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Abstract

Demand side management will play a major role in future energy systems. However, while they

have been explored in some depth for electricity grids, a similar progress has not been made for

district heating networks (DHN). To this end, the current work field-tested the effect of demand

side management, in the form of price based, demand response (DR) events, in the DHN catering

to a university building. Responding to variations in a pricing model, the temperature of inlet

water was varied from the heating water substation. Using combinations of parameters, 11

different DR scenarios were executed. To gauge the effect of the DR interventions, inlet water

temperature, room air temperature, and occupant satisfaction were monitored. Depending on

the constraints imposed, significant variations in the inlet water temperature and peaks and

drops in the room air temperature were noted. The different DR scenarios did not greatly

alter occupant satisfaction levels. The study was able to provide useful data from field tests

of DR events in a DHN. The data also showed that price based DR events may be triggered

and executed without significantly impacting occupant satisfaction with thermal comfort of the

premises.

Keywords: demand response, district heating, thermal comfort, smart grid, field study

1. Introduction

In an energy network, while high resolution management on the supply side is the modus

operandi, demand side management (DSM) is emerging as an useful aide (Gelazanskas and
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Gamage, 2014; Pedersen et al., 2017). The future is thus leading towards smart energy networks

that can deliver energy in a controlled manner, from points of generation to active points of

consumption (Siano, 2014). In recent years, the idea of DSM has moved from the concept of

controlling just the electrical energy to controlling both electrical and heat energy flows, i.e.,

Dual Demand Side Management. Such management would be more effective at exploiting the

thermal storage potential in a district (Müller et al., 2015; Paiho et al., 2018). As renewable

energy production and prosumers gradually become a greater part of them (Aslani et al., 2013),

future energy networks would need increased flexibility (Paiho et al., 2018). In the changing

energy paradigm, buildings will need to be considered as having an active role instead of being

passive consumers. This evolution requires controls that can adapt to real-time conditions, both

weather wise and energy market wise (Reynolds et al., 2017). For smart districts, a top priority

would be to manage and exploit the inherent flexibility of buildings, shifting consumption times

and achieving smooth integration of alternative energy sources (Good et al., 2017).

Demand response (DR) actions may be defined as the changes in energy use, vis-a-vis normal

levels, effected on the demand-side, in response to changes in energy pricing, incentives from

the supplier, or a possible threat to system reliability (Gelazanskas and Gamage, 2014; Gils,

2014). Studies point to all consumer sectors in Europe showing significant DR potential (Gils,

2014).

A building’s HVAC system can serve as an ideal candidate for DR measures due to the

thermal mass of buildings, the energy intense nature of such systems, and the fact that they

already function as at least partly automated systems, integrated with the building management

system (BMS) (Motegi et al., 2007). District heating (DH) has been in use as a secure and

efficient way to heat cities, with combined heat and power (CHP) plants providing the base

thermal load while peak needs are attended to by boilers (Verda and Colella, 2011). About

90% of heating needs in the larger cities of Finland is taken care of by DH networks (DHN)

relying on CHP production, while peak load use has to be handled by heat only boilers (Syri

et al., 2015).

DHNs are the go to method for indoor heating in Finnish urban areas, and they need to

evolve both in terms of generation efficiency and operational management and distribution (Ab-

durafikov et al., 2017). They are projected to play an important role in the transition towards

sustainable energy systems, with integrated renewable energy generation capacity (Lund et al.,

2014). Such smart districts can be a crucial tool in addressing the “energy quadrilemma” that

the future holds — balancing affordability, sustainability, energy security, and social confor-

mance (Good et al., 2017). Demand response techniques, relying on demand side flexibility, can
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help reduce peak capacity requirements and plant emissions, pipe sizing from initial investment

costs, and operational costs are reduced by being able to cover a larger client base, even on an

existing DHN (Aduda et al., 2017; Kreuder and Spataru, 2015; Wernstedt et al., 2007). The

EU’s encouragement of eco-districts and zero energy objectives act as positive drivers towards

smarter DHNs (Koutra et al., 2018). Smart DHNs may be imagined as parallels of their electric

counterparts (Lund et al., 2014).

Suitable DR strategies need to achieve the energy saving targets, without adversely affecting

occupant comfort. The IEA EBC Annex 67 defines energy flexibility of a building as a build-

ing’s “... ability to manage its demand and generation according to local climate conditions,

user needs, and grid requirements. Energy Flexibility of buildings will thus allow for demand

side management/load control and thereby DR based on the requirements of the surrounding

grids.” (Reynders et al., 2018). In terms of energy pricing, a simpler presentation of flexibility

factor could be the opportunity to shift energy usage from higher price periods to lower price

periods (Le Dreau and Heiselberg, 2016). Simulations have shown that added thermal storage

capacity can aid in reducing peak DH loads (Knudsen and Petersen, 2017). Heating demand,

even over a single day, can have considerable variations. By effecting periodic, small variations

on the demand side, building thermal mass can be utilized for thermal energy storage, thus aid-

ing the system to overcome variable needs (Kensby et al., 2015). Structurally heavy buildings,

due to their larger thermal mass are more energy flexible, making it easier for them to overcome

variations in heat deliveries while keeping their indoors within comfort needs (Kensby et al.,

2015). DR in DHNs can easily take advantage of the already existent thermal mass of buildings

as a means of storing thermal energy, facilitating easier integration of renewable energy sources

with fluctuating generation profile (Lund et al., 2016).

Compared to the number of works that have looked at DR measures in electric grids, only

meagre numbers have touched on DR for DHNs. Fewer still have looked at field implementation

of DSM on performance of DHNs. There is a lack of scientific literature that examines the effect

of demand response control on real existing buildings and the occupants. Only a recent study

by Sweetnam et al. (Sweetnam et al., 2018) looked at demand shifting in a DHN catering to

28 residences in England. The demand shifting strategies could successfully improve the ratio

of the mean to maximum heating load of participating residences from 0.29 to 0.44, with only

some of the occupants noting the altered indoor thermal conditions (Sweetnam et al., 2018).

