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Forest in situ observations using unmanned
aerial vehicle as an alternative of terrestrial
measurements
Xinlian Liang1 , Yunsheng Wang1* , Jiri Pyörälä1, Matti Lehtomäki1, Xiaowei Yu1, Harri Kaartinen1, Antero Kukko1,
Eija Honkavaara1, Aimad E. I. Issaoui1, Olli Nevalainen1, Matti Vaaja2, Juho-Pekka Virtanen1,2, Masato Katoh3 and
Songqiu Deng3

Abstract

Background: Lately, terrestrial point clouds have drawn attention as a new data source for in situ forest
investigations. So far, terrestrial laser scanning (TLS) has the highest data quality among all terrestrial point cloud
data in terms of geometric accuracy and level of detail (IEEE Transact Geosci Remote Sens 53: 5117–5132, 2015).
The TLS point clouds processed by automated algorithms can provide certain individual tree parameters at close to
required accuracy in practical applications. However, all terrestrial point clouds face a general challenge, which is
the occlusions of upper tree crowns. An emerging technology called unmanned-aerial-vehicle (UAV) - borne laser
scanning (ULS) potentially combines the strengths of above and under canopy surveys.

Results: The performance of ULS are evaluated in 22 sample plots of various forest stand conditions in a boreal
forest. The forest parameter estimates are benchmarked through a comparison with state-of-the-art terrestrial
mechanisms from both static terrestrial and mobile laser scanning. The results show that in easy forest stand
conditions, the performance of ULS point cloud is comparable with the terrestrial solutions.

Conclusions: This study gives the first strict evaluation of ULS in situ observations in varied forest conditions. The
study also acts as a benchmarking of available active remote sensing techniques for forest in situ mensuration. The
results indicate that the current off-the-shelf ULS has an excellent tree height/tops measurement performance.
Although the geometrical accuracy of the ULS data, especially at the stem parts, does not yet reach the level of
other terrestrial point clouds, the unbeatable high mobility and fast data acquisition make the ULS a very attractive
option in forest investigations.

Keywords: In situ, Point cloud, Terrestrial, Mobile, Above canopy, Unmanned aerial vehicle, Forest inventory

Introduction
Quantitative assessments of forest resources rely on in situ
measured parameters (e.g., tree height) of trees and tree
communities, which are used as a direct quantificational
description of a forest area, or as a reference information
for further deduction on regional forest characteristics. In
situ measurements play a fundamental role in understand-
ing forest ecosystems and their interactions with other
elements in biosphere. In order to represent the diversity

of forest stands, the measurements are typically carried out
in sample plots that are widely and systematically spread
over an area of interest. Due to the large size, the structural
complexity, the spatial heterogeneity of forests, and the
lack of efficient and practical option for forest measure-
ments, precise mensuration of tree parameters with suffi-
cient spatial and temporal resolution are time-consuming
and cost-intensive, especially in natural forests. Conse-
quentially, the amount, the frequency, and the parameter
richness of in situ forest measurements are generally
limited by practical reasons such as the budget and the ac-
cessibility in forests. As a matter of fact, the variety of tree
parameters, the number of sample plots, as well as the
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spatial and temporal resolutions of in situ measurements
are almost always insufficient for further applications.
Therefore, all the inferences built on top of the given in
situ measurements are potentially biased.
Tremendous efforts have been put into the advancement

of hardware, software and measurement protocols to im-
prove measurements of forest sample plots. For example,
laser relascope (Kalliovirta et al. 2005) and laser camera
(Melkas et al. 2008) were developed to map stem locations
and diameter at breast height (DBH) in the field; Photo-
grammetric methods were proposed to retrieve stem curve
of standing trees (Hapca et al. 2007); and panorama images
(Dick et al. 2010) were adopted to improve automation of
field inventory. Lately, terrestrial point clouds-based studies
have presented strong competitiveness for retrieving tree-
and plot-level forest parameters. In Liang et al. (2018a), it
was demonstrated that three-dimensional (3D) forest struc-
ture can be measured with a high accuracy and high auto-
mation level from point cloud data produced by terrestrial
laser scanning (TLS).
Terrestrial point clouds can be recorded directly from

laser scanning (LS) systems or indirectly from structured
light or highlyoverlapped image sequences. So far, TLS has
presented the highest quality among all sources of terres-
trial point clouds in terms of the geometric accuracy and
the level of details (Liang et al. 2015). TLS uses a direct and
stable measurement mechanism. It has been widely under-
stood as the most promising technique in in situ 3D forest
digitization, with which tree- and plot-level parameters can
be accurately and automatically retrieved for sample plots.
Previous research has shown that TLS point clouds
processed with automated algorithms can provide certain
tree-level parameters with an accuracy that is close to what
is required by practical applications (e.g., national forest
inventories (NFIs) in boreal forests). For example, the DBH
and stem curve can be measured at a root-mean-square
-error (RMSE) of 1–2 cm using TLS; The stem volume and
the total tree biomass (AGB) can be measured at an accur-
acy close to 100% accuracy at plot-level in homogeneous
mature forests (Liang et al. 2018a).
Meanwhile, image-based point clouds provide a low-cost

alternative to the LS-based point clouds (Liang et al. 2015;
Forsman et al. 2016a; Hyyppä et al. 2017; Tomaštík et al.
2017; Mokroš et al. 2018). Forest in situ measurements by
non-professional users, such as forest owners, has become
feasible by using, e.g., a cellphone camera. Moreover, in re-
cent years, mobile and personal mapping have become
available (Liang et al. 2014; Bauwens et al. 2016; Forsman
et al. 2016b; Marselis et al. 2016; Juraj et al. 2017; Oveland
et al. 2017) and many efforts have been invested to new
Mobile Laser Scanning (MLS)-relevant data processing
(Kukko et al. 2017; Liang et al. 2018b; Luo et al. 2018). Mo-
bile and personal mapping systems integrating the LS/cam-
era sensors, the kinematic platforms, and/or the navigation

