptation method only. For this evaluation,
the synthetic speech was corrupted with speech-shape noise and competing speaker noise at three different
SNR levels.

In the objective evaluation, we found that one of the proposed adaptation methods, FT, performed better
than the baseline Lombard system. In the speaking style similarity test, we again found that the FT adapta-
tion method performed better than the baseline Lombard system. Both normal and Lombard style data were
spoken by the same speaker which means that those two sets of data share many similarities. We believe
this helped the FT method to outperform the other two (AF and LHUC) adaptation methods. With respect to
the vocoders, the results of the speaking style similarity test revealed that there were statistically significant
differences between the vocoders when comparing the adapted synthetic Lombard speech to natural normal
speech (the GlottHMM vocoder being significantly worse than the other vocoders). There was, however, no
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statistically significant differences between the vocoders when comparing style similarity of the Lombard-
adapted synthetic utterances to the corresponding natural Lombard utterances. In the speech intelligibility
tests, there was no significant differences between the four vocoders evaluated. For future work, we will
experiment with the adaptation of TTS to other speaking styles and in addition use sequence-to-sequence
based networks for modeling both acoustic and duration models in a single model. Since the performance of
vocoders depend upon the voice [3] and speaking style [25], we aim to investigate whether the observations
made in the current study can be generalized to Lombard speech of multiple speakers.
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Appendix A. Statistical significance tests of style similarity results

Table A.7. U-test p-values for the different systems using the GlottDNN vocoder

Lombard
ref

Normal
ref

FT Lombard LHUC AF Normal

FT 1.0 0.220 0.976 0.000
Lombard 0.000 1.0 1.0 0.000
LHUC 0.000 1.0 1.0 0.000
AF 0.924 0.017 0.008 0.000
Normal 0.000 0.000 0.000 0.000

Table A.8. U-test p-values for the different systems using the GlottHMM vocoder

Lombard
ref

Normal
ref

FT Lombard LHUC AF Normal

FT 1.0 1.0 0.048 0.000
Lombard 0.000 1.0 0.626 0.000
LHUC 0.000 0.022 0.082 0.000
AF 0.000 0.000 0.263 0.000
Normal 0.000 0.000 0.003 0.914



Bollepalli et al. / Speech Communication 00 (2019) 1–20 21

Table A.9. U-test p-values for the different systems using the PML vocoder

Lombard
ref

Normal
ref

FT Lombard LHUC AF Normal

FT 1.0 1.0 0.146 0.000
Lombard 0.008 1.0 0.445 0.000
LHUC 0.000 0.056 0.040 0.000
AF 0.000 0.040 1.0 0.000
Normal 0.000 0.000 0.001 0.005

Table A.10. U-test p-values for the different systems using the STRAIGHT vocoder

Lombard
ref

Normal
ref

FT Lombard LHUC AF Normal

FT 1.0 1.0 1.0 0.000
Lombard 0.135 1.0 1.0 0.000
LHUC 0.000 0.017 1.0 0.000
AF 0.000 0.257 1.0 0.000
Normal 0.000 0.000 0.000 0.000

Table A.11. U-test p-values with Bonferroni correction for multiple comparisons. Pairwise differences to a Lombard reference were
not found statistically significant, whereas GlottHMM stood out as significantly worse when compared to the normal style reference.

Lombard ref
Normal ref

GlottDNN GlottHMM PML STRAIGHT

GlottDNN 0.017 1.0 1.0
GlottHMM 0.421 0.003 0.032
PML 1.0 0.195 1.0
STRAIGHT 1.0 0.377 1.0


