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Abstract: This paper reports a general overview of current research on analysis and control of the
power grid with grid scale PV-based power generations as well as of various consequences of grid
scale integration of PV generation units into the power systems. Moreover, the history of PV renewable
growth, deregulation of power system and issues related to grid-connected PV systems considering
its contribution to various responsibilities like frequency control, virtual inertia capabilities and
voltage regulation are discussed. Moreover, various outcomes of the high-penetrated grid with PV
power plants such as power quality, active and reactive power control, protection, balancing and
reliability under various loading conditions are reviewed and discussed.

Keywords: integration of PV plant to grid; large-scale PV power plant; modern power systems

1. Introduction

Energy and the matter of renewable resources are critical issues in future power grids. During
previous years, energy demand has increased drastically [1] and due to global warming, renewable
energy development is crucial in order to reduce conventional fossil power plant harmful emissions [2,3].
Currently, renewable energies being harvested are solar, wind power and hydraulic energy. Facing
problems such as climate change and environmental awareness in parallel with huge deregulations
in conventional power systems have forced governments to think more deeply about the alternative
sources of energy to substitute the traditional sources of energy. These matters have changed the face
of the conventional grids and it is expected a rapid deregulation and revolution due to the massive
integration of the renewable based generations with stochastic behavior like photovoltaic (PV) systems
and wind power. Solar power is becoming more attractive. Solar energy has a huge harvesting potential
and based on European Photovoltaic Industry Association (EPIA) reports, the European cumulative
PV power was around 29,777 MW in 2010, while as shown in Figure 1, just in 2014, this value for the
entire European Union was more than 88,636 MW [4]. It predicts that in 2019 the capacities can be
between 121,087 MW to 158,156 MW, which suggests a strong year for the PV industry and the rate of
installations will continue to increase through the next 5 years [5].
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In recent years, the most auspicious usage of PV-based generatlons has been their integration into
the IREFEERLYERE pc})‘vevtelir‘osr'i& PRISIQURHFREe PRSPk BIRGE &‘m]i‘é"‘sra?gé‘WBr RifgsptipLino
t%aefersggﬁeaeaega%m%ao 192 R 123, 5%Vm1%¥e°£§astﬁa$eag%é%§§ RiehEVGhaseck i Olofsvfs
s%%u%u%%é‘%%id sias csr11$1h?o l%srelfe'&{‘é’céf% torof“&s‘?rf‘o%lt‘e%rehet‘%‘éeIﬁ\’/‘planableot}%g%‘i Vel
TR L VRl B atgsoalo s St VT e Diney § da%ﬂfled
1r1tot oug rrYaHf chYﬁ\]iys s]tgmscc?le’r ar&e-scale all scalg PV. s stems n

aclties is u %812%‘6‘ 01(4 egllum scaﬁe, it 18 aroun
the small scale PV system, the range of capacities is up to 250 kW. For medlum scale, it is around 250 to



Eneysies 2049019, Y FQREEER REVIEW 3 of3l8¢ 19

1000 kW. Large scale, it is considered around 1 to 100 MW, and for very large scale, the power capacity
is Ribhéo 11000 kOV.NAdigki 4¢ale, it is considered around 1 to 100 MW, and for very large scale, the power
capacity is higher than 100 MW [14].

2.1. Structures
2.1. Structures
The typical layout of a Utility-Scale PV based system requires several transformers, PV inverters
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3.2. Power System Deregulation
3.2. Power System Deregulation
In a competitive electrical grid environment, the VIU does not exist anymore and therefore,
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especially critical with the integration of intermittent resources of energies [42—46].

3.3. Distributed Power System

Distributed power systems (DPS) are devoted to customer load supply, which are geographically
distributed in an inherent manner, by using distributed generators and energy storage systems spread
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4. Contribution of Large PV Power Plants to Ancillary Services
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control methods and new concepts, like active management of distribution networks and smart grids,
to enable an efficient and reliable operation of DPS [63-68].

4. Contribution of Large PV Power Plants to Ancillary Services
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[76 77] AGC or load frequency control (LFC) is essential in power system stability and control analysis

The main goal of the AGC is to eliminate any mismatches between generators and load demand and its
concepts are well-known [38—42]. With the increasing trend in displacing the conventional power plants
with renewable plants, effects in frequency control will come into sight. Applying various intelligent
control methods like fuzzy, neural network and observer methods will be useful for more flexibility
[7R 701
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control analysis. The main goal of the AGC is to eliminate any mismatches between generators and
load demand and its concepts are well-known [38—42]. With the increasing trend in displacing the
conventional power plants with renewable plants, effects in frequency control will come into sight.
Applying various intelligent control methods like fuzzy, neural network and observer methods will be
useful for more flexibility [78,79].

