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Optimal energy-aware load balancing and base station
switch-off control in 5G HetNets

Pasi Lassila∗, Misikir Eyob Gebrehiwot, Samuli Aalto

Department of Communications and Networking, Aalto University, Finland

Abstract

We consider optimal energy-aware load balancing of elastic downlink data traffic
inside a macrocell with multiple small cells within its coverage area. The system
is modeled as a set of parallel queues. In particular, the model of the small cell
includes the setup delay resulting from activating the base station after being
placed in a low power off state and the idle timer controlling the amount of time
to wait before being switched off. We apply the theory of MDPs to develop
state-dependent dynamic policies for controlling both the routing of the arrivals
as well as the length of the idle timer that minimizes the weighted sum of
energy and performance. In particular, we show that in the optimal policy
the idle timer control can be simplified to selecting a value arbitrarily close
to zero or infinite. Additionally, by utilizing the first step of the well-known
policy iteration method, we develop an explicit near-optimal dynamic policy for
routing the arrivals and also for determining the idle timer configuration of the
system, based on the expressions for the future marginal costs. The performance
of the policy is illustrated through numerical examples.

Keywords: HetNets, load balancing, performance-energy tradeoff, parallel
queues, Markov Decision Processes

1. Introduction

Energy-aware heterogeneous networks (HetNets) is one of the key enabling
technologies for realizing the future 5G networks to allow user transmission
speeds reaching several Gbit/s [2, 29]. Specifically, HetNets address the prob-
lem of spatially heterogeneous distribution of the traffic load within a cell by
introducing inside the coverage region of the macrocell so-called small cells,
sometimes also referred to as pico- or femtocells, with low-power base stations
that are operating under the control of the macrocell. The small cells can offer
at a traffic hot spot a high transmission rate to nearby users and thus some of
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the traffic can be off-loaded away from the macrocell to the respective small cell.
Such load balancing clearly can benefit the performance of the users, for exam-
ple, by minimizing the delay. However, in modern systems it is also important
to consider possibilities for saving energy by switching off small cells when the
load is low.

We study the following scenario. We consider a single macrocell with several
small cells inside its coverage region serving downlink traffic. The user traffic
consists of elastic flows, roughly corresponding to file transfers controlled by
TCP, that are downloaded through the base stations. New flows arrive according
to a Poisson process. Thus, the number of active flows varies randomly over
time and the flow-level performance is represented by the mean flow-level delay,
i.e., the mean file transfer delay. Upon the arrival of a new flow, a routing
policy will decide whether to serve the flow through the local small cell or the
macrocell. From the energy point of view, the macrocell is always on in order
to provide coverage in the whole cell area. However, the small cells can be
switched off to save energy during low load. Activating again a small cell that
has been switched off incurs a performance cost in the form of a setup delay,
thus giving rise to a performance-energy tradeoff in the system. Our objective is
to develop energy- and delay-aware load balancing algorithms. There is already
a vast literature on algorithms for controlling the performance-energy tradeoff
in HetNets, and we review them in detail in the related work.

In our flow-level queuing model, the macrocell is represented by a multiclass
M/M/1-PS queue, where the classes represent flows that arrived in a given small
cell but are served by the macrocell. The small cells are modeled as single-class
M/M/1-PS queues with a setup delay, and we additionally allow another control
parameter, the so-called idle timer, which defines how long a small cell waits
before switching off after the small cell becomes idle (i.e., becomes empty of
flows). Overall, the system consists of a set of parallel queues. The control
policy consists of two parts: the routing policy decides whether the arrival is
routed to the small cell or the macrocell and the idle timer control policy decides
the appropriate idle timer value to be applied in each small cell.

To characterize the performance-energy tradeoff, we represent the system
cost as a weighted sum of the delay and energy, which is a popular cost metric
for analyzing the tradeoff, see, e.g., [1, 4, 28]. To optimize the cost, we consider
dynamic state-dependent policies and apply the theory of Markov Decision Pro-
cesses (MDP) and the so-called policy iteration method [20]. In particular, in
the first policy iteration (FPI) approach, the idea is to consider only the first
step of the policy iteration. By using a probabilistic initial policy the future
costs from the routing actions only depend on the so-called value functions of
each small cell and macrocell independently. The policy is near-optimal in the
sense that typically the largest improvements are obtained with the first step
of the policy iteration. The MDP approch has been also applied to the HetNet
load balancing problem earlier, as will be reviewed later in the related work.
Typically, the MDP problems are only analyzed by using numerical methods
and fundamental analytical explicit results on how the optimal (or even near-
optimal) policies are scarce. Our novel contributions include explicit analytical
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insights on the structure of the optimal policy, in particular related to the idle
timer control problem.

This paper is an extended version of our earlier conference paper [12]1, where
we studied the same system model as considered here. The explicit forms of
the value functions for the small cells and the macrocell were derived and the
FPI policy was determined. However, in [12] only the routing decision was
considered as part of the FPI optimization step. The idle timer was assumed to
be fixed statically and we numerically investigated its impact on the performance
energy-tradeoff. In this paper, we explicitly include the idle timer as part of the
optimization in the MPD framework and study the joint dynamic control of
routing decisions and idle timer values, which can be selected from an arbitrary
set with given lower and upper bounds.

In more detail, our new technical contributions compared with [12] are the
following. We obtain novel fundamental insights to the optimal control of the
routing and the idle timer values. Based on the properties of the so-called op-
timality equation, we first show that in the optimal policy, the optimal timer
value is always set equal to either the lower or upper bound, i.e., intermediate
values do not give any additional benefit. The lower and upper bounds are arbi-
trary and can be selected to be arbitrarily close to zero and infinite, suggesting
that it is optimal for the small cell to switch off immediately or never to switch
off. We also show that in the optimal policy the optimization becomes separa-
ble with respect to all decisions, and there is no need to consider combinations
of the possible actions in a given state. Additionally, for the FPI policy itself,
based on the explicit expressions of the value functions, we show that the idle
timer control action becomes equivalent to determining the optimal idle timer
values based on the mean costs following from the initial probabilistic routing
policy. These results significantly simplify the idle timer control problem in
our case, and also generalize similar earlier results on the optimal idle timer
selection in an energy-aware M/G/1-PS queue with Poisson arrivals, see [13],
to queues with non-Poisson input. Finally, the near-optimal FPI policy then
consists of a static selection of the idle timers and a dynamic state-dependent
routing policy, which depends on the marginal cost of routing the flow to the
local small cell or to the macrocell. The form of the FPI policy has a linear
marginal performance cost and a constant energy cost with respect to the num-
ber of flows in the system. Our extensive simulations confirm that the FPI
policy is able to achieve significant gains compared with the static initial policy
as well as other dynamic heuristic policies based on the well-known JSQ-policy
(Join-the-Shortest-Queue).

The paper is organized as follows. The system model is given in Section 2.
The optimal routing and idle timer control problem is defined and analyzed in
Section 3. The FPI approach is introduced and the FPI policy is developed in
Section 4. Numerical results and conclusions are in Sections 5 and 6, respec-
tively.