sensors, are capable to measure the forest plots 3–20 times
faster than stationary systems (Liang et al. 2014). Conse-
quently, the number of the sample plots measured within a
time unit may be significantly increased in comparison with
the conventional manual and TLS measurements. Further-
more, the size of sample plots can also be significantly lar-
ger than what is currently used.
During the last decade, unmanned aerial vehicle (UAV)

has become a convenient platform that has increased the
automation level of data acquisition and initiated a wide
range of applications. Nowadays, the continuous sensor
miniaturization had enabled UAV-borne LS (ULS) systems.
The advantages of ULS rise from the combination of a near
ground aerial perspective for observations and the canopy
penetration capacity of the LS sensors. Therefore, ULS
avoid the access constrains on the ground and the degrad-
ation of Global Navigation Satellite System (GNSS) signals
underneath the canopies, which are the main challenges
when using terrestrial platforms. In addition, the level of
detail of ULS point cloud data is becoming comparable to
that of TLS. Thus, the boundary between airborne laser
scanning (ALS) and TLS systems has diminished due to the
development of ULS, which provides a new type of
high-quality point cloud for forest investigations.
Previous studies have understood ULS as a low altitude

ALS system, which provides denser point cloud than plat-
forms at high altitudes (e.g., Jaakkola et al. 2010; Wallace et
al. 2012, 2014). Tree parameters such as location, height
and crown area have generally been measured using
individual-tree-based approaches, or metrics like height
percentiles in area-based approaches. Though the possibil-
ity of measuring the DBH has been noticed (Chisholm et
al. 2013; Brede et al. 2017; Jaakkola et al. 2017; Wieser et al.
2017), ULS has not yet been understood as a technology
that digitizes forest in a similar manner as the terrestrial
systems such as TLS, mobile laser scanning (MLS), per-
sonal laser scanning (PLS), and terrestrial image-based
point clouds. The question is therefore whether or not the
forest can be digitized from above the canopies, and to
which extent of accuracy.
This study evaluated the performance of ULS in different

forest stand conditions in a boreal forest. For the first time,
the ULS point cloud was understood as a technology ac-
quiring terrestrial point clouds in the sense that individual
trees were detected using stem detection algorithm and
tree parameters were estimated through stem modeling.
To differentiate the data- and the processing-level perfor-
mances, the ULS data were processed using manual
measurements and an automated algorithm. The manual
and automated estimation accuracy of parameters were
evaluated with respect to the field collected reference. For
each sample plot, the evaluated parameters include the
Digital Terrain Model (DTM), the tree positions, and the
DBH, the tree height, the stem curve, the stem volume as
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well as the above-ground biomass (AGB) of each individual
tree in the plot. In addition, ULS-based estimates were
compared with state-of-the-art TLS and MLS datasets.
Findings in this paper are expected to provide a detailed in-
spection of the ULS data from the perspective of terrestrial
point cloud, thus, to clarify the potential of detailed forest
digitization from a close-to-ground aerial perspective.

Materials and methods
The forest sample plots in this experiment represent a
variety of stand conditions with regard to species, growth
stages and management activities. The forests were
measured using four approaches: ULS, MLS/PLS, TLS, and
conventional in situ measurements. The performance of
ULS was evaluated through the comparison among these
observations: the conventional in situ measurements served
as a reference, TLS represented the state-of-the-art of auto-
matous terrestrial tree observation approach, and MLS and
PLS exemplified emerging solutions with an enhanced mo-
bility and data coverage.

Test area
The experimental site was established in 2014 and located
in a boreal forest in Evo, Finland (61.19° N, 25.11° E). The
main tree species were Scots pine (Pinus sylvestris L.),
Norway spruce (Picea abies (H. Karst.) L.), Silver (Betula
pendula Roth) and Downy (Betula pubescens Ehrh.)
birches. On the site, 24 forest sample plots, 32m by 32m
for each, were selected by foresters to test various in situ
measurement approaches.
The sample plots were classified into three stand com-

plexity categories, i.e., “easy”, “medium” and “difficult”, ac-
cording to the amount of occlusion at the ground level, the
spatial stem density and the distribution of the DBH. The
category “easy” represented clear visibility with minimal
understory vegetation and low stem density (~ 700 trees/

ha); “medium” represented sample plots with moderate
stem densities (~1000 trees/ha) and sparse understory
vegetation; the “difficult” category represented plots with
high stem densities (~2000 trees/ha) and dense understory
vegetation.
Figure 1 illustrates tree maps of three example plots from

the three different complexity categories. The mean DBH,
mean tree height and mean basal areas are 20.5 cm, 18.3m
and 23.1m2∙ha− 1, respectively, for the easy plot (Fig. 1a);
17.3 cm, 16.3m and 30.2m2∙ha− 1 for the medium plot
(Fig. 1b), respectively; and 12.3 cm, 13.2m and 29.3m2∙ha−
1 for the difficult plot (Fig. 1c), respectively. In general, the
mean DBH and tree height decrease and the basal area
increases along with the growing complexity of stands.
Figure 2 shows the distribution of the DBH in each

stand complexity category by the time of the UAV flight,
which illustrates the variation of tree size within each
complexity category. As shown by the DBH distribution,
the higher the stand complexity, the higher is the popula-
tion of small trees (e.g., DBH < 15 cm).