Generally, when a photovoltaic plant stops producing, a conventional power plant will try to
replace its place in the electricity grid. This situation will occur in case of a sudden change in irradiation,
if the rate of irradiation drops is within certain limits such that there is enough time for governors
to respond to it and otherwise in a worst case scenario where a UFLS relay may discard some loads.
The frequency relay will activate when the frequency reaches a critical value around 59.7 Hz [80].
During a fault condition, the response of the PV-based generation units will not show oscillations. This
is due to the fact that they do have any mechanical parts and therefore they settle down much faster
than conventional generators [80].

4.2. Rotor Angle Stability

It should be noted that the oscillatory stability is related to the categories which is called rotor
angle stability. Generally, oscillatory instability in low frequency ranges will be caused due to the lack
of enough damping torque. This damping in conventional generation is primarily given by the damper
winding of machines [81]. Generally, there are two types of oscillatory instability, local and global.
Local instabilities will involve a minor area, and typically are due to rotor angle oscillations of each
generator against the other part of the system. This oscillations are usually called local plant mode
oscillations [27,38]. Global oscillations are usually caused by interactions between major groups of
generators that are usually expanded in a very large interconnected area. Global oscillations will have
widespread effects and it may lead to some partial or full black out in the system. In such scenario,
a group of generation units in one area will swing against another set of generation units in the neighbor
area. These issues are known as inter area oscillations. Application of HVDC links in parallel with AC
links can improve these oscillations [62].

Based on eigenvalue analysis, a system with PV generators will improve dynamic responses
by shifting the critical modes to the left half plan and can enhance the dynamic stability of the
interconnected power grid by adding more damping over critical modes [27]. In several reports the
local and global oscillations can be improved using different technique for PV plant control. As reported
in in [82], the POD at PV is designed by using wide-area signal. The damping ratios of the local modes
are slightly increased by the integration of POD at PV, while on [83,84] the global modes are improved
for systems with high penetration of PV power plants.

In case of small signal stability analysis for PV effects, there is a limit on the operation of the PV
based power generation, as far as the system oscillation stability is of concern [85]. The influence of
the PV-based penetration on the grid oscillations and its dynamic stability will vary according to the
changes in the system operating’s condition, which is due to the effects of damping torque impact
from the PV system which can be positive or negative. The most serious operating condition for the
PV-based power generation unit will arise when the sign of the damping torque’s contribution of the
PV system is changing [83-85].

4.3. Reactive Power and Voltage

The existing interconnected grid is not completely designed for large scale support of
interconnected PV and any kind of change in voltage limits during the high solar irradiation is
possible. A possible solution for reducing the voltage rise in the feeder, is to operate PV-based
generation units with the ability of providing reactive power [86]. In addition, in the case of voltage
collapse the inverter has to be able to support sufficient reactive current and stabilize the grid within
some time frames defined by grid codes. It should be noted that, the total power generated by the PV
generation units follows carefully the pattern of irradiance (due to the MPPT control). Considering the
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fact that, replacements of conventional generation units with PV-based generations will result in a
decrease of the total inertia of the interconnected power grid. In the case of voltage stability, for the PV
generation units which are not equipped with proper voltage controllers, the connected bus voltage
will oscillate more during the periods of severe changes in irradiance, keeping in mind that fluctuations
may become much more significant with higher penetration of the PV-based generation [87].

There are relationships between the profile of the system voltage and the maximum penetration
rate of a PV network. In fact, the voltage may increase beyond the standard level and the larger amount
of power flow produced by DGs at various points of a network may disturb the voltage regulation
of the system, especially when a PV-based generator unit is located near the end of a feeder [88,89].
The voltage analysis case studies clearly illustrate the voltage sensitivity of a PV neighborhood to PV
penetration rate, load variations, and the connection point of the PV cluster on a feeder [88]. That is
why the location of RE generators, sizing and configuration of the power system are very important in
the case of power quality assessment. Operation of the PV systems at leading power factor with the
possibility of absorbing the reactive power is one of the known solutions for compensating this kind of
effects [89]. It is worth mentioning that the problem of voltage in rural lines is more than in a meshed
network in large cities. This is due to the fact that the distribution line impedance is the key parameter
which has more effect on voltage rise [90]. In fact, in a large power grid, if the size of penetration and
distribution of PV is well designed according to the grid topology condition, the PV usage as a DG has
a positive effect on voltage profile, reliability and loss reduction in a very long distribution line [91].