1available from: http://www.netlab.tkk.fi/~pelassil/lassila-networking2018.pdf
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2. Related work

As mentioned earlier, energy-aware load balancing in HetNets has been stud-
ied considerably recently. Typically, the approaches include developing a static
optimization problem formulation and solution algorithms for minimizing the
energy consumption subject to constraints on the average traffic characteristics,
such as, the average load in the system. The locations of the users can be either
assumed to known in the problem, as in, e.g., [30] or there is an assumed given
user density, as in, e.g., [6, 19, 31], based on which user traffic characteristics,
e.g., the average load, can be determined. Also, by using similar system models
more heuristic load balancing and on/off control algorithms without a rigorous
mathematical optimization framework have been presented in [15, 21]. Finally,
a more detailed recent survey on similar approaches can be found in [14]. How-
ever, while being insightful and allowing a more detailed modeling of the MAC
layer and the wireless channel, the above mentioned works do not take into ac-
count the stochastically varying user population and the delay performance of
the users. Our focus is to take these aspects explicitly into account by using a
queuing theoretic approach.

There is a significantly smaller body of work applying stochastic models for
the HetNet load balancing problem. In this context, as mentioned in Section 1,
it is natural to apply the theory of MDPs for developing control algorithms.
In particular, MDPs have been applied recently for various control problems in
HetNets in [7, 8, 9, 16, 17, 22, 23, 24, 25, 26, 27]. Next we comment on these in
more detail.

In [25], an MDP formulation is derived for a mobile user for the handover
decision based on local information that the mobile user observes, and thus
the modeling view point is very different from ours as the optimization is not
concerning the behavior of the whole system. On the other hand, in [17] and [27]
the optimization of the routing actions is studied, but the system model only
considers a single small cell inside the macrocell and importantly no energy
aspects are considered. In [24], the model includes many small cells inside
the macrocell and applies to elastic traffic, but a significant difference in the
model, which makes the model in [24] more complex than ours, is that in their
model small cell base stations operate in the same frequency as the macrocell
thus creating interference. We assume that small cells and the macrocell do not
share the same frequency, but operate in the outband mode. However, in [24] the
optimization does not include the routing actions at all, but only concerns the
base station on/off actions, while we consider jointly optimizing both the routing
and the base station on/off switching. In [7], both base station on/off control
and routing actions are considered for a system with multiple small cells, as
done in our paper. The system model in [7] applies to realtime (inelastic) traffic
and also includes mobility (which affects the underlying queuing model). In [8],
partly by the same authors as [24], a similar problem is studied but the network
setting is slightly different and corresponds to a flat non-hierarchical sectorized
system (i.e., not a HetNet), where again the objective is to optimize the base
station sleep modes. The problem is cast as an MDP but also an online learning
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algorithm is proposed to allow an adaptive implementation of the optimized
policy. Similarly, in [9] a learning algorithm is provided for a HetNet scenario to
optimize the base station on/off switching and traffic load balancing. However,
common to all papers [7, 8, 9, 17, 24, 25, 27] is that they do not contain explicit
analytical results on the optimal policy. In these papers, the decision problem
is formulated as an MDP and the solution to the problem is obtained only
numerically, typically by applying the value iteration algorithm, or a learning
algorithm (which can be viewed as an iterative solution to an underlying MDP)
is proposed. Our contributions are, on the other hand, precisely in the structural
explicit results related to the optimal (or near-optimal) policy, as detailed in
Section 1.

Notably, in [22] (and its earlier version [23]), the authors consider an MDP
problem for the load balancing in a model with only one macrocell base station
and one small cell carrying both elastic and inelastic traffic, and structural
results that the optimal load balancing policy is of threshold type have been
obtained. However, their model is simpler than ours and does not consider the
energy-aware features.

To develop an explicit form of the policy for routing the flows, we use the
FPI approach, as discussed earlier. In our prior work, we have applied the
FPI approach to load balancing in HetNets for elastic traffic in [16] and [26].
However, in [16] the system model was simpler and we only considered the
routing actions for load balancing without any energy-aware features. In [26],
our system model was similar to the one in this paper, but the idle timer control
for base station on/off switching was not included in the MDP problem. More
importantly, in [26] the FPI policy was determined numerically and no explicit
results were given. Also, in a slightly different modeling context involving job
dispatching among parallel queues, we developed the FPI policy for the routing
decisions among a system of energy-aware queues with setup delays but without
the idle timer control feature in [11]. In contrast to the above mentioned papers
[11, 16, 26], here we obtain fundamental insights on the structure of the optimal
policy, in particular related to the idle timer control problem.

3. Model

We consider a heterogeneous wireless system consisting of a single macrocell
and K separate small cells located inside the coverage area of the macrocell.
The macrocell is indexed by 0 and the small cells by k = 1, . . . ,K. We assume
that the small cells operate in an outband mode, i.e., they have their own radio
resources and do not interfere with the macrocell. In addition, we assume that
the small cells are far enough from each other so that they do not interfere with
each other either.

Traffic consists of elastic downlink data flows (such as TCP file transfers).
Let λk denote the arrival rate of new flows within the area of small cell k. Each
such a flow can be served either by the small cell itself or the macrocell (but not
by the other small cells). Upon the arrival, a routing decision must be made
whether the flow is attached to the small cell or the macrocell. In addition, let
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λ0 denote the arrival rate of those flows (outside the “hotspot” areas covered
by the small cells) that can only be served by the macrocell. All the arrival
processes are assumed to be independent Poisson processes.

Each small cell k is modeled by a single server PS queue, which implies that
flows are scheduled in each time slot so that all resources are given to one flow
at a time and the flows are served in a round-robin manner. We assume that the
service time Sk of an arbitrary flow in small cell k is exponentially distributed
with mean E[Sk] = 1/µk. The mean service time E[Sk] is the average time
needed to complete the transfer of a random flow if there were no other flows
to be carried by the same cell. We note that the service time is affected at
least by the size of the original flow, the location of the corresponding mobile
terminal (within the small cell), and the radio channel conditions during the
flow transfer. However, since the scheduler of the small cell does not utilize
these features, we do not model them separately. PS queues have been applied
as reasonable models for modern wireless systems in a large number of papers
since the seminal paper [5].

For each small cell, we apply the DELAYEDOFF energy state control (ac-
cording to the terminology of [10]). As long as there are flows in the small cell
to be served, the state of the server is said to be BUSY, but as soon as the
system becomes empty, the state changes to IDLE. The server remains IDLE
as long as one of the following events take place. Either a new flow arrives, in
which case the server becomes again BUSY and starts serving the new flow, or
the idle timer (associated with the idle server) expires, in which case the server
is immediately switched OFF. In our model, the length Ik of the idle timer of
small cell k is assumed to be independently and exponentially distributed with
mean E[Ik] = 1/ωk. In the latter case, the server remains OFF until a new
flow is routed to small cell k and the server is put to the SETUP state. After a
setup delay Dk, which in our model is assumed to be independently and expo-
nentially distributed with mean E[Dk] = 1/δk, the server becomes again BUSY
and starts serving the waiting flows.

The state of small cell k at time t is described by the pair (Xk(t), Bk(t)),
where Xk(t) refers to the number of flows and Bk(t) to the state of the server.
Note that server k is

BUSY, if Xk(t) > 0 and Bk(t) = 1;
IDLE, if Xk(t) = 0 and Bk(t) = 1;
OFF, if Xk(t) = 0 and Bk(t) = 0;
SETUP, if Xk(t) > 0 and Bk(t) = 0.

