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Angular momentum dynamics of light-driven mass density
waves in thin film structures

Mikko Partanen and Jukka Tulkki

Engineered Nanosystems Group, School of Science
Aalto University, P.O. Box 12200, 00076 Aalto, Finland

ABSTRACT

We have recently developed the mass-polariton (MP) theory of light to describe propagation of light in dielectric
materials [Phys. Rev. A 95, 063850 (2017)]. The MP theory considers a light wave simultaneously with the
dynamics of the medium atoms driven by optoelastic forces between the field-induced dipoles and the electro-
magnetic field. The MP theory combines the well-known optical forces with the Newtonian dynamics of the
medium. Therefore, it can be applied to any inhomogeneous, dispersive, and lossy materials. One of the key
observations of the MP theory of light is that a light pulse propagating in a nondispersive dielectric transfers
an increased atomic density such that the total transferred mass is equal to δM = (n2 − 1)E/c2, where n is the
refractive index and E is the electromagnetic energy of the pulse. This mass is transferred by an atomic mass
density wave (MDW) where the atoms are spaced more densely inside the light pulse as a result of the optical
force. Another key observation is that, in common semiconductors, most of the linear and angular momenta of
light is transferred by the semiconductor atoms in the MDW moving under the influence of the optical force.
In this work, we use the electric and magnetic fields of selected Laguerre-Gaussian mode beams to calculate the
optical force density, which is used in the optoelastic continuum dynamics to simulate the dynamics of medium
atoms in edge-supported free-standing thin film structures. The goal of our work is to find out how the different
force components related to the reflection, transmission, absorption, and the atomic MDW bend and twist the
film. The simulations also aim at optimizing experimental studies of the atomic dynamics in the thin film and
to relating the measurements to the properties of incoming light.

Keywords: mass-polariton, mass density wave, optical shock wave, electrodynamics, optomechanics

1. INTRODUCTION

Recently, the momentum and angular momentum of light have been investigated in vacuum,1,2 in photonic
materials,3–6 in the near-field regime,7–10 and also in the quantum domain.11,12 The small elastic waves of
atoms related to the momentum transfer by the reflection of light from a mirror have also been experimentally
measured.13,14 Despite the long history of the optics of thin film structures, the coupled space and time dependent
dynamics of the field and the medium atoms in thin films and its relation to the linear and angular momenta of
light have not been investigated in detail. Only a few related, but not very detailed, studies exist.15,16 Recently,
the coupled mass-polariton (MP) description of the field and medium dynamics has been investigated in the
case of homogeneous dielectric materials17–20 and optical waveguides,21 but detailed studies of the effects arising
from the coupled field-medium dynamics do not exist for edge-supported free-standing thin film structures. The
works on the coupled dynamics of the field and the medium atoms show that light is associated with an atomic
mass density wave (MDW) that is both necessary for the fulfillment of Newton’s first law and it also carries a
major part of the total linear and angular momenta of light in many common dielectrics.

The MP theory of light combines Maxwell’s equations of the field with the Newtonian mechanics of the
medium.17 The related optoelastic continuum dynamics (OCD) simulations allow detailed studies of the coupled
dynamics of the field and the medium. In the present work, we study the coupled field-medium dynamics and
related effects in thin film structures. We first review the foundations of the MP theory and its numerical
implementation using the OCD model. We also perform OCD simulations of the field-medium dynamics in the
case of selected continuous wave (cw) Laguerre-Gaussian mode light beams to find out how the different force
components related to the reflection, transmission, absorption, and the atomic MDW bend the low-loss and lossy
thin film structures. The simulations also aim at optimizing experimental studies of the atomic dynamics in the
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Figure 1. Schematic illustration of light incident to an edge-supported free-standing thin film deposited on top of a
substrate. There is a circular microhole in the substrate at the position where light is focused. We assume that there is
an atomic bonding between the thin film and the rigid substrate. In the simulations, we use a light beam with a vacuum
wavelength λ0 = 1064 nm and power P = 1.5 mW. The transverse dimensions of the light beam at the position of the
film (characterized by the waist radius of 1 µm) are assumed to be smaller than diameter of the microhole so that we do
not need to account for the diffraction of light at the edges of the microhole. In the figure, the structure has been split
at the position of the microhole to reveal the details. The thickness of the film is 300 nm and the diameter of the hole
in the substrate is 3 µm. The atoms of the film are displaced from their initial equilibrium positions by the optical force
density. This in turn induces an elastic force density, which redistributes the atomic displacements.