4.4. Quality and Protection

Grid-connected PV systems will have several effects on voltage quality and its control. Since PV-
based power generation systems are connected through electronic power converters, they will produce
harmonics in the grid but due to current advances in inverter technologies, the harmonic distortions
will have an acceptable range. Mainly, the PV effects on power quality and losses reduction are linked
to the installation location and the size of the PV system that must be adjusted carefully [27]. In fact,
if the PV system is coordinated in a correct manner, various positive effects could be achieved for a
distribution system in terms of reliability and quality. For example, a DG can be used as a generation
backup during contingencies. In an online system with a high level of PV penetration, it is possible to
supply customers during the interrupted situation by transferring the power to other feeders with
DGs via switch operation [91,92].

The proper location of the large PV system and loading conditions have considerable effects on
the security of the network. It is very important to check the time when the heavy load conditions
match with the maximum output generated by PV power plants since it may increase the load level
of some lines which are already heavily loaded [93]. Application of intelligent methods like genetic
algorithms to obtain the most optimum location and the most suitable size of PV and the application of
capacitor banks in the system for minimizing the losses of the system are also interesting topics [94].
The solar penetration can enhance the damping perfectly when operated at 0.9 lag. This might lead
to the conclusion that reactive power support coming from the PV systems could be helpful for the
damping of oscillations [95].

In the case of power system protection, it should be noted that with a huge increment of generation
on the feeder, over-current flows in various parts of the feeder will occur. Thus, problems such as
sympathetic tripping and other type of over-current disruption arise. In general, over-current protective
devices are coordinated by setting the pickup currents to sense the expected fault currents related
to the highest impedance fault. By adding a DG unit between the protection component and the
fault, the sensitivities in the feeder protection can be reduced. The DG units maintain the voltage
profile through the up line part of the feeder and therefore the current which is seen by the protective
components and also the level of the sensitivity of relays can be reduced and for complete detect-ability,
it needs to sense the faults in a closer place [96,97]. As reported in [98], if there are faulty nodes in the
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system, a novel algorithm to deal with such issues is presented. Their proposed multi-scale filtering
algorithm, which is using local information, can withstand both faulty and Byzantine nodes.

In the case of security, the conventional power system is a passive network, it means that the power
exchanges in most the radial distribution system will have single directions. In the case of modern
power grids with various PV distributed generators, the power flow has bi-directional characteristics.
Therefore, it is necessary to redesign power systems in order to coordinate PV systems with the original
relay system [29,70]. Injection of inverse power from downstream points will not be detected by
traditional fuses because of their design and capabilities. In case that the islanding detection by relay
fails, then the inverter might remain in the service (on-line) and cause severe threats to the components,
especially demand side equipment.

The electrical distribution utilities have to fulfill some important restrictions about the power
quality of the electricity delivered to its customers. One of these restrictions is related to the voltage
quality, like if the voltage gets a too high value in PCC, especially during the noon of summer days,
PV systems could be stopped and should automatically be disconnected from the grid. Generally,
PV systems are equipped with under-over voltage relays and when the value of voltage in the PCC
reaches a setting above the over-voltage relay, the photovoltaic unit will be disconnected, a condition
commonly named “output restriction” [90].

4.5. Power Balancing

Thermal power plants when running in frequency control mode, will incur some additional costs.
This is due to the fact that the related generation should be matched with load variations. However,
when a high level of renewable-based generation is integrated into the existing power system, usually
an additional source of variation will be added to the system which is already concerned with the
changes of its demands. It should be noted that the whole power grid must be balanced instead of
balancing each individual load or resource [6]. The main question in high penetration of renewable-
based power generation is to which extent the balancing uncertainties can be increased? Obviously
it became clear that most of the variations at the output of PV system or in wind units are mainly
unrelated to the loads. Thus, this might indicate that an additional source of uncertainty can be
introduced by PV power. The total thermal power plant output is approximately a “sum of squares”
of two separate parts [98]: total variability of electricity demand and total variability in renewable
energies outputs. Demand prediction techniques [99-102] and time-series data analysis [35,103,104]
for better prediction of DG outputs will be useful it these fields, so it is preferable to maintain some
reserve to recover from probable trips of conventional power plants.

4.6. PV Power Plants and Reliability of Power System

When renewable energies displace a significant amount of conventional power plants, commonly
an additional conventional power capacity is required to keep the system supply secure [6]. This
added plant margin will be required, especially when the output of renewable generation are at its
maximum level.