We denote the power consumption in these energy states of small cell k by
PE−STATE
k , and we assume that

0 = P o
k < P i

k ≤ min{P s
k, P

b
k },

where superscripts o, i, s, and b refer to OFF, IDLE, SETUP, and BUSY states,
respectively.
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The macrocell (0) serves K + 1 different classes of flows. Class 0 refers to
those flows that can only be served by the macrocell and class k to those flows
that arrive in the area of small cell k but are routed to the macrocell. The
macrocell itself is modeled by a single server multiclass PS queue, which again
implies that flows are scheduled in each time slot so that all resources are given
to one flow at a time and the flows are served in a round-robin manner. We
assume that the service time S0,k of an arbitrary flow in class k ∈ {0, 1, . . . ,K}
is exponentially distributed with mean 1/µ0,k.

For the macrocell, we do not apply any energy state control, but it is a
NEVEROFF server (according to the terminology of [10]). Thus, the state of the
macrocell at time t is described by the vectorX0(t) = (X0,0(t), X0,1(t), . . . , X0,K(t)),
where X0,k(t) refers to the number of flows in class k. Note that server 0 is

BUSY, if |X0(t)| > 0;
IDLE, if |X0(t)| = 0,

where
|X0(t)| = X0,0(t) +X0,1(t) + . . .+X0,K(t)

denotes the total number of flows in macrocell. The power consumption of
macrocell is denoted by PE−STATE

0 , and we assume that

0 < P i
0 ≤ P b

0 .

In this paper, we develop policies for dynamically controlling the routing of
the arrivals and the idle timers. For any such policy, the necessary condition
for the stability of the system is as follows. As in [26], the macrocell is the
bottleneck in the system, because it serves as an overflow system for the arrivals
in the small cells. Thus, the maximal stability condition for any policy is

λ0
µ0,0

+

K∑
k=1

(λk − µk)+

µ0,k
< 1. (1)

In (1), the terms of the sum correspond to the load caused by class k at the
macrocell due to the excess arrival rate from small cell k. The macrocell is a
multiclass PS queue, and the sum of the loads of all classes must be less than 1.

4. Optimal routing and idle timer control problem

Our objective is to develop a dynamic, state-dependent routing and idle
timer control policy that simultaneously takes into account both the power
consumption and the delay of the flows. The routing policy decides for each
arriving flow in the small cells, whether the arrival is served by the local small
cell or the macrocell, and the idle timer control policy determines the time to
wait before switching off upon becoming idle. For our model, optimal policies
can be developed in the framework of MDPs [20].
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4.1. MDP formulation of the problem

For the optimization, the cost rates with respect to the performance (delay)
and the energy need to be defined first. Let the vector x0 = (x0,0, . . . , x0,K)
denote a given state of the macrocell. Similarly, we denote by x = (x1, . . . , xK)
and b = (b1, . . . , bK) vectors for the number of flows and the state of the server
in each small cell. Given that there are (xo, x) flows in the system, the instan-
taneous cost rate for the performance, cp(x0, x), is given by

cp(x0, x) =

K∑
k=0

x0,k +

K∑
k=1

xk, (2)

i.e., it is the total number of flows in the system. For the energy, the instanta-
neous cost rate, ce(x0, x, b), is the total power in the given state and it equals

ce(x0, x, b) = 1|x0|=0P
i
0 + 1|x0|>0P

b
0 + (3)

K∑
k=1

(1xk>0,bk=1P
b
k + 1xk=0,bk=1P

i
k + 1xk>0,bk=0P

s
k),

where 1A denotes the indicator function of the event A. To characterize the
tradeoff between performance and energy, the total instantaneous cost rate in
state (x0, x, b), c(x0, x, b), is defined as the weighted sum of performance and
energy,

c(x0, x, b) = w1c
p(x0, x) + w2c

e(x0, x, b),

where w1, w2 ≥ 0 are the weight parameters. We return to the interpretation of
the weights later when defining the optimization objective (4).

As actions we consider the routing decisions and the idle-timer control. To
explain the dynamics we introduce the vector ek as a K-dimensional unit vector
with zeros elsewhere except in the component k, k = 1, . . . ,K. Similarly, let
e0,k denote a (K + 1)-dimensional unit vector with zeros elsewhere except in
the component k, k = 0, . . . ,K. The routing decisions relate to arrivals in each
small cell k and the routing decision is denoted by ark(x0, x, b) in state (x0, x, b).
The decision affects where the arrival is routed and it is selected from the set
{s,m}, where the actions ’s’ and ’m’ denote that the arriving flow is routed to
the local small cell k or the macro cell, respectively. If the action is to serve
the arrival in the small cell locally, the process makes a transition at rate λk to
state (x0, x + ek, b). If the flow is routed to the macrocell, the process makes
a transition at rate λk to state (x0 + e0,k, x, b). Note that we do not consider
the re-routing of on-going flows from small cells to the macrocell or vice versa.
The idle-timer control is performed each time a small cell k becomes idle, i.e.,
reaches a state with xk = 0 and with bk = 1. The idle timer rate ωk of small
cell k can be chosen from an arbitrary discrete set with lower bound ωL

k and
upper bound ωH

k , i.e., ωk ∈ {ωL
k , . . . , ω

H
k }. We denote the chosen value of the

idle timer as aωk (x0, x, b). Given an idle-timer action, the process moves at rate
aωk (x0, x, b) to state (x0, x, b− ek), i.e., the small cell k goes to off state.
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We denote by π the set of all possible routing and idle-time control poli-
cies that are stable under the condition (1). For a given policy π, let E[Xπ]
and E[Pπ] denote the mean total number of flows in the system and the re-
sulting mean power consumption, respectively. Our objective is to consider the
following optimization problem,

min
π
w1E[Xπ] + w2E[Pπ]. (4)

Note that by dividing (4) with the total arrival rate
∑
k λk, the objective is, by

Little’s law, equal to to the weighted sum of the mean flow delay and the mean
energy per flow. In this case, the weights w1 and w2 can be interpreted such
they convert the delay and energy into equivalent monetary costs, i.e., the units
of w1 and w2 would be cost/s and cost/J, respectively. This weighted form of
the cost function, also sometimes in the literature referred to as ERWS (Energy
Response time Weighted Sum), is one commonly used way to characterize the
performance energy tradeoff, see [1, 4, 28] and the references therein.

4.2. Optimal dynamic policy

The optimization problem (4) is an MDP and can be solved iteratively with
the policy iteration method [20]. In a generic form, the policy iteration works as
follows. Consider a given state of the system y = (x0, x, b). In the routing and
timer control policy, associated with each state y there is a set of actions A(y)
relating to the decisions where the arrivals are routed and what timer value to
select, in case a small cell is idle. Let πn denote the policy at the nth iteration
step. The iterated policy at the next step, πn+1, is obtained by solving in each
state y the following optimization

πn+1(y) = arg min
a∈A(y)

c(y)− c̄πn +
∑
y′

qy,y′(a)(vπn(y′)− vπn(y))

 ,∀y, (5)

where c(y) is the instantaneous cost in state y, c̄πn is the mean cost under
policy πn, qy,y′(a) is the transition rate from state y to state y′ when action
a is taken and vπn(y′) is the so-called value function of state y′ for policy πn,
characterizing the future costs from the actions.