In situ observations using conventional field methods
Conventional forest field measurements were carried out
between May and August of 2014 (Liang et al. 2018a). All
trees with DBH larger than 5 cm were measured in the
sample plots. The tree height and the DBH were mea-
sured using conventional field measurement methods, i.e.,
using calipers and inclinometer. Tree maps were produced
for each plot by combining measurements in the field and
in the TLS data. Preliminary tree positions were firstly
mapped from TLS point clouds. The preliminary tree
positions were then verified and updated during in situ
investigations, and trees missed on the preliminary tree
maps were added. The stem curves were manually digi-
tized from the multi-scan TLS point clouds starting at the
height of 0.65m above the ground, continuing at the DBH

Fig. 1 Tree map examples of the three stand complexity categories. The circles give the tree positions (XY) in meters, and the circle size
represents the tree DBH multiplied by 10 for the illustration purpose. The statistics of the plot-specific mean DBH, mean tree height (H) and basal
area (G) in each complexity category (mean +/− standard deviation) are presented in the right top corner of each map
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height and then every meter above until the max-
imum measurable height in the point cloud. The stem
volume was calculated directly using the tree height
and stem curve measurements similarly as in Liang et
al. (2018a). The total tree biomass was calculated
using Finnish national allometric models (Repola,
2009). The DTM was generated through rasterization
of the classified ground points using TerraScan soft-
ware (TerraSolid Oy, Helsinki, Finland), where the
ground points were automatically classified and
manually edited when needed.
The forest plots were revisited in December 2017 to

update the field reference. Possible changes since 2014
were first visually interpreted from the ULS data with
respect to the existing reference tree maps. Among the
24 plots, 22 plots remained almost unchanged. One
plot was completely cut. For another plot, the ULS data
mis-matched the plot location. Therefore, 22 plots were
employed in this study. In the 22 plots, altogether 72
trees had been felled in 18 plots during 2014–2017.
The maximum number of felled trees in a sample plot
was 10, which accounted for only a small proportion of
the plot tree population. Thus, the classification of
complexity categories did not change for the sample
plots. The results of the ULS evaluations are therefore
comparable with the results from TLS and MLS/PLS
previously reported in other studies (i.e., Liang et al.
2018a, 2018b).

In situ measurements using TLS and MLS/PLS
TLS data were collected in 2014 using Leica HDS6100
(Leica Geosystems AG, Heerbrugg, Switzerland) with a
multi-scan approach, that is, one scan at the plot center
and four scans at the four quadrant directions. No pre-scan
preparations were implemented in the field measurements.
The data were registered using artificial spheres. The
mutual scan registration accuracy was at a 2-mm level. The
point spacing was 15.7mm at a 25-m distance to the
scanner in both horizontal and vertical directions.
The kinematic in situ measurements, namely, MLS from

an all-terrain vehicle and PLS from a backpack, were also
collected in 2014 (Liang et al. 2018b). The core measuring
system for both platforms was identical, namely, AkhkaR2
(Finnish Geospatial Research Institute, FGI, Finland). Both
platforms used the same scanning parameters: scanning
frequency of 95Hz, which resulted in an approximate
4-cm on ground point spacing along the profile at a range
of 35m and an on ground profile spacing of 1.0–1.4 cm at
a typical platform moving speed of 1.0–1.45 m/s .

ULS measurements
The ULS data were collected in September 2017 using a
Riegl RiCOPTER with VUX-1UAV (RIEGL, Horn, Lower
Austria, Austria), as shown in Fig. 3. The UAV campaign
lasted for 3 days and the average time spent on UAV
flight per plot was 10–20min. The flight altitude was

Fig. 2 The distribution of the DBH in each complexity category
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approximately 50 m above the ground. Each plot was
covered by 4–5 flight lines. The overlap of all flight lines
at the plot area was typically high, e.g., 100%.
The GNSS-IMU system installed on the UAV was Appla-

nix AP20 GNSS-Inertial System (Trimble Applanix,
Ontario, Canada). The position measurement accuracy was
better than 0.1 and 0.2m in horizontal and vertical direc-
tions, respectively. The roll, pitch and heading were mea-
sured at an accuracy of better than 0.015, 0.015 and 0.035
degrees, respectively. These give a point location accuracy
of better than 3.6 cm at the nadir and 7.1 cm at the far end
of the field-of-view at 50m above the ground, if the posi-
tioning and ranging errors are left out of consideration.
The applied laser sensor was a Riegl VUX-1UAV. The

scanner was mounted to scan nadir profiles and it oper-
ated at the 1550-nm wavelength. The maximum meas-
urement range of the scanner was 300 m. The beam
divergence was 0.5 mrad, providing 2.5-cm and 5.0-cm
footprints at 50-m and 100-m distances from the scan-
ner, respectively. Since the targeted flight altitude was
50m, the 50-m and 100-m distances corresponded to
the scanning distances at nadir and at far end of the field

of view. In order to gain better stem visibility, the data
were collected with a 120-degrees field-of-view and a
550-kHz laser pulse rate, resulting in 106 scan lines per
second and in a 0.07-degrees (1.2-mrad) measurement
resolution along each scan line. Alone each scan line, the
on ground point spacing was 6.1 cm at nadir and 24.4 cm
at the far end of the scan line. The typical flight speed was
2.0–4.0m∙s− 1, resulting in a 2.0–4.0 cm on ground spacing
between scan lines. The point density was around 100–
800 points∙m− 2 on the horizontal ground surface if only
one echo per pulse was considered. In practice, due to the
high overlaps between flight lines, the point density in-
creased vastly, resulting in 4000–18,000 points∙m− 2 at the
sample plot areas. Two Sony ILCE-6000 cameras were
also mounted on the UAV for colorizing the point cloud.
Figure 4 illustrates the examples of colored ULS point
cloud data in the three stand complexity categories. Color
information was not used in the following processing.
The visibility of trees varied significantly according to