The electricity market in Finland has undergone a major change over the past couple of

decades, moving towards free and open market. Though it is not so as of now, it is only logical

to expect that the DH market will soon follow suit. Open DH pricing is already being tried
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out in neighbouring countries (Syri et al., 2015). Like the electric grid, in heating dominated

climates, DHNs are also a vital part of building energy system and an essential part of building

performance. Solutions proposed for DHN demand response need to be field tested before being

put to practice (Robert et al., 2018). Keeping this in mind, the current work takes the step

of exploring the effects of DR actions applied to a DHN. Demand response strategies could

fall under one of two broad categories: those which adjust the indoor conditioning set-point

temperatures and those which make adjustments to the heating system (Motegi et al., 2007). In

this work, strategies under the second category were explored, that is adjustments were made

to the heating water temperature.

Two different DR algorithms were implemented, with a variation of parameter settings,

leading to a total of eleven scenarios. One group of DR algorithms affected only the inlet

temperature of the water radiator system while the other group affected both water inlet tem-

perature and supply air temperature from selected air handling units (AHUs). Being based on

dynamic pricing information, these can be classified as DR events (Motegi et al., 2007). Based

on if the energy price was falling, keeping constant, or rising, the controls were effected on the

water and air temperatures. A previous work had shown energy and cost savings for control

based on trends of changes to the price signal (increasing or decreasing), similar to the ones

used in the current work, in electrically heated single-family houses (Alimohammadisagvand

et al., 2017).

The effects were limited to one of the wings of a building on the Aalto University’s Espoo

campus. A three level monitoring campaign was carried out during the entire survey duration:

• Inlet heating water conditions: Effect of the DR algorithms on the temperature of the

inlet water’s temperature

• Indoor thermal conditions: Effect of the DR algorithms on the room temperatures being

maintained

• Occupant satisfaction: Effect of the DR algorithms on the subjective satisfaction of the

occupants using the said spaces

The goal was to examine how much deviations could be incurred in the inlet water temperature

and how, if at all, that affected occupant perceptions. This study provided a unique opportunity

to field test DR strategies and evaluate their effects on the building and the occupants. As

such, it contributes to a rather sparsely populated field of knowledge. We believe that this work

brings valuable, new information to the field even though constraints meant that the scenarios

were all tested for a single building, with variable users, and in changing weather.
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2. Methods

2.1. Building description

The study was conducted in the U-Wing of a large building on Aalto University’s Espoo

campus, near Helsinki, in Finland. The building was originally built in 1964 while U-Wing was

built in 1975. All the load bearing structures of the building are massive concrete features.

While the building’s gross floor area is 48,000 m2, U-Wing itself has a heated floor space of

13,800 m2. The Wing has six floors and comprises mainly of teaching facilities, meeting spaces,

cellular offices, and open-plan offices.

U-Wing was refurbished in 2014 when ventilation, heating, and building management sys-

tems were upgraded. The original 2-pane windows were renovated by replacing their inner

window pane by an argon filled, low-emissivity glazing element. The new glazing elements of

the windows facing south or west were also equipped with solar protection. The renovated

windows have a U-value of 1.0 W/m2K. Solar heat transmittance (g-value) of south and west

facing windows is 0.44 while for the rest of the windows it is 0.57. The renovation did not

affect building insulation levels. The U-values of the external walls, the roof and the base floor

are 0.36, 0.3 and 0.8 W/m2K, respectively. It was assumed that the concrete core structure of

U-Wing would be advantageous by providing thermal mass for implementation of the planned

DR strategies, improving demand side flexibility.

The Wing is equipped with mechanical supply and exhaust ventilation system, with regen-

erative heat recovery. It is a variable air volume (VAV) system, controlling air flow rates based

on the dual inputs of room air temperature and carbon dioxide concentration. There are a

total of 21 AHUs in the Wing and the total maximum supply and exhaust air flow rates of the

wing are 26 and 27 m3/s, respectively. A schematic of the substation that serves the Wing has

been provided in Figure 1.

2.2. Objective measurements

The sensing and controls aspects were handled by the BMS from Fidelix Oy. This BMS

was already responsible for day-to-day management of building HVAC systems. Room air tem-

peratures were measured by Produal Temperature Meters (model TEHR NTC10-P, accuracy:

±0.2 ℃ at 25 ℃). Apart from room conditions, the heating water inlet and outlet tempera-

tures were also measured. The BMS collected and stored all temperature measurements, with

a frequency of once every 15 minutes.

During one of the weeks when DR studies were not under way, on the Friday, at about

10 pm, when the building is not likely to have any occupants, the inlet water temperature from
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Figure 1: A schematic of the substation serving U-Wing, as part of the DHN (in black) and a schematic
of demand response control of ventilation (in red). In the figure, “HEP” denotes hourly district heat price,
“HX” heat exchanger, “DR-control” demand response control of inlet water temperature of radiator circuit or
ventilation supply air temperature and “TC” temperature control.

the substation was decreased by ∼10 ℃ in one step. Temperature was gradually brought up

to values required by the standard control curve starting from Sunday afternoon, so that the

spaces would be ready for occupants on Monday morning.

Thermocouples were used to log the hot water pipe temperature at the point in the wing

which was closest to the DH substation (in the basement) and at a point which was farthest

from the source (on the fourth floor). Temperatures were logged using a Testo temperature

logger (Model 176T4, accuracy ± 0.3 ℃) and K-type thermocouples, with 1 minute time step.

The time it would take for the step change to reflect at the farthest point would provide an idea

regarding the hot water distribution network’s responsiveness to changes in water temperature.

2.3. Occupant feedback

During all survey periods, occupants and users of the Wing were requested to participate

by providing their feedback on the indoor temperature conditions. An example of the feedback

platform set up in the lobby of the Wing has been presented in Fig. 2. Along with one such
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platform, the notification in Fig. 2 was displayed in 40 locations across all floors, along with a

QR-code for a webpage where occupants could provide feedback and comments.

Figure 2: An image of the occupant feedback platform set up, along with the notification

2.4. Price trends for heating energy

In testing the DR scenarios for this study, an inherent assumption was that dynamical

pricing would be available for DH and a moving 24 hours, hourly price, would be known in

advance, at any point in time. The hourly price was estimated for a year, based on the price

data for district energy sources and the weather data from the Finnish test reference year

2012 (Kalamees et al., 2012). The price estimates are dynamic and representative of a typical

DH producer in Finland. The price includes energy and transfer costs and a value-added tax of

24%. The price estimates were then used in implementing the DR algorithms. In Finish DHNs,

during peak periods, peak-load plants, consisting of heat only boilers are made operational to

handle the increased demand. This increases both the price and emissions.