The future costs are characterized by the value function of each state. More
precisely, the value function of a state y under given policy π gives the mean
difference in the cost when starting initially the process from the state y and
the long term average cost c̄π. The value function of each state is, on the other
hand, characterized by the following set of linear equations

c(y)− c̄π +
∑
y′

qy,y′(a
π(y))(vπ(y′)− vπ(y)) = 0, ∀y, (6)

where aπ(y) is the action taken in state y under policy π.
The policy iteration step (5) is in a generic form and next we define the
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detailed form of the policy iteration adapted to our problem to obtain insight.
In the joint routing and timer control policy, associated with each state (x0, x, b)
there is a set of actions relating to the decisions, where the arrivals are routed,
ark ∈ {s,m} and for the possible idle cells the timer values to be used in that
state, aωk ∈ {ωL

k , . . . , ω
H
k }. We denote by yk(ark, x0, x, b) the vector state resulting

from the routing action, i.e.,

yk(ark, x0, x, b) =

{
(x0, x+ ek, b), if ark = s,
(x0 + e0,k, x, b), if ark = m.

The policy iteration step (5) can then be expressed as

πn+1(x0, x, b) = arg min
ark∈{s,m},a

ω
k∈{ω

L
k ,...,ω

H
k },k=1,...,K

(
c(x0, x, b)− c̄πn

+

K∑
k=0

1x0,k>0µ0,k(vπn(x0 − e0,k, x, b)− vπn(x0, x, b))

+

K∑
k=1

1xk>0,bk=1µk(vπn(x0, x− ek, b)− vπn(x0, x, b))

+

K∑
k=1

1xk>0,bk=0δk(vπn(x0, x, b+ ek)− vπn(x0, x, b))

+ λ0(vπn(x0 + e0,0, x, b)− vπn(x0, x, b))

+

K∑
k=1

λk(vπn(yk(ark, x0, x, b))− vπn(x0, x, b))

+

K∑
k=1

1xk=0,bk=1a
ω
k (vπn(x0, x, b− ek)− vπn(x0, x, b))

)
,∀(x0, x, b). (7)

In (7), it can be immediately observed that the instantaneous cost rate rela-
tive to the mean cost rate (first line) and the future costs from the departures
(2nd and 3rd lines), expiration of the setup delay (4th line) and arrivals in the
macrocell class 0 are not affected by the actions and therefore do not influence
the minimization.

In the following, we state an important structural result for the optimal
policy denoted by π∗. We prove that in the optimal policy π∗, the optimal timer
value aω

∗

k is either ωL
k or ωH

k , i.e., the intermediate values of the set {ωL
k , . . . , ω

H
k }

are never used. Additionally, the routing and idle-timer control decisions can
be done independently of each other.

Proposition 1. In the optimum policy π∗, the optimal timer value in any state
(x0, x, b) with xk = 0 and bk = 1 is chosen from aω

∗

k ∈ {ωL
k , ω

H
k } for all k.

Furthermore, the optimization with respect to the routing actions ark and timer
control actions aω

∗

k can be done independently for all k.
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Proof. The optimal policy π∗ satisfies the following optimality equation, see
[20],

0 = min
ark∈{s,m},a

ω
k∈{ω

L
k ,...,ω

H
k },k=1,...,K

(
c(x0, x, b)− c̄π

∗

+

K∑
k=0

1x0,k>0µ0,k(vπ
∗
(x0 − e0,k, x, b)− vπ

∗
(x0, x, b))

+

K∑
k=1

1xk>0,bk=1µk(vπ
∗
(x0, x− ek, b)− vπ

∗
(x0, x, b))

+

K∑
k=1

1xk>0,bk=0δk(vπ
∗
(x0, x, b+ ek)− vπ

∗
(x0, x, b))

+ λ0(vπ
∗
(x0 + e0,0, x, b)− vπ

∗
(x0, x, b))

+

K∑
k=1

λk(vπ
∗
(yk(ark, x0, x, b))− vπ

∗
(x0, x, b))

+

K∑
k=1

1xk=0,bk=1a
ω
k (vπ

∗
(x0, x, b− ek)− vπ

∗
(x0, x, b))

)
,∀(x0, x, b). (8)

Observing (8), it is seen that the first 5 terms do not affect the minimization.
Also, in any state (x0, x, b), the routing decision ark ∈ {s,m} related to arrivals
in cell k only concerns whether the process makes a transition at rate λk to state
(x0, x+ek, b) or (x0 +e0,k, x, b). Similarly, if in a given state (x0, x, b), small cell
k is idle with xk = 0 and bk = 1, the choice of the timer value aωk ∈ {ωL

k , . . . , ω
H
k }

only affects the rate at which the small cell k makes its transition to the off state.
Thus, we can express (8) as

0 = (. . .) +

K∑
k=1

min
ark∈{s,m}

λk(vπ
∗
(yk(ark, x0, x, b))− vπ

∗
(x0, x, b))

+
K∑
k=1

min
aωk∈{ω

L
k ,...,ω

H
k }

1xk=0,bk=1a
ω
k (vπ

∗
(x0, x, b− ek)− vπ

∗
(x0, x, b)),

∀(x0, x, b), (9)

where (. . .) refers to the first 5 terms of (8). From (9), it is seen that the
optimization problem becomes separable with respect to each action and there
is no need to consider all possible combinations of actions in a given state.

Now consider a given small cell k in state xk = 0 and bk = 1, i.e., the
idle state. In that state, the action space allows to modify the duration of
the idle timer depending on the future costs from the set aωk ∈ {ωL

k , . . . , ω
H
k }.

Again, from (9), we observe that selecting aωk affects linearly the future cost
of moving to the off state, and hence future costs are minimized by setting the
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timer equal to either of the extreme values {ωL
k , ω

H
k }, i.e, there is no benefit from

using any of the intermediate values. Which one is optimal depends then on
the difference in the value functions between the neighboring off and idle states,
(v(x0, x, b−ek)−v(x0, x, b)). If this difference is positive, then the optimal timer
value aω

∗

k minimizing the costs in the optimal policy π∗ becomes aω
∗

k = ωL
k , and

if the difference is negative, the cost is minimized by setting aω
∗

k = ωH
k .

As the lower bound ωL
k and upper bound ωH

k of the timer are arbitrary,
it seems reasonable that the optimal selection of the lower bound and upper
bounds are ωL

k = 0 and ωH
k = ∞, respectively. Thus, each small cell is in the

optimal policy always operating either as a NEVEROFF queue with ωk = 0 or
an INSTANTOFF queue with ωk = ∞. This would extend the known result,
see [13], that for a single server M/G/1-DELAYEDOFF PS-queue the optimal
timer value for a weighted objective function, such as (4), is always either zero
or infinite into the present more complex scenario with non-Poisson arrivals.
However, the MDP framework does not allow to consider infinite transition
rates, see [20], and thus we can only conjecture this asymptotic property.

The structural property in Proposition 1 helps us in simplifying the optimiza-
tion problem. However, the complete characterization of the optimal policy π∗

including the routing actions is intractable. Thus, in the following we consider
a near-optimal policy based on the policy iteration idea.

5. Near-optimal FPI policy

In the FPI (First Policy Iteration) approach, the idea is that by selecting the
initial policy appropriately the first step of the optimization (7) can be carried
out explicitly. Typically this first step already gives the largest improvement,
which makes the FPI policy near optimal.