tree species and forest structure, as shown in Fig. 5. For
example, pine trees in easy forest stands typically had an
excellent visibility and the stem was visible for most of
its length. For spruce trees, the visibility of the stem de-
creased significantly as the tree stem can be either partly
visible or totally occluded by the tree’s own canopy and/
or by canopies of the surrounding trees.
Figure 6 illustrates a pine tree under moderate occlu-

sion in the ULS data. ULS points at five different stem
heights are shown in the subfigures. The stem structure
is visually identifiable in two lower slices, but is totally
missing in other three upper slices, indicating the impact
of tree’s own crown on its stem digitization.
Geometric inconsistency among different flight lines

was visible in the delivered point clouds. Possible reasons
for such errors include registration errors, influences of
wind, and/or varying geometric accuracies from different
flight lines at identical locations. Figure 7 shows four ex-
amples of mismatches between the flight lines, which

Fig. 3 The RiCOPTER ULS platform. (Image Courtesy: Timo Toivonen)

Fig. 4 The ULS data in example plots of the three stand complexity categories
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indicate the challenge of tree parameter estimation
brought by geometric inconsistencies.

Automated retrieval of tree and plot parameters
The point cloud from stationary TLS, MLS/PLS and
ULS, were processed through the same processing chain
as described in Liang et al. (2018b). The specialty here is
that the ULS data were understood equal to the terres-
trial point cloud and processed with a stem detection
and modeling algorithm that was identical to the other
terrestrial point clouds.
In a preprocessing stage, the original point cloud was

first sampled through an equivalent sampling method.
The point cloud was digitized into a voxel space, and in
each voxel the point closest to the center of gravity was
selected as the representative point for the point distri-
bution within the voxel. The voxel size was 1 cm for
both the TLS and MLS and 0.5 cm for the ULS consider-
ing the given density of raw point clouds. The DTM was
reconstructed using a morphological filter and linear
interpolation. The point cloud was firstly rasterized in
2D. The lowest point in each pixel (20 cm by 20 cm) of a
2D raster space was selected as a seed point and the lar-
gest connected group was interpreted to be part of the
ground. Detached groups were accepted as ground if
they were smoothly connected with the accepted
ground. Due to the above canopy viewing position, ULS
collects tremendous amount of canopy points that are

less important for the stem analysis. Therefore, a canopy
filtering was applied to remove the topmost canopy layer
(i.e., 20% topmost) before the stem detection and model-
ing. After the stem detection, all canopy points were
used in the tree height estimation.
Stem points were identified through a point-based ap-

proach. Points on stems were identified by analyzing the
structure in their immediate neighborhood using principal
component analysis. Tree stem models were built from the
recognized stem points as a series of 3D cylinders repre-
senting the changes in the growth direction of stems. The
DBH and location of a stem were then estimated from the
cylinder element at breast height (1.3m above the ground).
The stem curve was estimated from the cylinder elements
at predefined heights. The tree height was estimated differ-
ently for big and small trees, which were separated accord-
ing to a DBH threshold of 15 cm. Big trees were assumed
mostly to be dominant or co-dominant trees that are ex-
posed directly to the sunlight and no trees are above them
(Wang et al. 2016). The tree top was assumed to be the
highest point around the stem. The small trees were mostly
intermediate and suppressed trees, and the treetop was
therefore found from the largest connected point group
around the tree stem. For both big and small trees, the ele-
vation difference between the tree top and the DTM be-
neath it was used as a height estimate for the tree.
The MLS/PLS data were processed with one additional

step. Since a tree may be observed several times from

Fig. 5 Examples of trees captured in the ULS point clouds. a) A Scots pine tree standing in an easy plot; the stem is visible for the most of its
length. b) A Norway spruce from an easy plot, lower part of the stem is well visible, while the foliage occludes the upper part of the stem. c) A
Norway spruce from a difficult plot, the tree’s own crown, surrounding canopies and understory occlude the entire stem. d) A Norway spruce
from a medium plot. The upper part of the stem is identifiable, while lower part of the stem is mostly occluded
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different trajectories and spatial inconsistency from
different observations prevails in the mobile data, the
tree mapping followed the multi-single-scan type of pro-
cessing (Liang et al. 2018a).

Retrieval of tree and plot parameters from ULS data by
manual measurements
In addition to the automated processing, 7 plots, 3 from
easy, 2 from medium and 2 from difficult categories,
were randomly selected and manually measured in
order to benchmark a data-level accuracy, thus, to
enhance understandings of the automatically derived
tree parameter estimates. The manually measured tree
parameters include the tree position, the DBH and the
tree height of individual trees that are visually identifi-
able from the ULS data. A circle at the breast height

was fitted to each visually identified tree. If only few or
none points were recorded for a stem at the DBH
height, a circle at a higher position was searched for
and fitted when possible. The tree position and the
DBH were therefore the center of the fitted circle and
the diameter of the fitted circle, respectively. The tree-
top and the stump were also visually identified, and the
elevation difference between the tree stump and top
was recorded as the tree height.