The DR algorithms try to reduce the inlet water temperature when the price trend is on the

fall, thus, trying to lessen the burden on the DHN when prices are already high. Conversely,

they try to increase the inlet water temperature when the price trend is rising, thus trying

to load the building thermal mass while the prices are still low and before they rise and get

too high. When the price trend holds flat, no action is taken and the standard inlet water
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temperature was used. With a falling price trend, to reduce the water temperature, a control

signal (CS) of −1 was generated. For a rising price trend, to increase the water temperature, a

CS of +1 was generated. From a comparison of algorithms which use fixed energy price limit vs

ones that use energy price trend, performed in a previous work (Alimohammadisagvand et al.,

2017), it was realised that use of energy price trend could minimize energy cost more effectively.

Hence, the current work relied on using energy price trends based algorithms.

When the Behrang–Siren (BS) algorithm (Alimohammadisagvand et al., 2018) was used,

CS was calculated using the hourly energy price (HEP), the HEP averaged over hours p to

q (HEP+p,+q
avg ), and the selected parameters marginal value, up (positive, MVU) and marginal

value, down (negative, MVD). The pseudo code for generation of CS, using the BS algorithm,

is provided below:

IF,

HEP < HEP+1,+24
avg + MVD

OR

HEP+6,+12
avg > HEP+6,+24

avg +MVU

THEN, CS = +1

ELSEIF HEP > HEP+1,+24
avg , THEN CS = −1

ELSE CS = 0

END IF

With a low marginal value, price is more often classified as cheap and the price trend as

rising, and vice versa for a high marginal value. Two marginal values were chosen for these

studies: low (±7 e/MWh) and high (±75 e/MWh).

For the Dreau and Heiselberg (DnH) method (Le Dreau and Heiselberg, 2016), CS was

based on current HEP and the first quartile HEPperiod
1st quartile and third quartile HEPperiod

3rd quartile of the

historical price period. The length of the historical period is a chosen parameter. Determination

of DnH CS used the following pseudo code:

IF,

HEP < HEPperiod
1st quartile

THEN, CS = +1

ELSEIF HEP > HEPperiod
3rd quartile, THEN CS = −1

ELSE CS = 0

END IF

Two different length of historical period were used in this study: two weeks and three days.

Sampling historical price data over a smaller duration (3 vs 14 days) gives more dynamism to

the price trend estimates by being able to focus on the more recent patterns. Shorter time
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period means conservation and loading take place more frequently, making the building able

to quickly adapt with fluctuations in the price and utilize available thermal mass as a storage.

This makes for an energy flexible building as heating need is transferred from higher to lower

price periods. Similarly, a lower marginal value offers a more dynamic view of the pricing trend,

allowing for more flexibility in terms of deciding deviations of inlet hot water temperature.

The hourly prices and the price trend calculated using the DnH algorithm has been provided

in Fig. 3, as an example. From April through mid of November, hourly prices were quite stable.

However, from end of November to end of March, prices varied a lot more, with peaks and ebbs.

Figure 3: Hourly energy price variations during each of the 13 periods along with the price trend calculated
using Dreau and Heiselberg algorithm

2.5. The demand-response algorithms

For this work, temperature of the inlet water is adjusted at the DH substation catering to

the entire Wing. So, when we refer to the strategy as a centralized DR strategy, it implies a

centralized, building level control of heating. The entire DHN was not being centrally regulated.

During any of the scenarios, the heating water supplied to every radiator in the Wing was

altered. Eleven different scenarios were implemented over 11 different periods. They were

interspersed with two periods during which the controls were left at their standard values. The

precise controls were handled by the BMS. The water radiators themselves are equipped with

thermostatic regulator valves (TRVs). The TRVs can prevent overheating of the space but are

not suitable for fine control of the room air temperature.
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Each scenario allowed a certain degree of deviation from the standard water inlet tempera-

ture — the water temperature the DHN would have supplied without any interference, Fig. 5 a)

— was allowed. For the first nine periods, the deviation allowed was determined as a fraction of

the radiator heat output (Martin, 2017). This fraction was kept between ±10 to ±25%. How-

ever, during Periods 12 and 13, greater deviations between the standard and actual inlet water

temperature were allowed. Deviations of +10/−20 ℃ were allowed for inlet water temperature

between actual and standard values.

Periods 7 through 12 controlled the supply air temperature from some of the AHUs, in

addition to controlling the inlet water temperature. During Periods 7–11, AHUs 3, 4, 5, and 15

were controlled. For these AHUs, when price trend was increasing, a supply air temperature of

22 ℃ was used while supply air temperature was 18 ℃ when price trend was on the fall. For

the rest of the times, the standard control curve for supply air temperature was used (Fig. 5).

During Period 12, only AHU 15 was being controlled. For this period, for falling price, supply

air temperature was 2 ℃ less than the standard value while it was 2 ℃ more than standard

value when price trend was rising. The standard control curve was used when price trends

remained flat. The way deviations in inlet water temperature and supply air temperature were

implemented has been expounded upon in the flowchart provided in Fig. 4. Fig. 4 provides

the generic control flow, applicable to all the scenarios, following the calculation of the CS

explained in Section 2.4. The change of supply air temperature, for the AHUs, as denoted in

the flowchart, did not apply for Periods 2-5 and for Period 13. As a precaution, to ensure that

the algorithm was implemented only during winter/heating period, the control flow starts off

with checking if the moving average outdoor air temperature was below a specified limit. The

limit, in this study, had been chosen to be 0 ℃.

Periods 1 and 6 were run with standard controls and were treated as reference periods. The

other periods and their respective DR Scenarios have been listed below.