5.1. Static load balancing initial policy

The initial policy to be defined is a static policy that is independent of the
state of the system. It consists of a probabilistic policy for the routing decisions
and static timer values for each small cell.

Consider first the routing policy which is a probabilistic policy determined
by the vector p = (p1, . . . , pK), where each component pk gives the probability
to route the incoming class-k flow to the small cell k and with probability
(1 − pk) the flow is routed to the macrocell. A reasonable selection for the
initial probabilistic policy is to balance the load in all the cells, as much as
possible. We denote this policy by pLB. Assume that the classes of the small
cells, k = 1, . . . ,K, are ordered in a descending order according to the cell loads,
i.e.,

λ1
µ1

> · · · > λK
µK

.

Note that for all those small cells where the small cell load λk/µk is already less
than the load of the macrocell when serving its own traffic, λ0/µ0,0, no traffic

12



can be moved to the macrocell, i.e., the corresponding pLBk = 1. Thus, let k∗

denote the index value of the last small cell from which traffic can be moved to
the macrocell, i.e.,

k∗ = max{k = 1, . . . ,K : λk/µk > λ0/µ0,0}.

It is easy to see that the load is then equalized by setting pLBk = µk
λk
·

λ0
µ0,0

+
∑k∗
j=1

λj
µ0,j

1+
∑k∗
j=1

µj
µ0,j

, k = 1, . . . , k∗,

pLBk = 1, k = k∗ + 1, . . . ,K.

Additionally, the initial policy defines the timer configuration of each small
cell. Let the vector ωLB = {ωLB

1 , . . . , ωLB
K } denote the timer value configuration

of each small cell. The routing policy pLB splits probabilistically the offered
Poisson arrival rate λk and renders each small cell stochastically independent
of each other. Thus, each small cell behaves as an independent M/M/1 DE-
LAYEDOFF queue. Now, let c̄LBk (ω) denote a function for the mean cost of a
small cell k with routing policy pLB and timer value ω, which is given by, see
[13],

c̄LBk (ω) =w1

(
pLBk λk

µk − pLBk λk
+

1 + pLBk λk/δk
1 + δk/(pLBk λk) + δk/ω

)
+

w2

(
pLBk λk
µk

P b +

(
1− pLBk λk

µk

)
P s + δkP

o/(pLBk λk) + δkP
i/ω

1 + δk/(pLBk λk) + δk/ω

)
.

(10)

As mentioned already earlier, in an M/G/1-DELAYEDOFF PS-queue, the op-
timal timer selection is either 0 or infinite, see [13]. Thus, in our case the timer
value is selected between the extreme values {ωL

k , ω
H
k }, and the optimal timer

configuration ωLB under routing policy pLB is determined independently for all
k by

ωLB
k =

{
ωL
k , if c̄LBk (ωL

k ) ≤ c̄LBk (ωH
k ),

ωH
k , otherwise.

5.2. The FPI policy

Next we consider the policy iteration step (7) for the LB initial policy. Since
the initial policy renders the stochastic behavior of the macrocell and the small
cells independent of each other, the relative value of the state (x0, x, b) under
the initial policy can be expressed as

v(x0, x, b) = v0(x0) +

K∑
k=1

vk(xk, bk), (11)

where v0(x0) and vk(xk, bk) are the value functions of the macrocell and small
cell k, respectively. The value functions are defined by the so-called Howard
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equations (6) and they have been derived in [12]. However, we have included
them in this extended version of the paper for completeness, and they can be
found in Appendix A.

In (7), the optimization related to the routing decision to serve the arrival
in small cell k or route it to the macrocell simply consists of evaluating the
additional cost of adding the arrival to the small cell or to the macrocell. In
the first iteration of the optimization (7), due to the separable form of the value
function (11), the action to serve the arrival in the macrocell or the small cell k
in any state (x0, x, b) is given by

ark(x0, x, b) = (12) m, if v0(x0,0, . . . , x0,k + 1, . . . , x0,K)− v0(x0,0, . . . , x0,K) <
vk(xk + 1, bk)− vk(xk, bk)

s, otherwise.

Thus, the future cost of adding the arrival to the macro cell or the small cell
can be evaluated readily by considering the local marginal cost of one new flow
in the macro cell or the small cell.

Similarly, in any state with xk = 0 and bk = 1, i.e., with the small cell k in
the idle state, the action related to the optimal timer value is determined by

aωk (x0, x, b) =

{
ωL
k , if vk(0, 0)− vk(0, 1) ≥ 0,
ωH
k , otherwise.

(13)

Next we will state an important further structural property related to the op-
timal decision for the timer in (13). Namely, below we show that in the FPI
policy the optimal timer value in fact coincides with that of the solution from
the static load balancing policy, in other words, the vector ωLB provides also
the optimal timer values to be used in the FPI policy.

Proposition 2. The optimal action for the timer values in the FPI policy is
given by

aωk (x0, x, b) = ωLB
k , k = 1, . . . ,K.

Proof. As the timer control action only depends on the value function of a given
small cell k, we omit the explicit depence on k in this proof. The small cell is
represented by a DELAYEDOFF queue with parameters λ, µ, δ and ω. Consider
first the case where ωLB = ωL. Thus, we have c̄LB(ωL) ≤ c̄LB(ωH), which from
(10) leads to the following inequality

α

(
−λµ(δ + λ)w1

(µ− λ)δ
+ ((δ + λ)P i − δP o − λP s)w2

)
≤ 0,

where

α =
(ωH − ωL)(µ− λ)δλ

(δλ+ δωH + λωH)(δλ+ δωL + λωL)
≥ 0.
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From this it follows that

λµ(δ + λ)w1

(µ− λ)δ
≥ ((δ + λ)P i − δP o − λP s)w2. (14)

By utilizing the expressions for the marginal performance and energy costs in
Corollary 1 and 2 in Appendix A, the explicit form of the marginal cost in the
timer action in (13) when assuming that ωLB = ωL becomes

vk(0, 0)− vk(0, 1) =

1

(δλ+ δωL + λωL)

(
λµ(δ + λ)w1

(µ− λ)δ
− ((δ + λ)P i − δP o − λP s)w2

)
By (14) it follows that vk(0, 0) − vk(0, 1) ≥ 0 and thus by (13) the optimal
selection of the timer in the FPI policy is ωL, which is the same as the original
choice of ωLB, in this case.

On the other hand, assuming the opposite that c̄LB(ωL) > c̄LB(ωH), i.e.,
ωLB = ωH, leads to

λµ(δ + λ)w1

(µ− λ)δ
< ((δ + λ)P i − δP o − λP s)w2. (15)

In this case, the marginal cost in the timer action (13) equals

vk(0, 0)− vk(0, 1) =

1

(δλ+ δωH + λωH)

(
λµ(δ + λ)w1

(µ− λ)δ
− ((δ + λ)P i − δP o − λP s)w2

)
By (15) it follows that vk(0, 0) − vk(0, 1) < 0 and thus by (13) the optimal
selection of the timer in the FPI policy is ωH, which is the same as the original
choice of ωLB, in this case. This completes the proof.