Evaluating the accuracy of individual tree parameters
The performance of TLS, MLS/PLS, ULS was evaluated
by comparing the accuracies of the estimated tree-level
parameters with respect to the field measurements.
The evaluation followed the procedure in Liang et al.

(2018a). The detected trees were matched with the refer-
ence trees based on the horizontal stem locations and
the DBHs of the trees. The search distance was 50 cm
for TLS and ULS, and 150 cm for the MLS/PLS. The
mapping accuracy was evaluated using the completeness,
which indicates the proportion of reference trees that
were automatically detected. The accuracy of the tree
position, tree height, DBH, stem curve, stem volume and
AGB were all evaluated using the relative Root Mean
Squared Error (RMSE) and relative bias, both in percent-
ages, with an exception of the tree location where only
the absolute RMSE was calculated. The evaluation was
carried out at an individual-tree-level, i.e., the estimated
and reference parameters were compared, and reported
at a plot-level, i.e., relative RMSE and bias were calcu-
lated at a plot level and further averaged at the
plot-complexity-category-level. The results are reported
separately for each stand complexity category.

Results
The feasibility of the forest in situ measurements from
the aerial perspective was investigated through the ac-
curacy of parameter estimates and also through a com-
parison among the performances of currently available
terrestrial and areal data sources, i.e., the ULS,
multi-scan TLS and MLS/PLS.

Stem mapping
The stem mapping results from ULS, MLS/PLS and TLS
are reported in Fig. 8. Similar to the MLS/PLS and TLS,
ULS had a steady declining trend in the completeness of
stem mapping when the stand conditions became more
complicated. The manual stem mapping from ULS pro-
vided very similar results as the automated stem mapping
from MLS/PLS and TLS. However, when processed with
the automated algorithm, the completeness of ULS-based
stem mapping was remarkably lower (approximately 50%
lower) than that of the MLS/PLS- and TLS-based results.
Moreover, the decrease of ULS-based automated stem

Fig. 6 The point cloud coverage of a Scots pine tree in a medium
forest plot in the ULS data, and its horizontal profiles at five different
heights above the ground level. Different colors show the point’s
origin from different flight lines. The figure illustrates impacts of tree
crown on the stem digitization
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Fig. 7 An illustration of geometric inconsistencies among flight lines in ULS point clouds. a) A Silver birch from an easy plot, with 15-cm DBH. b)
A Scots pine from an easy plot, with 23-cm DBH. c) A Scots pine from a difficult plot with 13-cm DBH. d) A Scots pine from a difficult plot with a
DBH of 15 cm. The subfigures in middle zoom in to a one-meter-long section of the stems at +/− 50 cm of the breast-height at 1.3 m; the
subfigures to the left show the horizontal profiles of 20-cm-thick slices of the stems at +/− 10 cm of the breast-height. The different colors
(red/blue) show the flight lines of the points

Fig. 8 Completeness of individual tree mapping from the UAV, mobile and stationary platforms. The left axis represents the completeness (bars)
in percentage
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mapping completeness with respect to the increase of the
stand complexity was more significant than that of the
MLS/PLS- and TLS- based results.
These results suggest that, firstly, the state-of-the-art

ULS data are capable to digitize similar amount of stems
in forest plots as the other terrestrial point clouds; sec-
ondly, the stand complexity has more significant influence
to the ULS-based stem digitization than to the other ter-
restrial point clouds. Even though the stem point cloud in
ULS data (e.g., the density and the geometrical accuracy)
is sufficient for human recognition, it is not yet compar-
able with the other terrestrial point clouds to support the
automated stem detection, at least with the applied
algorithm.

Stem position
The stem positioning accuracy from ULS, MLS/PLS and
TLS are reported in Fig. 9. In general, the average RMSE
of stem locations for digitized stems in ULS data was
between 6.0 cm and 15.0 cm considering the stand com-
plexity. The ULS-based stem positioning error is about
two times as much as that of TLS-based results as
shown in the Fig. 9. Compared to ULS, the MLS-based
stem positioning accuracy was significantly lower due to
the geometric inconsistency brought by the unstable
GNSS signals under canopies.

Diameter at breast height
The relative RMSE (RMSE%) and the relative bias
(bias%) of the DBH estimates from the three platforms
are reported in Fig. 10.
The columns of “UAV” and “UAV (gross errors re-

moved)” in Fig. 10 represent the evaluation results of the
automated DBH estimates from ULS data. The differ-
ences between these two results were caused by gross

errors, which mainly occurred at the stems of small trees
that were digitized with low quality in the ULS point
clouds. That is, the stems were digitized in the ULS data
to an extent that is not enough for a reliable delineation
by the automated algorithm. The stem modeling from
ULS data produced large errors, for example, due to the
low density, completeness, and geometric accuracy of
stem points. Errors larger than 20 cm with respect to the
reference were considered as gross errors. Gross errors
accounted for only a small proportion of detected stems,
that is, maximum three in a plot. Once the gross errors
were removed, the RMSE% of automated ULS-based
DBH estimates became comparable to that of the man-
ual recognition from ULS data, as well as to that of the
automated DBH estimates from TLS and MLS/PLS data.
The RMSE% of ULS-automated, ULS-manual, and au-

tomated estimates from MLS were at a same level
(15%–30% in different stand complexities), and they
were twice as much as the RMSE% of the TLS-based es-
timates. The bias% of ULS and MLS suggested that both
aerial and terrestrial mobile platforms lead to overesti-
mated DBH. The overestimation from ULS is more sig-
nificant than that from MLS, indicating the geometric
accuracy at the stems is higher in the MLS compared to
the ULS point clouds.