• Period2 – BS algo, marginal value ±75 e/MWh, deviations of up to ±10% (BS, ±e75,

±10%)

• Period3 – BS algo, marginal value ±7 e/MWh, deviations of up to ±20% (BS, ±e7,

±20%)

• Period4 – DnH algo, 14 days history on prices, deviations of up to ±20% (DnH, 14D,

±20%)

• Period5 – DnH algo, 3 days history on prices, deviations of up to ±20% (DnH, 3D,

±20%)

10



Figure 4: Flowchart for the implementation of controls during the scenarios for the inlet water temperature and
supply air temperature

• Period7 – BS algo, marginal value ±75 e/MWh, deviations of up to ±10%, AHU supply

Tair affected (BS, ±e75, ±10%, AHU)

• Period8 – BS algo, marginal value ±7 e/MWh, deviations of up to ±20%, AHU supply

Tair affected (BS, ±e7, ±20%, AHU)

• Period9 – DnH algo, 14 days history on prices, deviations of up to ±20%, AHU supply

Tair affected (DnH, 14D, ±20%, AHU)

• Period10 – DnH algo, 3 days history on prices, deviations of up to ±20%, AHU supply

Tair affected (DnH, 3D, ±20%, AHU)

• Period11 – DnH algo, 3 days history on prices, deviations of up to ±25%, AHU supply

Tair affected (DnH, 3D, ±25%, AHU)

• Period12 – DnH algo, 3 days history on prices, deviations of up to +10/−20 ℃, AHU

supply Tair affected (DnH, 3D, +10/−20, AHU)

• Period13 – DnH algo, 3 days history on prices, deviations of up to +10/−20 ℃ (DnH,

3D, +10/−20)

During loading (conservation), inlet water temperature was increased (reduced) to a value

within the pre-set limits over and under the standard inlet temperature. At the room level,

heat output is controlled by TRVs and their set-points remain fixed through the entire study.

During loading, the valves can reduce water flow to keep room air temperature within the upper

bounds. During conservation, the TRVs open up to allow greater flow rate so as to keep indoor
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air temperature over the lower bound.

2.5.1. Constraints on the algorithms

The scenarios had to be run within constraints of comfort. All algorithms aimed at

keeping room air temperature within 20-24.5 ℃, i.e., within the recommended winter com-

fort zone (Comite’Europe’en de Normalisation, 2007). To ensure that all the occupied rooms

kept within the required comfort zone, the algorithms depended on the mean air temperature of

the coldest and warmest rooms. The coldest rooms were defined as rooms whose temperature

was lower than 90% of the permanently occupied rooms of the Wing and the warmest rooms

were defined as rooms whose temperature was higher than 90% of the permanently occupied

rooms in the Wing. When mean air temperature of the coldest rooms fell below 20 ℃, or mean

air temperature in the warmest rooms rose over 24.5 ℃, the standard control curve for inlet

water temperature was used. This has also been illustrated in Fig. 4.

As is normal for DH systems, the standard operation curve is a function of outdoor condi-

tions (Khabdullin et al., 2017). This curve has been depicted in Fig. 5 a). The standard control

curves for the four AHUs affected during the DR runs have been provided in Fig. 5 b)–e). The

standard control curves determine inlet temperature and supply air temperature as a function

of the outdoor temperature.

Figure 5: a) Inlet water temperature control curve. Supply air temperature control curves: b)AHU-3 c)AHU-4
d)AHU-5 e)AHU-15.

2.6. Analysis of data

As described in Introduction, the monitoring campaign may be divided to three distinct

“levels”: the heating water, the room indoors, and the occupants. For each Period, the data

at these three levels were processed separately. The focus of the analysis may be divided into

the following objectives:
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• Deviations between actual and standard values of heating water inlet temperature during

implementation of DR algorithms

• Deviations between actual and standard temperature of AHU supply temperature during

the Periods when AHU supply temperature was controlled

• Deviations between temperature of occupied spaces and the targeted comfort range of

[20, 24.5] ℃

• Occupant response to the prevalent temperature conditions during the different Periods

Temperature deviations, both for supply air temperature and inlet water temperature were

calculated as (actual – standard). The standard values were obtained based on the respective

control curves (Fig. 5). Positive deviations were when the actual inlet water temperature was

greater than the standard value and negative deviations imply the standard value being greater

than the actual inlet water temperature. For a convenient representation of the cumulative

deviations during each Period, both over and under the standard values, the sum-total of

positive and negative deviations were converted into degree-hours (℃ · hr). It was assumed

that a deviation lasted for the entire time step of the measurement (15 minutes). Thus, the

summation of positive (or negative) deviation in temperature across the whole period, divided

4 (=60/15) gave the deviation value in terms of degree-hours.

Data pre-processing and analysis was conducted in the R statistical environment (R Core

Team, 2016).

3. Results

3.1. Outdoor conditions during the study

The minimum, mean, and maximum outdoor temperatures for each period have been sum-

marized in Table 1. The last two Periods were the coldest and over the entire study duration,

a wide range of outdoor conditions was experienced (-10 to 13.5 ℃).

3.2. Temperature of heating water

As described in Section 2.2, the responsiveness of the network to water temperature changes

had been tested. Transmission delay, the delay in heat transmission across a network due to

thermal inertia, can become an important factor if its time scale becomes similar to the time

scale of DR events. Simulations have yielded a time scale of the order of hours for district

sized systems (Gu et al., 2017). The recorded temperatures for the network piping around the

step-change has been provided in Fig. 6.
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Table 1: Outdoor temperature conditions during the survey

Period Dates Min (℃) Mean (℃) Max (℃)

1 2–6 Oct 2017 4.9 9.5 13.5
2 6–13 Oct 2017 1.0 8.1 12.5
3 13–20 Oct 2017 1.1 7.9 15.3
4 20–27 Oct 2017 −1.2 1.8 7.3
5 27 Oct–3 Nov 2017 −1.5 2.1 6.2
6 3–10 Nov 2017 1.3 6.0 8.9
7 10–20 Nov 2017 1.1 4.2 7.0
8 20–24 Nov 2017 0.4 2.3 7.5
9 24 Nov–2 Dec 2017 −0.1 3.7 7.5
10 2–8 Dec 2017 −3.2 2.0 6.0
11 8–15 Dec 2017 −0.3 2.2 5.8
12 16–22 Mar 2018 −10.1 −1.6 6.2
13 26 Mar–3 Apr 2018 −6.7 −0.4 5.3

Figure 6: Temperature variation in the hot water distribution network at two locations — once closest to the
substation and one furthest from it — around a step change in the water temperature

It may be clearly noted that the response to a sudden reduction in water temperature trav-

elled through the network without a significant delay. With the temperature logging frequency

being at one minute, the lag in response at the furthest end was between 12 to 15 time steps,

i.e. under 15 minutes. This lag time may be put in context considering the monitoring during

the Periods used a 15 minute time step.