thin film and to relating the measurements to the properties of incoming light. A schematic illustration of light
incident on an edge-supported free-standing thin film structure is presented in Fig. 1. In the simulations, we
use field intensities well below the irradiation damage threshold of the studied thin film materials so that the
observed bending of the thin film is elastic and the use of the elastic force density in the OCD model is justified.

2. OPTOELASTIC CONTINUUM DYNAMICS

2.1 Optical and elastic forces and Newton’s equation of motion

In the MP theory of light, the dynamics of the field and the matter are coupled through Newton’s equation of
motion. In the initial rest frame of the medium, Newton’s equation of motion for the mass density of the medium
ρa(r, t) and the instantaneous position- and time-dependent atomic displacement field ra(r, t) is written as17

ρa(r, t)
d2ra(r, t)

dt2
= fopt(r, t) + fel(r, t). (1)

Here fopt(r, t) is the optical force density experienced by the medium atoms, and fel(r, t) is the elastic force
density that arises between atoms, which are displaced from their original equilibrium positions by the optical
force density. The well-known elastic force density for anisotropic cubic crystals, such as silicon, and for hexagonal
crystals, such as graphite, are given in Ref.22

The optical force density in the MP theory of light in a lossless dispersive dielectric is presented in Ref.18 In
this work, we use a more general form of the optical force density that can also be applied to lossy nonmagnetic
media. This optical force density is given by

fopt = ρeE + µ0J×H︸ ︷︷ ︸
fL

−ε0ngE2∇np︸ ︷︷ ︸
fint

+
npng − 1

c2
∂

∂t
E×H︸ ︷︷ ︸

fA

. (2)

Here ρe is the density of free electric charges in the medium, np is the pase refractive index, ng is the group
refractive index, σ = εiω is the electrical conductivity, where εi is the imaginary part of the permittivity, and
J = σE is the light-induced current density. The term fL in Eq. (2) is the Lorentz force, which leads to damping
of the field inside lossy media, fint is the interface force, which is related to the changes in the refractive index,
and fA is the Abraham force, which drives forwards the atomic MDW in the medium as shown in Refs.17–19,21

Proc. of SPIE Vol. 10935  109350B-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 10 May 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



2.2 Momentum and angular momentum of the coupled mass-polariton state of light

The total momentum of the coupled MP state of light is shared between the electromagnetic field and the atomic
MDW. This total momentum of the MP and its field and the medium contributions are given by classical integral
expressions as

pMP =

∫ (E×H

c2
+ ρava

)
d3r, (3)

pfield =

∫
E×H

c2
d3r, pMDW =

∫
ρavad

3r. (4)

Correspondingly, the total angular momentum of light and its field and the MDW contributions are given by
integrals of the well-known expressions of the angular momentum densities of the field and the medium as

JMP =

∫
r×

(E×H

c2
+ ρava

)
d3r, (5)

Jfield =

∫
r×

(E×H

c2

)
d3r, JMDW =

∫
r× ρavad

3r. (6)

From Eqs. (3)–(6), it follows that, in the case of a homogeneous medium, the sharing of the angular momentum
between the field and the MDW takes place in such a way that the ratio of the angular momenta of the field and
the MDW is equal to the ratio of the corresponding linear momenta.