The tree height
The advantage of an aerial observation perspective for
tree height measurements is clearly shown in Fig. 11.
ULS presented the best performances across different
stands among all point clouds due to a better visibility
of the upper parts of crowns. On the other hand, the
tree height is the only parameter, for which the
ULS-based estimates outperformed the MLS- and
TLS-based estimates.

Fig. 9 Stem location estimation at the breast height from the UAV, mobile and stationary platforms. The left axis represents the RMSE (bars) in
cm and the right axis represents the completeness (solid line with ‘+’ markers) in percentages. In the completeness of manual measurements
from the ULS data, only those trees for which the stem was identifiable at the breast height in the point cloud were taken into account
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The automated tree height estimates from ULS per-
formed similarly as the manual mensuration in easy
plots and better in medium and difficult plots. This
however does not mean that the automated algorithm
outperforms the manual identification in the treetop rec-
ognition. The difference is due to the amount of recog-
nized trees, which is smaller in the automatic detection.
Automatic algorithm detected only trees whose trunk
was clearly visible in the data. This underlines the claim
in the TLS benchmarking (Liang et al. 2018a) that the
accuracy of individual tree parameter estimates should
be analyzed together with the detection rate (i.e., com-
pleteness). Treetop identification in point clouds is a
challenging task even for human eyes especially in
medium and difficult stands where species are mixed
and tree crowns are entangled with each other. Thus,
treetops may be misinterpreted, leading to a larger error
than that of the automated recognition where only the
trees clearly recorded were measured. These results also
indicate that the manual and the automated interpret-
ation of point clouds perform very similarly in treetop
recognition for trees that are clearly digitized.

The stem curve
The evaluation of stem curve estimates are reported in
Fig. 12. While the RMSE% of the stem curve estimates
from ULS was similar to that of the DBH, the bias% was
almost doubled. This was caused by more gross errors
and less accurate estimates due to, e.g., occlusions in the
data. Similar to DBH and tree height estimates, the
RMSE% and bias% increased along the increased stand
complexity.
The percentage of tree height covered (PHC, the ex-

tracted stem length covered by the stem curve divided by
the tree height) of ULS-based stem curve estimates was in
general higher than that of MLS and lower than that of
TLS. The PHC value of the stem curve estimates based on
ULS was expected to be higher than that of the terrestrial
point clouds from TLS and MLS, because ULS has a
favorable viewing position to digitize upper part of tree
stems. However, the results suggest that the stem curve
modeling from ULS can be disturbed by the missing parts
in the middle of the stems, therefore, the clearly digitized
upper stem parts can hardly be included in the stem curve
model. While outperforming the MLS, ULS still cannot

Fig. 10 Relative RMSE (a) and bias (b) of the DBH estimation from the UAV, mobile and stationary platforms. The left axis represents the RMSE
and Bias values (bars), and the right axis represents the completeness value (solid line with ‘+’ markers). All units are in percentages
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compete with TLS in the stem curve modeling in the
sense of completeness, i.e., PHC. More discussion about
stem curve estimates is given in the Section of Discussion.

Stem volume and total tree biomass
The results of the stem volume estimates are reported in
Fig. 13. The stem volume is a function of stem curve,
but it is proportional to the square of the radius of the
stem. Therefore, the increase of ULS-based volume error
with respect to the stand complexity is higher compared
to the increase of ULS-based stem curve error (Fig. 12).
The results of the total tree biomass estimation are

reported in Fig. 14. The RMSE% values in easy plots
increases from 11.1% in TLS to 24.6% in MLS and to
37.6% in ULS. In the medium and difficult plots, the dif-
ferences between different systems become larger. Since

the stem curve and DBH accuracies play a more signifi-
cant role in the volume and biomass estimates (Liang et
al. 2018a), the more accurate tree height estimates of the
ULS do not improve the ULS-based stem volume and
total tree biomass estimates observably.

Discussion
ULS has unique properties that may change the forest
field inventory profoundly. It outperforms other terres-
trial remote sensing systems in the data collection speed
since the platform movement is totally free from ground
obstacles. So far, the geometrical accuracy of the ULS
point clouds has not yet reached the level of the TLS
point clouds, which is required in practical applications.
However, as the sensors and the platforms evolve
constantly, the ULS-based forest in situ observations
deserves more studies.

Fig. 11 Relative RMSE (a) and bias (b) of the tree height estimates from the UAV, mobile and stationary platforms. The left axes represents the
RMSE% and bias% (bars), and the right axes represents the completeness (solid line with ‘+’ markers). Tree heights are retrieved from ULS both
automatically and manually. In the completeness of manual measurements, only trees with an identifiable tree top in the point cloud were taken
into account. All units are in percentages

Liang et al. Forest Ecosystems            (2019) 6:20 Page 11 of 16



Pros and cons of the above-canopy view perspective in
forest field inventories
The main motivation of applying mobile platforms (e.g.,
MLS/PLS/ULS) in forest inventories is three-fold. Firstly,
mobile platforms improve the efficiency of data collection
significantly. Secondly, the area of interest is more thor-
oughly covered by the kinematic data collection compared
to stationary scans. Thirdly, the occlusion effects can be
mitigated by moving the observation viewpoint around
the targets.
Uplifting the viewpoint from the ground to the air using

a UAV platform indeed raises the mobility to a level that
has never been seen before. Due to the absence of obstacles
along the path, ULS’s mobility is even higher than what
MLS can provide. In comparison with TLS and MLS, the
forest plots are covered more comprehensively in the ULS
data, that is, close to 100% plot coverage in each and all
flight lines. However, currently, such coverage improve-
ment is present mainly in the horizontal dimension. In the
vertical dimension, ULS is able to digitize trees comprehen-
sively if the viewing geometry is ideal. Complete coverage