As required by the premise of this study, the DR algorithms caused the inlet water temper-

ature to deviate from its standard value. For each Period during which a DR control algorithm

was being implemented, the actual inlet water temperature and the standard values for the

inlet water temperature have been provided in the collage of plots in Fig. 7.

To better understand the effect of the control algorithms on inlet water temperature, the

ranges of the deviations of water temperature from the standard during each period and the
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Figure 7: Standard and actual temperature of heating inlet water during each period when DR algorithms were
introduced

range of the inlet water temperature have been shown in Table 2. Periods 12 and 13 show their

distinction since the allowed deviations in these two DR algorithms had been higher than that

for the previous situations. As discussed in Section 2.5, Periods 12 and 13 allowed deviations

of up to +10/ − 20 ℃ from the standard curves, unlike the previous periods which allowed

deviations only as a fraction of the radiator heat input.

Further, Table 3 provides instances of positive and negative deviations from the standard
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Table 2: Ranges for heating water inlet temperature and deviations during each period

Period P2 P3 P4 P5 P7 P8 P9 P10 P11 P12 P13

Range of −2.7 −3.8 −5.2 −5.5 −3 −5.8 −4.9 −6.1 −3.6 −21.1 −20.7
deviation (℃) 2.1 5.7 5.8 5.7 0.8 5.2 5.8 5.5 7.3 10.7 10.9
Range of 30.8 25.0 37.2 36.9 36.5 33.7 32.9 37.3 38.4 21.4 25.8
inlet water 45.1 48.4 54.1 52.4 46.8 50.2 52.3 51.5 55.1 66.6 62.8
temperature (℃)

inlet water temperature for each Period. Each instance here corresponds to one time step, i.e.,

15 minutes.

Table 3: Instances of deviations between standard and actual heating water inlet temperature. Each instance
corresponds to one time step of 15 minutes. The percentage values given below the instances correspond to
percentage of time corresponding to a particular nature of deviation

Deviation P2 P3 P4 P5 P7 P8 P9 P10 P11 P12 P13

Positive 344 347 304 303 220 260 380 235 405 243 411
(51.2%) (51.6%) (52.1%) (45.2%) (23.7%) (62.8%) (51.1%) (39.2%) (59.6%) (40.9%) (54.4%)

Negative 302 227 250 297 643 141 316 312 213 318 298
(44.9%) (33.8%) (42.9%) (44.3%) (69.1%) (34.1%) (42.5%) (52.1%) (31.3%) (53.5%) (39.5%)

Null 26 98 29 71 67 13 48 52 62 33 46
(3.9%) (14.6%) (5.0%) (10.6%) (7.2%) (3.1%) (6.5%) (8.7%) (9.1%) (5.6%) (6.1%)

Period 7 DR showed the maximum fraction of negative deviation while Period 11 got the

maximum positive deviation. Cumulative deviation was positive for all Periods except 7, 10,

12, and 13.

Table 4: Deviations between standard and actual heating water inlet temperature, expressed as degree-hours
(℃ · hr)

Deviation P2 P3 P4 P5 P7 P8 P9 P10 P11 P12 P13

Positive (℃ · hr) 68.9 101.1 90.7 118.5 14.5 126.6 206.5 101.6 384.0 382.7 671.5
Negative (℃ · hr) -67.4 -93.0 -50.3 -81.0 -156.2 -78.7 -132.7 -148.0 -40.9 -1066.8 -701.1

For cumulative deviations between standard controls and the specific DR control imple-

mented during a period, the degree·hours were calculated for each of the 11 periods. As may be

garnered from Table 4, the cumulative deviations (both positive and negative) were particularly

noticeable for Periods 9 through 13. All five of these periods implemented variations of the

DnH algorithm. And except for Period 9, the other four Periods used a 3 Day history to inform

their price trend control signal.

3.3. AHU supply air conditions

As discussed in Section 2.5, during Periods 7 through 12, in addition to affecting the inlet

water temperature, the supply air temperature from some of the AHUs serving the Wing were

also affected. This too led to deviations from the standard control curves. The deviations were

analysed similar to the deviations of the inlet water temperature and have been presented in
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Table 5. Values were considered only for the hours when the AHUs were operational. Along

with the instances of deviation, each deviation corresponding to a fifteen minute time step, the

cumulative deviation in terms of ℃ · hr have been provided.

Table 5: Deviations between standard and actual supply air temperatures from the AHU during the six periods
when the DR events affected the AHUs

AHU Deviation P7 P8 P9 P10 P11 P12

3 Positive 161 61 153 63 91 –
Negative 242 99 167 177 189 –
Positive (℃ · hr) 42.1 23.1 91.1 30.2 43.1 –
Negative (℃ · hr) -9.0 -6.2 -5.9 -12.5 -7.6 –

4 Positive 300 112 270 110 126 –
Negative 102 46 90 90 152 –
Positive (℃ · hr) 53.6 57.7 151.5 34.4 48.3 –
Negative (℃ · hr) -1.8 -1.3 -1.8 -4.4 -5.2 –

5 Positive 110 68 138 63 72 –
Negative 140 91 63 137 75 –
Positive (℃ · hr) 31.5 48.9 88.8 30.1 16.9 –
Negative (℃ · hr) -14.8 -13.5 -8.7 -26.3 -13 –

15 Positive 176 145 257 131 199 119
Negative 551 141 310 296 301 328
Positive (℃ · hr) 14 23.2 51.1 33.8 51.3 18.1
Negative (℃ · hr) -233.1 -56.9 -115.2 -101.5 -101.7 -124.8

3.4. Room temperature conditions

3.4.1. Summary of indoor air temperature

The recorded indoor air temperature data covered all the rooms in U-Wing. However,

some of these spaces were hallways, were in the basement, housed equipment/machineries etc.

Excluding such rooms, which were not meant for occupancy, left 115 rooms. The temperature

data for these rooms was analysed together to provide a summary view of indoor thermal

conditions during the observation periods. The data has been summarized using the plot in

Fig. 8. The plot provides the mean, minimum, and maximum temperature at each instant

of record across all 13 Periods, for the 115 rooms. Additionally, the indoor air temperature

control signals, used for determining if a DR algorithm should be operational or if the standard

inlet water temperature should be used (Section 2.5.1), have also been provided. The plot also

demarcates the 20-24.5 ℃ zone that had been used during the study as the comfort temperature

range for occupants.