2.3 Momentum conservation at the front surface of the film

In the MP theory of light, the different terms of the optical force density are unambiguously related to the
momenta of the incident, reflected, and transmitted fields and the MDW. The conservation law of momentum
can be written at the front interface of the film, through which light enters the film from left in Fig. 1, as

pfield,0 = pfield,r + pfield,t + pMDW + pint, (7)

where pfield,0 is the momentum of the incident light pulse, pfield,r is the momentum of the reflected field, pfield,t

is the momentum of the field transmitted inside the film, pMDW is the momentum of the MDW driven by the
Abraham force of the field inside the film, and pint is the recoil momentum taken by a thin interface layer.
These momentum components are given in terms of the different components of the optical force density and
the momentum of the incident field in vacuum as

pfield,r = −Rpfield,0, (8)

pfield,t = T
pfield,0

ng
, (9)

pMDW =

∫ ∫ t

−∞
fAdt

′d3r = T
(
np −

1

ng

)
pfield,0, (10)

pint =

∫ ∫ t

−∞
fintdt

′d3r = (1 +R− npT )pfield,0. (11)

Here, R and T are the conventional power reflection and transmission coefficients of the front interface between
the vacuum and the film. Assuming a cw light beam, these coefficients account for the multiple reflections
between the two interfaces of the film. Therefore, these coefficients neglect the field transient at the leading edge
of the light beam, during which multiple reflections have not yet taken place.

2.4 Momentum conservation in the damping of the field inside the film

Inside the lossy film, the momenta of the field and the MDW that propagate after the first interface of the film
are damped by the Lorentz force density. Assuming that the fields are fully damped in the film, the momentum
conservation law for the damping can be written as

pfield,t + pMDW =

∫ ∫ t

−∞
fLdt

′d3r = npTpfield,0. (12)
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The damping of the field and the MDW is exponential and the attenuation coefficient is α = 2nik0, where
k0 = ω/c is the wavenumber of light in vacuum, and ni is the imaginary part of the refractive index. Generalizing
Eq. (12) for the case when the field is not fully damped in the film is straightforward by adding damped field
and MDW momenta on the right hand side of this equation. These momenta are then incident to the second
interface of the film. In this case, the momentum conservation law can be written in the same way as in Eq. (7)
with an additional incident MDW momentum on the left hand side, reflected MDW momentum on the right
hand side, and no transmitted MDW momentum on the right hand side as there are no atoms in vacuum.

3. SIMULATIONS

Next, we use the OCD model to simulate the propagation of selected LG mode beams in lossy and low-loss
dielectric films. As a lossy film material, we use graphite and, as a low-loss film material, we use silicon. Due to the
heating effect in the lossy graphite, which is not included in the present simulations, we use a relatively low laser
power of 1.5 mW, which is focused on the film surface in an area with a radius that is of the order of 1 µm. The
assumed vacuum wavelength of the light beam is λ0 = 1064 nm, which is the main wavelength of a conventional
Nd:YAG laser. For this wavelength, the phase refractive index of silicon is nSi,p = 3.555 + 8.260× 10−5i and the
group refractive index is nSi,g = 3.874.23 The phase refractive index of graphite is nG,p = 3.248 + 2.035i and the
group refractive index is nG,g = 2.429.24

In the simulations, we use a perturbative approach in which we assume, on the basis of previous simu-
lations,17,19,21 that the back action of the atomic displacements on the field is extremely small and can be
neglected. Consequently, we solve the electric and magnetic fields of the cw field by using standard Maxwell’s
equations. These fields are then used as an input for the OCD model to describe the coupled field-medium dy-
namics. By using cw field modes as the input for the OCD model, we also neglect the very short field transient
at the leading edge of the beam, during which the multiple reflections between the interfaces of the film have
not yet taken place. In the present simulations, we assume that the circular edge of the thin film in Fig. 1 is
fixed, i.e., the thin film is atomically bonded to the rigid substrate. However, this is not a limitation of the OCD
model that could also account for the larger geometry including both the film and the substrate with its true
elastic properties.