of a tree from the stump to the top can be achieved if oc-
clusions, e.g., from the canopies and other nearby trees, are
absent, e.g., for an isolated tree. However, occlusions still
exists which remarkably reduce the ULS data coverage of
individual trees in the vertical direction, specifically at the
lower or middle parts of the stems. As such, recent applica-
tion of UAV platform does not yet reach the objective of
mitigating the occlusion effects present in terrestrial
technologies. Results in this study suggest that the mobile
platforms on the ground lessen the occlusion much more
successfully, even though the ground mobile platforms
suffer from the geometric inconsistency due to GNSS
signal losses.
Unlike the terrestrial point clouds where the occlusion

effects are mainly caused by the bushes, small trees and
lower parts of trees, in the ULS point clouds, the occlu-
sions are caused significantly by the upper parts of the
canopies. Data collection in leave-off season might be able
to mitigate certain occlusions of deciduous trees, but can-
not solve the problems in coniferous forests. As illustrated
in Figs. 6 and 7, tree stems may be fully, partially or barely

Fig. 13 Relative RMSE (a) and bias (b) of the stem volume estimation from the UAV, mobile and stationary platforms. The left axis represents the
RMSE% and bias% values (bars), and the right axis represent the completeness value (solid line with ‘+’ markers). All units are in percentages

Fig. 12 Relative RMSE (a) and bias (b) of the stem curve estimates from the UAV, mobile and stationary platforms. The left axes represent the
RMSE% and bias% values (bars). The right axes represent the completeness (solid line with ‘+’ markers) and percentage of tree height covered
(PHC, solid line with ‘x’ markers). All units are in percentages
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digitized by ULS, depending on the scanning geometry,
species and forest stand conditions. The applied ULS sys-
tem in this study is a high-end product. The point clouds
from the survey-grade laser scanner and the fairly good
navigation system represent a high quality point cloud
data in the ULS domain in terms of the geometric accur-
acy and point density. With the applied high-end ULS, the
capability of stem digitization from above canopies seems
to be, however, still limited.

Data acquisition configurations
The density and geometric consistency of the point
cloud data from ULS are influenced by the forest stand
conditions, e.g., the structure and species of the forest,
and by the data acquisition configurations, e.g., the
setups of the scanner, positing system and flight lines.
In general, the point density of a scanner with the rotat-

ing mirror scanning mechanism is a function of the Pulse
Repetition Rate (PRR), the Field of View (FOV) and the
flight height and speed, which determines the point spa-
cing within and between the scan line(s). A high PPR, low
flight height, slow flight speed and small FOV lead to a
high point density, and vice versa. Also, high overlap rate
between flight lines over the forest site increases the point
density. Higher point density typically achieve better
canopy penetration capacity. But this is not guaranteed.
Forest conditions have significant impacts on the point
penetration capability.
Using the sensor and platform configurations applied

in this study as described in the Section of ULS mea-
surements, the on ground point spacing of the ULS
point cloud is 6–15 cm within a scan line and 2–4 cm
between the scan lines, which produced 4000–18,000
points∙m− 2 point density. However, such data are still
not enough to record trees comprehensively, as shown
in Figs. 5 and 6. In addition, the stems of small trees
(e.g., 5–10 cm DBH) are recorded vaguely in the ULS

point cloud, taking into account the occlusion effects
under forest canopies.
Multiple flight lines further increase the point density,

and consequently increase point coverage on the targets.
However, the geometrical consistency inside the point
cloud may decrease because of the inaccuracy of the
registration between flight lines, as shown in Fig. 7,
which may dwarf the benefit of multiple flight lines.
Generally speaking, the best practice of the ULS meas-

urement, e.g., the FoV, flight height, speed and overlap
rate between flight trajectories, are not yet established.
These research questions deserve more research in future.

Point geometrical accuracy matters
The geometrical accuracy of a point in a mobile point
cloud from a linear laser scanner is determined by the
scanner settings, such as the beam divergence and FoV,
and platform status, such as rotations and sensor-target
distances.
In the applied ULS system, the angle measurement

accuracy of the platform is better than 0.015 and 0.035 de-
grees for roll/pitch and heading, respectively. If the GNSS
positioning and laser ranging errors are not considered,
this angle measurement accuracy means that, from a
50-m altitude, a laser point’s position accuracy of a laser
point on the ground is better than 3.6 and 7.1 cm, at the
nadir and at the far end of the field-of-view, respectively.
Such data accuracy is insufficient considering the required
1–2 cm accuracy of DBH estimates in NFIs.
In addition, the survey-grade laser scanner applied in

the ULS system has a 0.5 mrad laser beam divergence,
which corresponds to a 2.5-cm footprint at nadir and a
5-cm footprint at the far end of FOV for a 50-m flight alti-
tute. While negligible in TLS data due to the generally
smaller beam divergence (e.g., 0.2 mrad) and the shorter
scanner to target distances in forests (e.g. typically under
40m), the influence of the beam divergence should be
taken into account when using ULS data since it

Fig. 14 Relative RMSE (a) and bias (b) of the total tree biomass estimation from the mobile and stationary platforms. The left axis represents the
RMSE% and bias% values (bars), and the right axis represent the completeness value (solid line with ‘+’ markers). All units are in percentages
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negatively affects the positioning accuracy of the points in
the point cloud.
Moreover, the geometrical accuracy of points is hetero-

geneous through out a point cloud, namely, higher accur-
acy at nadir and lower accuracy at far end of FOV, which
brings further challenges on point cloud registration be-
tween different flight lines. The relatively large uncertain-
ties in ULS- and MLS/PLS-based tree parameter estimates
can thus be understood as a result of error propagation
from the platform positioning and orientation, and the
geometric accuracy of points from the laser sensors. A
slightly better performance can be observed from MLS/
PLS than ULS, probably because MLS/PLS can achieve a
similar performance as TLS in short periods of time. When
the time span is short, the positioning drift is small and the
relative positions between scanner and target are close to
stable. Furthermore, the multi-single-scan principle for
stem modeling applied in the MLS/PLS data processing
shortens the time span and thus also reduces positioning
errors that propagate to the point cloud data.