It may be noted from Fig. 8 that the Wing’s maximum and minimum temperature show

a broad range of variation. The current work was not intended towards narrowing down to

the causes of such variations but, some possible reasons could be: higher/lower heat load than

designed, balancing problem of water network, too high/low airflow rate for demand in certain

spaces.
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Figure 8: Summarized indoor temperature conditions of the observed rooms

As discussed in Section 2.5.1, the DR algorithms were constrained by the room temperature

of the occupied spaces. The average temperature of the warmest rooms (90th percentile) could

yet exceed 24.5 ℃ and the average temperature of the coolest rooms (90th percentile) could fall

below 20 ℃. While such deviations in these two control signals have been graphically presented

in Fig. 8, the instances of such deviations have been summarised in Table 6.

Table 6: Number of instances where the average temperature of the coldest and warmest rooms deviated out
of the comfort bounds of [20, 24.5]℃

Deviation P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

Over 24.5 ℃ 9 16 11 13 15 70 41 19 4 33 76
Below 20 ℃ 228 140 303 69 174 4 99 108 153 13 44

3.4.2. Non-compliant rooms

We defined a “non-compliant room” as one that overheats or overcools during the operation

of a particular DR algorithm, for 10% of the time. Rooms are identified based on if the 10th

percentile of their recorded temperatures was below 20 ℃or if the 90th percentile was over

24.5 ℃. Rooms which just housed machineries/equipment or were hallways/lobbies, have been

excluded from this listing.

A summary list is presented in the Table 7. The list also includes the lowest and highest

temperatures reached in the respective Period. The room in which this condition was reached

has been underlined. The room numbers have been replaced with an alphanumeric code of the

form NWXYZ. The code has been expounded upon in Table 7. For example, 2CRWV is a room

assigned the serial number 2 which is a classroom (C), with radiators (R), external windows

18



(W), and its ventilation system is connected to one of the AHUs affected by the DR algorithm

(V).

Table 7: Period-wise list of non-compliant rooms

Period No. of
rooms

Issue Room codes Low/high
Temp. (℃)

1 7 Cool rooms 19PR-, 13OR- 19.6
Warm rooms 6ARW-, 22CRW-, 2CRWV, 4CRW-, 5ARW- 26.5

2 7 Cool rooms 9P-, 11MR-, 13OR-, 14M- 19
Warm rooms 6ARW-, 2CRWV, 5ARW- 26.3

3 12 Cool rooms 9P-, 7OR-, 8M-, 10OR-, 11MR-, 13OR-, 14M-, 15M- 18.8
Warm rooms 6ARW-, 5ARW-, 22CRW-, 2CRWV 26

4 11 Cool rooms 20CR-, 9P-, 12IR-, 23CR-, 13OR, 14M-, 15M- 17
Warm rooms 6ARW-, 22CRW-, 2CRWV, 5ARW- 26

5 12 Cool rooms 25CR-, 9P-, 21CR-V, 24CR-V, 13OR-, 14M-, 15M-,
16OR-

18.8

Warm rooms 6ARW-, 22CRW-, 2CRWV, 5ARW- 25.9
6 11 Cool rooms 1MR-, 28MR-V, 23CR-, 24CR-V, 13OR-, 14M-, 15M-,

16OR-
15

Warm rooms 5ARW-, 6ARW-, 2CRWV 26.1
7 11 Cool rooms 21CR-V, 9P-, 27MR-V, 24CR-V, 13OR-, 14M-, 15M-,

16OR-
18.6

Warm rooms 6ARW-, 5ARW-, 18CRW- 26.8
8 8 Cool rooms 13OR-, 14M-, 15M-, 16OR- 19.2

Warm rooms 5ARW-, 18CRW-, 6ARW-, 2CRWV 26.3
9 8 Cool rooms 9P-, 27MR-V, 13OR-, 14M-, 15M-, 16OR- 19.2

Warm rooms 6ARW-, 5ARW- 26
10 4 Cool rooms 21CR-V, 13OR- 16.7

Warm rooms 6ARW-, 5ARW- 25.8
11 1 Cool rooms 28MR-V 19.7

Warm rooms
12 6 Cool rooms 14M-, 26MR- 18.7

Warm rooms 6ARW-, 2CRWV, 5ARW-, 17I-W- 26.0
13 8 Cool rooms 21CR-V, 14M-, 26MR- 17.8

Warm rooms 6ARW-, 2CRWV, 3CRW-, 5ARW-, 17I-W- 25.9

Room alphanumeric codes: NWXYZ
N - Serial number
W - room type (A = auditorium, C = classroom, I = IT classroom, M = meeting room, O = open plan office, P =
personal office)
X - radiators present or absent (R or blank)
Y - external windows present or absent (W or blank)
Z - supply air temperature affected by DR scenarios (V or blank)

Periods 10 and 11 had DR settings that were particularly effective at preventing rooms from

getting too warm or too cool. As would be seen in the following section, Period 10 also had the

most positive occupant feedback. On the other hand, Periods 3, 4, 5, and 7 had DR algorithms

that lead to over 10 rooms deviating from thermal comfort goals. It is apparent that all the

rooms classified as warm rooms had external windows.

There could be such rooms which were usually deviant from the thermal conditioning goals

during most of the Periods (for example, rooms 5ARW-, 6ARW-, 13OR-, 14M-, and 2CRWV

made it to the list during 7 Periods or more). On the other extreme, we had rooms that showed

up only during one or two Periods. Counting such occurrences, we saw that during Period 3,

we had three rooms which do not come to the list on any of the other Periods and one room

which comes to the list only during one other period (Period 2). Hence, Period 3 DR algorithm
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may be considered to be particularly concerning for thermal comfort.

Of particular interest in Fig. 8 and Table 7 are the trends during Periods 12 and 13. The

DR scenarios implemented for these two period allowed for a much larger deviation in the inlet

water temperature. However, the results for room indoor temperatures show that the mean

temperature pattern did not drastically deviate from the other periods. From Table 7 it may

also be noted that there were not an excessive number of non-compliant rooms during these

two Periods, as compared to the rest of them.

In a DHN, unbalanced heat distribution can lead to some spaces getting overheated and some

underheated, thus compromising occupant comfort (Bojic and Trifunovic, 2000). Observation

of such a pattern would of course suggest that the system needs to be rebalanced or valves and

heat exchangers in the substation be renovated.