In the OCD simulations, we use the well-documented elastic properties of the materials. Silicon, which is used
as an example of a low-loss thin film material, has an anisotropic cubic lattice structure whose elastic constants
in the direction of the (100) plane are C11 = 165.7 GPa, C12 = 63.9 GPa, and C44 = 79.6 GPa.25 These
elastic constants correspond to the bulk modulus of B = (C11 + 2C12)/3 = 97.8 GPa and the shear modulus of
G = C44 = 79.6 GPa. The mass density of silicon is ρSi = 2329 kg/m3.26 Graphite, which has been chosen as a
lossy film material, has a hexagonal lattice structure. The five independent elastic constants in the direction of
the (100) plane for single-crystalline graphite are C11 = 1109 GPa, C12 = 139 GPa, C13 = 0 GPa, C33 = 38.7
GPa, and C44 = 4.95 GPa.27 The corresponding Reuss averages of the bulk and shear moduli are B = 36.4 GPa
and G = 11.3 GPa. The mass density of graphite is ρG = 2260 kg/m3.27

3.1 Transmission, reflection, and damping of fields in silicon and graphite films

First, we investigate the transmission, reflection, and damping of the optical field inside the film. Figure 2(a)
shows the instantaneous Poynting vector of a left-incoming linearly polarized LG0,0 mode cw field in the low-loss
silicon film geometry as a function of the position. The film is located between z = 0 and z = 300 nm. One
can see that the harmonic oscillations of the field are denser and their magnitude is larger inside the silicon film
than in vacuum due to the large refractive index of silicon. In the present low-loss case, the field is not damped
in the film since the absorption losses are negligible, and it continues to propagate to the right after the film.
The amplitude of the field after the film on the right is only slightly smaller than the amplitude before the film
on the left as the reflectivity of the film that is thin compared to the wavelength is very small. The total power
reflection coefficient of the film is R = 5.83× 10−4.

Figure 2(b) presents the instantaneous Poynting vector of a left-incoming cw field in the lossy graphite film
geometry as a function of the position. Compared to the low-loss case in Fig. 2(a), the oscillations of the Poynting
vector on the right extend to essentially negative values, which indicates that power transfer of the reflected field
to the left exceeds the power transfer of the incident field to the right. This is related to the total power reflection
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Figure 2. Propagating power of a linearly polarized LG0,0 mode laser field, i.e., the integral of the Poynting vector over
the transverse plane, (a) for a low-loss silicon film and (b) for a lossy graphite film. The solid line shows the instantaneous
propagating power, which is the difference of the right and left propagating powers, the dash-dotted line shows the
propagating power averaged over the harmonic cycle, and the dotted line shows the time-averaged incident power 1.5 mW
propagating to the right. The vertical dashed lines show the boundaries of the film, which has a thickness of d = 300
nm. The field is rapidly attenuated inside the graphite film due to losses related to conductivity while attenuation is very
small inside the silicon film. The wavelength of the field is λ0 = 1064 nm.

coefficient of the film R = 0.414, which is substantially larger than the power reflection coefficient in the low-loss
case above. Inside the film in Fig. 2(b), the field is significantly damped due to the absorption losses and there
is essentially no field component propagating to the right after the film.

3.2 Atomic displacements due to optical and elastic forces in a low-loss silicon film

Next, we investigate the atomic displacements resulting from the optical and elastic forces. First, we study
the case of a low-loss silicon film. We assume a circularly polarized LG0,0 mode beam. Figure 3(a) shows the
longitudinal atomic displacements along z axis in the plane y = 0 µm at t = 3 ps after the light beam has been
switched on. The dominant contributions of the atomic displacements at the two interfaces near z = 0 and
z = 300 nm result from the optical interface forces described by the second term of Eq. (2). These forces are
directed outwards from the film. Note that the total reflectivity of the silicon film is negligible as described in
Sec. 3.1. The third term of the optical force density in Eq. (2) results in a forwards shift of atoms inside the film
with the atomic MDW associated with light. This contribution is a few orders of magnitude smaller than the
atomic displacements at the interfaces. Therefore, this effect is not visible in the scale of Fig. 3(a). The effect
of the Lorentz force in the first term of Eq. (2), which is related to the optical losses, is also negligible in the
present case due to the very small imaginary part of the refractive index.