Finally, the routing actions defined by (12) and, by Proposition 2, the initial
timer configuration ωLB together define the FPI policy. In addition to the state
of the system, the value functions needed in the routing action (12) depend on
the parameters of the initial policy, i.e., the routing probabilities pLB and the
initial timer configuration ωLB.

In summary, the main advantage in the FPI approach is that it allows us
to systematically construct an optimized dynamic policy, which is near optimal
and (almost) fully explicit, see Appendix A. Note that through our results, the
FPI policy is also fully specified in the entire state space of the system, i.e.,
there is no need for any truncation to evaluate the mean cost under the FPI
policy by simulation.
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Figure 1: Region plots for the optimal configuration choices. The blue shaded region indicates
the parameter space where INSTANTOFF is optimal while NEVEROFF is superior in the
remaining parameter space.

6. Numerical results

Here, we study the performance of the proposed policies through simulation
runs. We consider a system consisting of one macro and seven small cells.
This is motivated by a hexagonal setting studied in [26], where six small cells
are located at the edges of the macro cell’s hexagonal coverage area while the
seventh small cell resides at the center.

Small cells can be in an off state where they do not consume power. Other-
wise, power consumption of small cell k in the busy, setup and idle states are
P b
k = P s

k = 100 and P i
k = 70 W, respectively. The macro cell consumes 1000

W when it is busy and 700 W when idle. These values are within the range of
power consumption values considered in [3, 26].

Service rate for a request originating from within a small cell is µk = 18.73
s−1 if it is served by the small cell. For small cells at the edges, the traffic
offloaded to the macro is served with a rate µ0,k = 6.37 s−1, whereas that of the
central small cell is served with a rate µ0,1 = 12.34 s−1. Additionally, the macro
cell also serves users that are outside the coverage area of the small cells with a
rate µ0 = 12.34 s−1. The service rates have been obtained by assuming file sizes
of 5 Mb and typical measured mean channel qualities, see [26] for more detailed
justifications. In the entire simulation study we set arrival rate in the macro
cell to λ0 = 1 s−1 and w1 = 1, for the system cost given by (4). Simulations are
run as a function of the load. At each load point, each simulation run consists
of 106 arrivals.

Considering the load balancing initial policy, the optimal configuration of
a small cell is NEVEROFF when c̄LBk (0) ≤ c̄LBk (∞), and INSTANTOFF oth-
erwise, see (10). With the other system parameters fixed, the optimal config-
uration may change as a function of the mean setup delay (1/δk), the energy
weight (assuming w1 is fixed), and the small cell load parameters. The shaded
region in Figure 1 shows the parameter space in which c̄LBk (0) > c̄LBk (∞) when
one of the parameters is fixed and the other two are varied. The figure clearly
shows that the optimal configuration is largely influenced by the setup delay.
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For example, when 1/δk > 7 s, NEVEROFF remains optimal even for a large
energy weight of w2 = 0.1 at a load value as low as 10−6. The right most figure
affirms this observation by showing that increasing w2 has little effect on the
choice of optimal configuration for ρk = 0.1. In our simulation study sufficiently
large (1/ω = 106) and sufficiently small (1/ω = 10−6) timer values are chosen
to represent the NEVEROFF and INSTANTOFF configurations, respectively.

The five scenarios presented in Table 1 are chosen for the numerical illus-
tration. The 1/δk and w2 values are selected so that representative points from
the optimality regions of both NEVEROFF and INSTANTOFF are covered, see
Figure 1. Three of the scenarios assume the arrival rate in all the small cells
is the same (homogeneous), whereas in the remaining two scenarios the small
cells have different arrival rates (heterogeneous).

Scenario Parameters Description
Hom1 1/δk = 10 s w2 = 0.01 Homogeneous system one
Hom2 1/δk = 1 s, w2 = 0.1 Homogeneous system two
Hom3 1/δk = 0.1 s, w2 = 0.01 Homogeneous system three
Het1 1/δk = 10 s, w2 = 0.01 Heterogeneous system one
Het2 1/δk = 0.1 s, w2 = 0.01 Heterogeneous system two

Table 1: Scenarios considered for numerical study.

In addition to the load balancing initial policy (RND), we also study the
FPI and Join the Shortest Queue (JSQ). As dispatching decisions in JSQ are
oblivious to the energy configuration of the small cell, two cases are considered:
JSQ with all the small cells configured as NEVEROFF (which we refer to as
JSQ-NO) and JSQ with optimally configured small cells. The performance of
each of these policies is studied using the mean response time, mean power, and
the weighted sum cost metrics.

6.1. Homogeneous load at small cells

Consider a case where the arrival rate in all the small cells is uniform. The
arrival rate at each small cell is increased from 1 to 17 s−1 simultaneously and
the resulting system performance is studied. In this case, the system stability
limit is λk < 19.6283 s−1 for 1 ≤ k ≤ 7, see (1).

Figure 2 shows the relevant metrics as a function of arrival rate at small cells
when 1/δk = 10 s and w2 = 0.01 as in scenario Hom1. The top two plots show
mean response time and mean power consumption of the system. The bottom
left figure depicts the weighted sum cost of the policies under study, whereas
the bottom right figure shows the cost relative to the initial policy RND. The
weighted sum cost of RND is represented by the dotted gray line at 1. A relative
cost value less than 1 indicates that the respective policy yields lower cost than
RND at that specific load value under the given system parameter values.

In this case, the optimal configuration is NEVEROFF for the LB initial
policy over the entire load spectrum, see Figure 1. Thus, JSQ and JSQ-NO
operate in an identical manner, which explains why they have overlapping curves
in the figure. The relative cost plot shows that FPI saves up to 24% on weighted
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Figure 2: Mean response time, mean power consumption, weighted sum cost and relative
weighted sum cost as a function of arrival rate for scenario Hom1. The bottom right plot
shows the weighted sum cost of the FPI, JSQ and JSQ-NO policies relative to the load
balancing initial policy (RND).

sum cost compared to the initial load balancing policy (RND). It achieves this
by utilizing small cells as much as possible and avoiding the high busy power
at the macro. Especially, when the load is light, FPI dispatches all incoming
traffic to the small cells. RND also routes most of the traffic to the small cells
at low load, but it starts using the macro more often as load increases. Due
to this reason, the gain of FPI over RND increases with load. JSQ performs
marginally better than RND with respect to response time but consumes more
energy as it uses the macro more often than RND.

Figure 3 depicts the system cost metrics when 1/δk = 1 s and w2 = 0.1
(scenario Hom2). The optimal configuration starts with being INSTANTOFF
at light load and quickly changes to NEVEROFF as arrival rate reaches 1.4487
s−1, see Figure 1. This is illustrated in the figure by the sharp drop in mean
response time and the corresponding increase in mean power as arrival rate
changes from 1 to 3 s−1. Mean response time and mean power increase in a less
steep manner thereafter. The FPI policy achieves the lowest weighted sum cost
over RND with up to 10% improvement.

Figure 4 shows the cost metrics of a system with a very short setup delay
1/δk = 0.1 (Scenario Hom3). In this case, INSTANTOFF is optimal when the
small cell traffic is low/moderate. For arrival rate λk > 9.704 s−1, the optimal
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Figure 3: Mean response time, mean power consumption, weighted sum cost and relative
weighted sum cost as a function of arrival rate for scenario Hom2. The bottom right plot
shows the weighted sum cost of the FPI, JSQ and JSQ-NO policies relative to the load
balancing initial policy (RND).

configuration changes to NEVEROFF, which explains the sharp decrease in
mean response time around that region. FPI yields up to 24% improvement
over RND. Figures 2 - 4 consistently illustrate that the gain of FPI over RND
increases with load. More importantly, these gains are achieved by improving
both the mean response time and mean power consumption. In most cases, FPI
also provides lower cost relative to JSQ and JSQ-NO.