3.5. Occupant satisfaction

During certain Periods of implementations, mainly at the beginning of the study, very few

feedbacks were received, as depicted in Table 8. This may be attributed to occupants taking

the first few weeks to get acquainted with the feedback required, the method of feedback, and

the location of the terminals and using the web portal.

Because of the large floor area and considering that the Wing is used by hundreds of oc-

cupants during each Weekday, it was not possible to follow up with all of them. However,

considering the fact that the information regarding the feedbacks being requested had been

widely circulated, it was expected that occupants would provide feedback. The expectation

was that especially occupants dissatisfied with the thermal conditions would be sharing their

opinion, helping us obtain and indication of if the different DR control actions impacted occu-

pant perception.

Periods 9, 10, 12, and 13 fared particularly well with the occupants, each securing over

65% positive feedback. At the same time, it is of note that Periods 12 and 13 had quite

high acceptance among occupants in spite of the fact that much larger deviations in inlet

water temperatures were allowed during these two periods. As given in Table 2, inlet water

temperature deviation during the last two periods was markedly higher than for the rest of the

DR scenarios. Together with the findings in Section 3.4, it would appear that the DR scenarios

can be implemented without affecting major alterations in the indoor thermal conditions and

without increasing occupant discomfort.
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Table 8: Occupant satisfaction feedback during different periods

Period P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

Negative / 8 11 1 1 3 2 55 35 54 61 46 13 5

Positive , 9 3 1 0 1 0 66 39 107 127 51 36 12

4. Discussions

Considering the meagre literature that exists regarding examining the workings of DR al-

gorithms on a DHN, as observed in an actual building, the current work took an important

step forward. To evaluate the performance of the several DR algorithms implemented, a three

level monitoring was used. These levels were how the DR algorithm affected the inlet water

temperature for heating, how it affected the indoor conditions in the influenced rooms, and how

it affected occupant perception. It is pertinent to keep in mind that a “smart” control algo-

rithm, like the ones used in this study, can be nearly 30% more effective at saving peak energy

demands and at maintaining thermal comfort levels too, than a simple on/off control (Ahn and

Cho, 2017).

Though such a DR system for DHNs is not currently in market, it is raising great interest.

As a pilot study in this field, the current work managed to successfully implement and study on

the field DR algorithms for DHN. This direction of investigation could complement the recent

progress that has been made in the direction of a reliable, ease to use tool for modelling heat

demand of district scale networks (Talebi et al., 2017, 2018).

The study also set-up the frame work for a meticulous monitoring system that looked at the

performance of DR algorithms from multiple levels, ensuring the algorithms may be adjudged in

a more careful manner. This platform is set to play a major role in upcoming similar studies.

Such smart energy management systems have also been credited in previous works to have

greatly aided the end user in making decisions regarding optimal energy use (Ogunjuyigbe

et al., 2015).

Limiting heat loss to the outdoors can have a significant effect on DR applicability for

buildings using water radiator systems (Pedersen et al., 2017). In the current case, U-Wing

had undergone refurbishment within the last four years, making it a suitable study case.

While this work field tested a centralized building level control of demand control, and cen-

tralized schemes have been reported to have their advantages in terms of energy savings (Peder-

sen et al., 2017), future works would need to also examine decentralized approaches, i.e., moving

down to the room level. Control at the room level can provide better accuracy and avoid peaks

and valleys. As seen in the current work (Section 3.4.2), using the centralized building level

21



control, during certain Periods, rooms that typically did not have an issue came up to feature

in the list of non-compliant rooms. The room air temperature in these rooms could have been

better managed with a decentralized approach, possibly even improving occupant comfort. For

district level energy systems, centralized scheduling may give the best coordination but decen-

tralization of DR efforts can give improved scalability and more options (Harb et al., 2015). In

this regards, IoT thermostats may be expected to play a major role (Marantos et al., 2019).

The IoT thermostats, with ventilation control, unlike TRVs, can accurately control tempera-

ture ups and downs at the room level. The higher resolution control, extending to the room

level, can also help better address peak power (heating and cooling) issues.

Some of the challenges that face the future of DH would be lower energy demands of the

newer, better insulated buildings while peak power demand does not reduce as much, more

efficient energy conversion plants that are able to operate at lower temperatures (Tereshchenko

and Nord, 2018) and incentives for thermal energy generation from renewable sources, similar

to ones available for generating electricity from renewable sources (Aste et al., 2015). Hence,

the inlet water temperature adjustments considered, in sync with energy pricing, in this case

study have a bearing upon design of future DHNs.

Demand side management often aims at reducing peak energy consumption but in this

effort, new peaks may be created. This is particularly a concern with the rebound expected

after conservation measures are withdrawn (Motegi et al., 2007). Future systems, in addition

to reducing energy use peaks, would also need to consider trying to sync demand with energy

generation (Gelazanskas and Gamage, 2014) and this effort, they could use additional indicators,

beyond energy price (Nyholm et al., 2016).

Our observations were spread across 13 periods. During this time, the outdoor conditions

varied significantly. Hence, it was advisable to compare the performance of the DR algorithms

with the standard algorithms used for control of inlet water temperature and AHU supply air

temperature. Over time, internal load profile would also have change but this may not have

got to a noticeable level due to the large floor area of the Wing and the varied room types

it houses. A useful, practical finding was that the inlet water temperature changes effected

at the substation were rapidly reflected in all rooms of the Wing, indicating the system was

able to respond fast to DR events. Reduced temperatures, system-wide, in a DHN, are an

important aid to achieving savings in future energy systems, with benefits being realized both

during operation and in the energy production process (Lund et al., 2018). This is the current

direction of progress towards fourth generation DH.

Periods 12 and 13 had DR algorithms that allowed significant deviations from the standard
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control curves, as compared to the other periods. This can be seen from the results presented

in Section 3.2. During these periods, instead of allowing water temperature deviations based

on a percentage of the radiator output, water temperatures were allowed to deviate by +10 to

−20 ℃. This can be a useful pointer for implementation of DR algorithms in the future. Even

with the larger allowed deviations during the last two Periods, room air temperature did not

fare any worse than the other periods, as presented in Table 7.