Figure 3(b) presents the longitudinal atomic displacements at t = 35 ps. One can see that the atomic
displacements originating from the interface forces have propagated deeper inside the silicon film. At this
instance of time, the magnitudes of the interface displacements have obtained local temporal maxima, i.e., the
atomic displacement near the left interface is the smallest and the atomic displacement near the right interface
is the largest. When the simulation is continued, the magnitudes of the atomic displacements start to become
smaller as the atomic displacement waves starting from the left and right interfaces cancel each other. The local
minimum values of the magnitudes of the atomic displacements are obtained at t = 70 ps (not shown). After this,
the magnitudes of the atomic displacements increase again. The second maximum of the atomic displacements
is obtained at t = 105 ps, which is presented in Fig. 3(c). The magnitudes of the atomic displacements in this
figure are very close to those in Fig. 3(b).

Figures 3(d), 3(e), and 3(f) depict the transverse components of the atomic displacements in the middle of the
silicon film at z = 150 nm at t = 3, t = 35, and t = 105 ps, respectively. In Fig. 3(d), the atomic displacements in
the middle of the film follow purely from the atomic MDW effect and the momentum transfer related to optical
absorption. The atomic displacements related to the optical interface forces have not had time to propagate to
the middle part of the film in this short time scale since they are mediated deeper in the film by elastic forces at
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Figure 3. The formation of atomic displacements in the low-loss silicon film at the picosecond time scale due to a circularly
polarized LG0,0 mode. (a) At t = 3 ps, thin interface layers on both sides of the film have recoiled out of the interfaces
due to the optical interface forces. (b) At t = 35 ps, the interface displacements have propagated deeper inside the film
and their magnitudes have obtained the first temporal local maxima, which depend both on the optical force density and
elastic forces between atoms. (c) At t = 105 ps, the magnitudes of the interface displacements have obtained the second
temporal local maxima. Between the temporal local maxima at t = 70 ps, the magnitude of the atomic displacement
reaches its minimum values, which are close to zero in the same scale (not shown). The vertical dashed lines show the
boundaries of the film, which has a thickness of d = 300 nm. The transverse components of the atomic displacements in
the middle of the silicon film at z = 150 nm are depicted (d) at t = 3 ps, (e) at t = 35 ps, and (f) at t = 105 ps. The
wavelength of the field is λ0 = 1064 nm and the power is P = 1.5 mW.

the velocity of sound, which is vastly smaller in comparison with the velocity of light in the medium. Due to the
angular momentum transfer of the circularly polarized LG0,0 mode, the atomic displacements spiral around the
optical axis in Fig. 3(d). This follows from the fact that the atomic MDW associated with light carries a major
part of the total angular momentum of light in silicon. In Fig. 3(e), the effect of the displacement of atoms at
the interfaces have had time to reach the middle part of the film. This results in radial atomic displacements
towards the optical axis. This is as expected for the atomic displacements resulting from the elastic stretching of
the film in the longitudinal direction by the optical interface forces. The azimuthal atomic displacements related
to the angular momentum transfer of the MDW are also present in Fig. 3(e), but they are not visible in the scale
of this figure since their magnitude is a few orders smaller than the magnitude of the radial atomic displacements
due to the elastic stretching described above.