The annual ratio of continual output energy produced by a power plant is known as a capacity
Factor. This factor will be a very useful guide for knowing the probability that the generation units will
be available for contributing against load demand. However, in the case of renewable-based power
plants, especially during peak load demands, renewable energies sources are not capable of providing
the same level of reliable power as conventional generators but they are still capable of providing their
contribution of part of the loads. This ability of renewable energies resources is known as the capacity
credit and is the amount of load produced by renewable energies plants, see [98,105]. During the peak
loads, in addition to the operating reserve, some system margin is required and this will be affected
by the level of renewable energies penetration [6]. In addition, in some periods that the available
output from the renewable resources exceeds demand or in a situation that it cannot be accommodated
by the transmission system, it is necessary to discard energy from renewable energies plants. This
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output control can be done by pitch angle control in wind turbines or inverter control in PV power
plants. However, it will take some economic penalties for renewable energies plants which become
increasingly important at high penetrations [106-111].

Combination of different renewable-based sources such as PV and wind is very helpful for the
reliability of the system [95]. Furthermore, it should be noted that applying a PV-based generation
unit according to the MPPT for a fixed amount of the maximum power might reduce the flexibility of
the unit for proper power regulation [106]. As a solution to increase the reliability, the PV system can
operate with a pseudo-maximum power point instead of MPPT. This idea is shown in Figure 8, where
P; represents the maximum possible power from the MPPT algorithm and P, represents the false or
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registered after the mentioned article, by the same authors named this system a virtual synchronous
machine (VISMA) [114].

The first article was coauthored by Iravani [115]. A detailed control scheme indicating how
this concept can be implemented was presented in this paper. Active power control loop was in
charge of the inertial characteristics. PLLs with inertia emulation capabilities were first reported by
Wesenbeeck et al. [116]. They named their concept a “virtual synchronous generator”.

Emulation of synthetic inertia by means of an extra loop was started in [117] by Vrana et al.
The main concern of this method is its practical implementation, as it is based on a time derivative
operator. The main advantage of this method is its straightforwardness.

Later, an inertia emulation and virtual admittance combination developed named synchronous
power controller (SPC) was described [118]. The insertion of the virtual admittance in the controller
conveys several advantages, such as accurate power sharing, grid current control, and ease
of implementation.

To avoid direct modulation in the inner- loop an alternative method was proposed. The first
journal paper was authored by D’Arco et al. [119]. Figure 9 shows the first publications of each
type, although a number of studies were published around the same time. For example Weiss et al.’s
“synchronverters” [120], and Ise et al.’s “Ise lab” [121].

5. Conclusions

This paper has presented a comprehensive review of the recently published works in the area
modern power system control and analysis with integration of large-scale PV renewable resources.
It was indicated that large-scale PV power plants have a massive potential to become an important
player in modern power systems. Benefits, problems, various effects of high penetration of large-scale
PV power plants and other requirements to help PV plants work properly instead of conventional
power sources in the grid and contribute to ancillary services such as frequency or voltage control
was discussed.

Considering the location and penetration level of PV power plants, the manner of dispatching the
existing conventional power plant and its configuration, PV plants may have beneficial or detrimental
effects on the system behavior. Current power systems are not designed to support high penetration of
interconnected PV and to meet the grid codes. Applying smart and online control methods for more
coordination between all parts of modern power systems will be necessary.

With more and more penetration of renewable energy resources such as PV plants, the available
inertia level of the grid is decreasing significantly. This matter is becoming a critical challenge for this
emerging modern power systems control paradigm that should be properly addressed. As discussed
earlier, the development of virtual inertia control strategies is a step towards overcoming the issues
faced issue. On the other hand, inclusion of battery energy storage systems with PV plants will play an
important role. In recent years, the capital cost of battery energy storages has decreased drastically,
while their technology, reliability, and the life cycle have all increased significantly. The authors of
the current paper believe that hybrid PV/battery plants are another promising solution on the way of
addressing the issue of synthetic inertia control and several more faced issues.
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Nomenclature

AGC Automatic Generation Control
BESS Battery Energy Storage System
DG Distributed Generator

DC Direct Current
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DISCO Distributed Company

DPS Distributed Power Systems

EPIA European Photovoltaic Industry Association
ESS Energy Storage System

FACTS Flexible AC Transmission Systems
GENCO Generation Company

HVDC High Voltage Direct Current

ISO Independent System Operator
MPPT Maximum Power Point Tracking
P&O Perturb and Observe

PWM Pulse Width Modulation

PCC Point of Common Coupling

PLL Phase Locked Loop

PV Photovoltaic

PVPP Photovoltaic Power Plant

TSO Transmission system operator
UFLS Under Frequency Load Shedding
VIU Vertically Integrated Utilities

VSG Virtual Synchronous Generator
VSsC Voltage Source Converter
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