While technical concerns may come with lowering temperature of heating water in a DHN,

they do not appear to be insurmountable (Hasan et al., 2009; Ovchinnikov et al., 2017). Beyond

technical considerations though, a major concern would be comfort of occupants. Across the

different periods, the DR events did not cause any major deterioration to occupant indoor

thermal comfort experience, as seen in Table 8. This was also the case for Periods 12 and 13

which allowed much greater reductions in heating water temperature. It may be noted here

that previous studies also indicate changes of ∼2 ℃ to air temperature being unlikely to impact

comfort of occupants (Aghniaey et al., 2018, 2019).

These control strategies still had majority of respondents providing a positive rating. Simul-

taneously, the wide range of thermal preference individuals over the entire Wing may have (Xu

et al., 2009), could also have contributed towards keeping cumulative satisfactions high as the

space temperature varied during the DR events. Since the occupant feedback system used

in this work was rudimentary, subsequent works would need to extend the occupant feedback

mechanism to obtain more continuous input from occupants, on multiple headings concerning

their comfort perception and preferences. In future studies, it would also be interesting to see

occupant satisfaction levels when the implementation is done over the entire DH network. Sim-

ulation results suggest that more building types with diverse usage profile, can provide greater

opportunities for optimizing energy use without compromising thermal comfort (Ahn and Cho,

2017).

During five periods, in addition to affecting inlet water temperature, the algorithms also

controlled supply air temperature for AHUs. The influence on supply air temperature, in

terms of deviations from the standard control profiles, was not as stark as for the inlet water

temperature and the deviations were similar across all five periods.

A major drawback of the current work may be pointed out as the lack of data on heating

energy usage or heating power. For the studied wing, this was not possible due to certain

technical barriers. To gain a holistic understanding of the DR scenarios’ impact, future works

will be undertaking comprehensive heating energy and power monitoring as well. But, even

when such monitoring is possible, the comparison of the energy or monetary cost results of
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different periods may not be able to identify relatively small effect of demand response control

because of the confounding contributions from user profiles changing loads, changes in outdoor

conditions, and changes to operation hours. In particular, for this case, since the building was

a university campus building, its usage varies a lot due to, for example, different schedules of

the courses.

Future challenges of DR relate to improved control strategies and markets that can support

the DR economically (Pinson et al., 2014). Fixed energy price remains an archaic concept that

may hinder the progress of modern DHNs. Fixed pricing does not conform to the principles of

modern market prices and precludes any consumer contribution and responsibility in improving

the system efficiency (Gelazanskas and Gamage, 2014; Syri et al., 2015; Wernstedt et al., 2007).

Without variable pricing, customers may lose a major incentive for saving energy. The non-

tangible incentive, in the form of helping the planet and the environment, may gain only limited

success (Wernstedt et al., 2007). With variable energy prices, an engaged and active user stands

to benefit the most.

In practical terms, variable pricing schemes for electric grid are already used quite widely

across the US and Europe with programs such as critical peak pricing, peak time rebated, and

time of use (Hu et al., 2015; Pallonetto et al., 2016). Hence, it is expected that energy prices

conforming to the actual generation costs, as used in the current work, would be a reality sooner

than later. As it cannot be expected that occupants constantly monitor price changes and make

manual changes to usage, this role would be taken up by the building management system, and

this makes an eventual business case for the energy service companies (ESCo) (Reynolds et al.,

2017).

For future studies, another interesting aspect to include would be extending the DR mea-

sures to the whole building and even possibly multiple buildings. While occupant behaviour

and interaction with the heating system can lead to diverse energy use profiles, system level

variations go down as more consumers are included (Xu et al., 2009). Aggregation of buildings,

adds diversity of usage and can help demand side management (Aduda et al., 2016; Amaral

et al., 2018).

5. Conclusion

The current work started out with a unique perspective of field testing demand response in

the context of DHNs and successfully achieved the desired implementations. Eleven variants

of DR algorithms that influenced the space heating water inlet temperature and the supply air

temperature to certain rooms, were tested in a university building. One of the most conclusive
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results obtained was that occupant perception of the indoor thermal environments did not

deteriorate during the DR implementations. Certain DR implementation periods even seemed

to improve occupant perception over the reference periods. This was while wide changes were

noted for the maximum and minimum room air temperatures. This wide fluctuation suggests

that a decentralized strategy could be more successful in limiting the highs and lows of air

temperature in certain rooms, ensuring needs of occupant comfort. In a supplementary study,

it was also found that changes made to water temperature at the substation level reflected in

the rooms’ radiators with minimal time delay.

The different implementations were able to achieve lowered inlet water temperature to

different degrees of success. Irrespective of how the price signal was being assessed to determine

periods of conservation vs loading, the achieved lowering with respect to standard algorithms,

depended on the allowed temperature deviations. For the last two periods, even while keeping to

the predefined comfort constraints, temperature deviations of ∼20 ℃ were achieved, compared

to the default control algorithms. The measured temperatures in most of the rooms of the

Wing only infrequently ventured out of the defined comfort limits. This would imply that the

building’s thermal mass, along with the price based implementation of the algorithms, present

significant avenues of energy flexibility.
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Syri, S., Mäkelä, H., Rinne, S., and Wirgentius, N. (2015). Open district heating for Espoo city with marginal

cost based pricing. In European Energy Market (EEM), 2015 12th International Conference on the, pages

1–5. IEEE.

Talebi, B., Haghighat, F., and Mirzaei, P. A. (2017). Simplified model to predict the thermal demand profile of

districts. Energy and Buildings, 145:213–225.

Talebi, B., Haghighat, F., Tuohy, P., and Mirzaei, P. A. (2018). Validation of a community district energy

system model using field measured data. Energy, 144:694–706.

28



Tereshchenko, T. and Nord, N. (2018). Future trends in district heating development. Current Sustain-

able/Renewable Energy Reports, pages 1–9.

Verda, V. and Colella, F. (2011). Primary energy savings through thermal storage in district heating networks.

Energy, 36(7):4278–4286.

Wernstedt, F., Davidsson, P., and Johansson, C. (2007). Demand side management in district heating systems.

In Proceedings of the 6th international joint conference on Autonomous agents and multiagent systems,

page 272. ACM.

Xu, B., Fu, L., and Di, H. (2009). Field investigation on consumer behavior and hydraulic performance of a

district heating system in Tianjin, China. Building and Environment, 44(2):249–259.

29