Outlook of ULS for in situ measurements of forest
ULS is the first aerial technique that achieves a stem
digitization at a similar level of detail as TLS. Despite the
recent technical challenges, the amount of recognizable
stems in ULS data with human interpretation is similar to
that with automated detection from TLS data.
So far, the geometrical accuracy of the ULS point

clouds has not yet reached the level achieved through
terrestrial LS systems. Even with the reasonably good
UAV positioning system, the absolute 3D accuracy of a
ULS point (3.6–7.1 cm on ground) is not yet accurate
enough to estimate DBH and stem curve with a required
accuracy. However, ULS outperforms terrestrial systems
on the tree height estimations. Moreover, ULS provides
a new in situ observation possibility that the observa-
tions are performed above the forest site. ULS frees the
platform from any on-ground mobility constrains and
enables fast and vast observations. Therefore, ULS may
have a fundamental impact on the forest inventories.
The geometric inconsistencies is ubiquitous in point

clouds, as results of winds, measurement inaccuracy and
registration errors (Liang et al. 2018b; Pyörälä et al. 2018).
While the wind impacts can hardly be eliminated, accur-
acy in measurement and registration can be improved.
Smaller beam divergence, more accurate range measure-
ment and higher angular resolution should provide higher
measurement accuracy. Small FOV and slow flight speed
can also reduce point spacing on the ground in ULS data.
All mobile systems in the air and on the ground face

the same challenges of accurate registration between
trajectories. The inconsistencies brought by overlapping
trajectories in the ULS data appear less significant than

that in the MLS/PLS point cloud if measurements from
all trajectories are merged. The reason for this is that
the GNSS signal degenerates under the forest canopies
significantly, which hinders the accurate registration in
terrestrial systems. In ULS, higher-quality GNSS-IMU
system improves the positioning accuracy and vision-
aided positioning (e.g., from structure-from-motion) can
improve the orientation accuracy (e.g., Suomalainen et
al. 2014). Actually, the registration problem in ULS may
be slightly easier to solve than that in terrestrial plat-
forms since the initial location parameter from GNSS is
fairly accurate.
Even though the completeness and the geometric accur-

acy of stem digitization in ULS data is not as high as in
other terrestrial systems, it records treetops in high detail.
This is shown by the accurate tree height estimates in this
study, which confirms the conclusion in a previous study
(Wang et al. 2019). This hints that ULS most probably
measures other canopy features accurately as well. Tree
height and canopy features with higher resolution than
those from ALS may serve as effective explanatory vari-
ables in the estimation of forest biomass, age and product-
ivity. Meanwhile, ULS is most probably a suitable option
in particular applications. ULS’s areal point of view has
the potential to mitigate the occlusion effects within can-
opy, thus the structure information within canopies may
be studied at a higher level of detail than what is presently
achievable. Point clouds collected from terrestrial
platforms typically have a limited spatial coverage of tree
structures inside the canopy. Consequently, the perform-
ance of the quantitative structure delineation decreases in
modelling the stems and branches above the live canopy
base, even with high-resolution TLS point clouds (Liang
et al. 2018a; Pyörälä et al. 2019). In addition, considering
time and cost efficiency, ULS is also a very competitive
candidate for the applications that emphasize tree count
and location rather than tree parameter mensuration, such
as the inventory of young plots.

Conclusion
Forest in situ measurements play a fundamental role in
forest assessment and management. The in situ measure-
ments are currently experiencing rapid and profound
changes, driven by new sensors (e.g., single photon laser
scanning), new platforms (e.g., UAV and terrestrial kine-
matic platforms), and other new advances such as sensor
miniaturization, price dropping, and the developments in
signal processing techniques. UAV-borne laser scanning
(ULS) is one of the latest progresses in the field in the last
decade, with which, for the first time, forest in situ obser-
vations that directly record the stem structures from an
aerial perspective is enabled.
This study gives the first strict evaluation of ULS-based

in situ observations in varying forest conditions. It also acts
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as a benchmarking of available active remote sensing
techniques for forest in situ mensuration, considering the
comparisons between ULS, MLS/PLS and TLS. The tree
and plot parameters automatically retrieved from ULS data
were evaluated using field reference and compared to those
retrieved from other prominent techniques. The DBH, tree
height and tree position were also manually retrieved from
the ULS point cloud to evaluate the ULS data accuracy.
The results indicate that the current off-the-shelf ULS has
an excellent tree height/tops measurement performance.
Because of the limitations in the positioning and angular
measurement, the geometrical accuracy of the ULS data,
especially at the stem parts, does not yet reach the level of
terrestrial point clouds collected using MLS/PLS and TLS.
Nevertheless, the unbeatable high mobility and fast data
acquisition makes the ULS a very attractive option in forest
investigations, especially in applications emphasizing
crown shape and tree mapping.
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