6.2. Heterogeneous load at small cells

This section applies the hexagonal setting introduced earlier and considers a
specific setting where the arrival rate at the central small cell is fixed at λ1 = 9
s−1. resulting in a load value of ρ1 = 0.48. Additionally, the load on two of
the remaining six small cells is fixed at ρ2 = ρ3 = 0.1. The arrival rate at the
other four small cells is gradually increased and the performance of the four
dispatching policies is studied. The system remains stable when λk < 20.1934
s−1 for 4 ≤ k ≤ 7.

Figure 5 shows the cost metrics of the heterogeneous system described above
when 1/δk = 10 s and w2 = 0.01 as in scenario Het1. Due to the high setup
delay, the optimal configuration is NEVEROFF for all cells and load values.
Once again, energy (and overall cost) savings of FPI over RND come from
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Figure 4: Mean response time, mean power consumption, weighted sum cost and relative
weighted sum cost as a function of arrival rate for scenario Hom3.

routing as little traffic as possible to the macro. In this case, FPI achieves up to
40% cost reduction over RND. Recall that a smaller margin was achieved in the
homogeneous setting. Heterogeneity of small cell load has possibly given the
FPI policy more room for optimizing over the RND policy. Additionally, this
improvement is achieved for the most part by improving both mean response
time and mean power consumption.

Figure 6 shows the cost metrics of the heterogeneous system with 1/δk = 0.1
s and w2 = 0.01 (scenario Het2). With the setup delay being very short, the
optimal configuration remains INSTANTOFF until the arrival rate is increased
up to 9 s−1 and switches to NEVEROFF afterwards. Note that this switch
happens only for the four small cells. Since the load on the central and the other
two cells is fixed, they remain as INSTANTOFF cells. This is also illustrated by
the narrowing mean response time gap between JSQ and JSQ-NO at λk = 11
s−1. Generally, we observe similar behavior as already seen earlier.

7. Conclusions

We have considered energy-aware joint control of routing and base station
switch-off in a system consisting of a macrocell with several small cells inside its
coverage area. The system is modeled as a set of parallel queues consisting of
a multiclass M/M/1-PS queue, representing the always-on macrocell, and each
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Figure 5: Mean response time, mean power consumption and weighted sum cost as a function
of arrival rate at four of the small cells (k = {4, ...7}) for scenario Het1.

small cell is characterized by an energy-aware M/M/1-PS queue with an off
state and setup delay. As an additional control feature, the model of the small
cells included an idle timer, which is used for controlling how long the small cell
waits after the end of a busy period until it falls into the off state.

Our main results relate to the fundamental structural properties of the opti-
mal timer value selection. The joint control problem for routing and idle timer
value selection was analyzed by applying the theory of MDPs. We showed
that for a weighted sum of the performance and energy costs the routing and
idle timer control actions can be optimized individually without the need to
consider combinations of different actions in a state. More importantly, the
optimal dynamic policy always selects the timer value to be either arbitrar-
ily close to zero or infinite, suggesting that each individual small cell always
behaves in our model as either a NEVEROFF or INSTANTOFF queue. Fur-
thermore, by applying the policy iteration method once when starting from an
initial probabilistic policy, we showed that the optimal timer configuration is in
the dynamic FPI policy also static and coincides with the solution of the initial
policy. These results significantly simplify the overall optimization problem.
The FPI policy then finally consists of a static selection of the idle timer values
and the dynamic policy for the routing decisions, for which explicit expressions
were derived. Our numerical results demonstrated that the FPI policy is able
to achieve considerable cost reductions compared with other reference policies.
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Figure 6: Mean response time, mean power consumption and weighted sum cost as a function
of arrival rate at four of the small cells (k = {4, ...7}) for scenario Het2.

Possible future research topics include analyzing the impact of non-exponential
service time distributions as well as interference between the base stations. How-
ever, these extensions are analytically very difficult to handle, but simulations
can be used to this end.
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Appendix A. Value functions

Here we present the explicit value functions for the performance and energy
for the M/M/1-PS DELAYDOFF and multiclass M/M/1-PS models. They
appeared already in our earlier paper [12], but they are included here for com-
pleteness, and the present paper is an extended version of that article.

Appendix A.1. M/M/1-PS DELAYEDOFF

Consider a generic M/M/1-PS DELAYEDOFF queue with arrival rate λ,
mean service time E[S] = 1/µ, mean idle timer E[I] = 1/ω, and mean setup
delay E[D] = 1/δ. Assume that the system is stable, i.e., ρ < 1, where load
ρ = λE[S]. In addition, let P o, P i, P s, and P b denote the power consumption
in energy states OFF, IDLE, SETUP, and BUSY, respectively.

Proposition 3. For a stable M/M/1-PS DELAYEDOFF queue, the relative
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value function with respect to performance in state (n, b) is given by2

vp(n, 1)− vp(0, 0) =
E[S]n(n+ 1)

2(1− ρ)
− E[D]nρ(1 + λE[D])

(1− ρ)(1 + λE[D] + λE[I])

− E[I]λE[D](1 + λE[D])

(1− ρ)(1 + λE[D] + λE[I])
;

vp(n, 0)− vp(0, 0) =
E[S]n(n+ 1)

2(1− ρ)
+

E[D]n(1 + λE[D])

1 + λE[D] + λE[I]

+
E[I](n− 1)λE[D]

(1− ρ)(1 + λE[D] + λE[I])
.

Proof. The Howard equations for the system are:

− c̄p + λ(vp(1, 0)− vp(0, 0)) = 0,

n− c̄p + λ(vp(n+ 1, 0)− vp(n, 0)) + δ(vp(n, 1)− vp(n, 0)) = 0, n ≥ 1,

n− c̄p + λ(vp(n+ 1, 1)− vp(n, 1)) + µ(vp(n− 1, 1)− vp(n, 1)) = 0, n ≥ 1,

− c̄p + λ(vp(1, 1)− vp(0, 1)) + ω(vp(0, 0)− vp(0, 1)) = 0,

where c̄p denotes the mean number of flows given by

c̄p = E[X] = λE[T ] =
ρ

1− ρ
+
λE[D](1 + λE[D])

1 + λE[D] + λE[I]
.

Now it is a straightforward task to verify that these equations are satisfied by the
proposed relative value function. Note that c̄p appeared in a slightly different
form already as part of the definition of c̄LBk (ω) in (10). It is restated here for
completeness.

Corollary 1. For a stable M/M/1-PS DELAYEDOFF queue, the marginal
performance cost in state (n, b) is given by

vp(n+ 1, 1)− vp(n, 1) =
E[S](n+ 1)

1− ρ
− E[D]ρ(1 + λE[D])

(1− ρ)(1 + λE[D] + λE[I])
, n ≥ 0;

vp(1, 0)− vp(0, 0) =
E[S]

1− ρ
+

E[D](1 + λE[D])

1 + λE[D] + λE[I]
;

vp(n+ 1, 0)− vp(n, 0) =
E[S](n+ 1)

1− ρ
+

E[D](1 + λE[D])

1 + λE[D] + λE[I]

+
E[I]λE[D]

(1− ρ)(1 + λE[D] + λE[I])
, n ≥ 1;

vp(0, 0)− vp(0, 1) =
E[I]λE[D](1 + λE[D])

(1− ρ)(1 + λE[D] + λE[I])
;

2Note that our earlier paper [12] has a misprint and is lacking the term (1 +λE[D]) in the
numerator of the 3rd term in vp(n, 1)− vp(0, 0).
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Proposition 4. For a stable M/M/1-PS DELAYEDOFF queue, the relative
value function with respect to the energy in state (n, b) is given by3

ve(n, 1)− ve(0, 0) = n · γ +
E[I]((P i − P o) + λE[D](P i − P s))

1 + λE[D] + λE[I]
,

ve(n, 0)− ve(0, 0) = n · γ +
E[D](P s − P o) + E[I](P i − P o)

1 + λE[D] + λE[I]
,

where

γ =
E[S]((P b − P o) + λE[D](P b − P s) + λE[I](P b − P i))

1 + λE[D] + λE[I]

Proof. The Howard equations for the system are:

P o − c̄e + λ(ve(1, 0)− ve(0, 0)) = 0,

P s − c̄e + λ(ve(n+ 1, 0)− ve(n, 0)) + δ(ve(n, 1)− ve(n, 0)) = 0, n ≥ 1,

P b − c̄e + λ(ve(n+ 1, 1)− ve(n, 1)) + µ(ve(n− 1, 1)− ve(n, 1)) = 0, n ≥ 1,

P i − c̄e + λ(ve(1, 1)− ve(0, 1)) + ω(ve(0, 0)− ve(0, 1)) = 0,

where c̄e denotes the mean power consumption given by

c̄e = E[P ] = ρP b + (1− ρ)
P o + λE[D]P s + λE[I]P i

1 + λE[D] + λE[I]
.

It is again a straightforward task to verify that these equations are satisfied
by the proposed relative value function. Note that c̄e appeared in a slightly
different form already as part of the definition of c̄LBk (ω) in (10). It is restated
here for completeness.

Corollary 2. For a stable M/M/1-PS DELAYEDOFF queue, the marginal
energy cost in state (n, b) is given by

ve(n+ 1, 1)− ve(n, 1) = γ, n ≥ 0;

ve(1, 0)− ve(0, 0) = γ +
E[D](P s − P o) + E[I](P i − P o)

1 + λE[D] + λE[I]
,

ve(n+ 1, 0)− ve(n, 0) = γ, n ≥ 1,

ve(0, 0)− ve(0, 1) = −E[I]((P i − P o) + λE[D](P i − P s))

1 + λE[D] + λE[I]
.

where γ is defined in Proposition 4.

3Note that our earlier paper [12] has a misprint and has extra parentheses in the numerator
of the 2nd term of ve(n, 0)− ve(0, 0).
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The results in Corollary 1 and 2 are used when evaluating the marginal cost
of serving the flow in small cell k in (12) and the optimal timer action in (13).
In Corollary 1 and 2, the first three marginal cost expressions are needed for
the routing decisions while the last, fourth expression, is needed in the timer-
control decision. Finally, in the marginal cost expressions of Corollary 1 and 2,
when applied to small cell k with the initial LB policy, the parameters are set
as λ = pLBk λk, E[S] = 1/µk, E[D] = 1/δk and the timer value E[I] = 1/ωLB

k .
Also, observe that in Corollary 1, the marginal cost with respect to the

performance is linear in the number of jobs, i.e., similarly as in the JSQ rule
(Join-the-Shortest-Queue), but in addition there is a positive or negative con-
stant factor depending on whether the server is in off/setup state or busy state.
Thus, it is from the future cost better to keep an already busy server busy than to
wake it up, which is also logical. On the other hand, by Corollary 2, the marginal
energy cost is interestingly constant and does not depend on busy/setup state,
unless the server is switched off.

Appendix A.2. MULTICLASS M/M/1-PS NEVEROFF

Consider a generic multiclass M/M/1-PS NEVEROFF queue with K + 1
classes of customers indexed by k = 0, 1, . . . ,K. Let λk and E[Sk] = 1/µk
denote the arrival rate and the mean service time for class k, respectively. In
addition, let λ = λ0 + λ1 + . . .+ λK denote the total arrival rate and

E[S] =
1

λ
(λ0E[S0] + λ1E[S1] + . . .+ λKE[SK ])

refer to the mean service time over all the customers. Assume that the system
is stable, i.e., ρ < 1, where load ρ = λE[S]. Finally, let P i and P b denote the
power consumption in energy states IDLE and BUSY, respectively.

Proposition 5. For a stable multiclass M/M/1-PS NEVEROFF queue, the
relative value function with respect to performance in state n = (n0, n1, . . . , nK)
is given by

vp(n)− vp(0) =

K∑
k=0

ak(n2k + nk) +

K−1∑
k=0

K∑
`=k+1

2ak,`nkn`,

where the coefficients ak and ak,` (k < `) are solved from the following system
of linear equations:

1 + 2

K∑
i=0

λiak,i − 2µkak = 0, 0 ≤ k ≤ K;

1 +

K∑
i=0

λi(ak,i + a`,i)− (µk + µ`)ak,` = 0,

0 ≤ k < ` ≤ K,
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with notations ak,k = ak and ak,` = a`,k for any k, `.

Proof. The general result for a multiclass M/M/1-PS NEVEROFF queue was
proved in [18].

Proposition 6. For a stable multiclass M/M/1-PS NEVEROFF queue, the
relative value function with respect to energy in state n = (n0, n1, . . . , nK) is
given by

ve(n)− ve(0) =

K∑
k=0

E[Sk]nk(P b − P i),

where 0 = (0, 0, . . . , 0) is the null vector.

Proof. The Howard equations for the system read as follows:

P i − c̄e +

K∑
k=0

λk(ve(ek)− ve(0)) = 0,

P b − c̄e +

K∑
k=0

nkµk
n0 + . . .+ nK

(ve(n− ek)− ve(n)) +

K∑
k=0

λk(ve(n + ek)− ve(n)) = 0, n 6= 0,

where ek is a unit vector into direction k and c̄e denotes the mean power con-
sumption given by

c̄e = E[P ] = ρP b + (1− ρ)P i.

It is again a straightforward task to verify that these equations are satisfied by
the proposed relative value function.

Corollary 3. For a stable multiclass M/M/1-PS NEVEROFF queue, the marginal
cost with respect to energy in state n = (n0, n1, . . . , nK) is given by

ve(n + ek)− ve(n) = E[Sk](P b − P i),

where ek is the unit vector into direction k.

The results in Proposition 5 and Corollary 3 are used when evaluating the
additional cost of serving the flow in the macrocell in (12). Note that after the
initial policy each class k = 1, . . . ,K has arrival rate (1− pLBk )λk.

As the value function for the performance has a quadratic form, see Propo-
sition 5, it is clear that the marginal performance cost vp(n+ek)−vp(n) has in
general a linear form. On the other hand, by Corollary 3, the marginal energy
cost is constant.
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