3.3 Atomic displacements due to optical and elastic forces in a lossy graphite film

Next, we study the atomic displacements resulting from the optical and elastic forces in a lossy graphite film.
We assume the same linearly polarized LG0,0 mode beam as in the low-loss case above. Figure 4(a) shows the
longitudinal atomic displacements along z axis in the plane y = 0 µm at t = 3 ps in the case of the lossy graphite
film. In contrast to the case of the low-loss silicon film in Fig. 3, the atomic displacements in the present case
are dominated by the Lorentz force related to the optical absorption. Therefore, the atomic displacement at the
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Figure 4. The formation of atomic displacements in the lossy graphite film in the picosecond time scale due to a circularly
polarized LG0,0 mode. (a) At t = 3 ps, a thin layer of the front interface has recoiled backwards due to the optical
interface force and the atoms inside the medium near the front interface have recoiled forwards due to the optical Lorentz
force related to absorption losses. The total atomic displacement is determined by both effects, but the absorption related
effect dominates. (b) At t = 100 ps, the atoms are displaced forwards also deeper inside the graphite film. The optical
Lorentz force inside the film dominates the interface forces. (c) At t = 300 ps, the atomic displacement inside the film
has reached values that are approximately constant in the z direction. The vertical dashed lines show the boundaries of
the film, which has a thickness of d = 300 nm. The transverse components of the atomic displacements in the middle of
the graphite film at z = 150 nm are depicted (d) at t = 3 ps, (e) at t = 100 ps, and (f) at t = 300 ps. The wavelength of
the field is λ0 = 1064 nm and the power is P = 1.5 mW.

first interface of the film is directed inside the film in Fig. 4(a). The interface force at the second interface of the
film is negligible since the fields are fully damped inside the film as shown in Fig. 2(b).

Figure 4(b) shows the longitudinal atomic displacements in the graphite film at t = 35 ps. One can observe
that the atomic displacements following from the momentum transfer due to the reflection and absorption near
the first interface have propagated deeper inside the graphite film. Part of the absorption takes place deep inside
the film where the field has not yet damped to zero. Therefore, the propagation of the atomic displacements from
the first interface to deeper in the film is not fully governed by the elastic forces in contrast to the propagation
of the atomic displacements following from the pure optical interface forces in Fig. 3. In Fig. 4(c), the atomic
displacements are depicted at t = 300 ps. At this instance of time, the atomic displacement inside the film has
reached values that are approximately constant in the z direction. These constant values, however, continue to
develop as a function of time.

Figures 4(d), 4(e), and 4(f) present the transverse components of the atomic displacements in the middle
of the graphite film at z = 150 nm at t = 3, t = 100, and t = 300 ps, respectively. In Fig. 4(d), the atomic
displacements in the middle of the film follow from both the atomic MDW effect and the momentum transfer
related to optical absorption. The optical absorption is the dominating factor in the present case. This is related
to the larger magnitude of the transverse component of the atomic displacements in Fig. 4(d) in comparison
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to those in Fig. 3(d). Due to the absorption of angular momentum related to the circularly polarized LG0,0

mode, the atomic displacements spiral around the optical axis in Fig. 4(d) and in Figs. 4(e) and 4(f), where
the atomic displacement is depicted at later times. Also, one can see that the radial component of the atomic
displacements is directed outwards from the optical axis in Figs. 4(e) and 4(f) in contrast to the inwards-directed
radial component of the atomic displacements in the low-loss case in Figs. 3(e) and 3(f). This is related to the
fact that, in the low-loss case, the film has been stretched by the optical interface forces, while in the present
lossy case, the film is pushed starting from the first interface by the optical force related to absorption. The
resulting elastic displacements of atoms inside the film are consequently opposite. That the azimuthal atomic
displacements change sign between Figs. 4(e) and 4(f) follows from the elastic recoil effect.

3.4 Force and torque at the edge of the thin film

Since the thin film studied in the present work is supported at its edge, there is an effective external force that
keeps the edge of the film fixed to its original position. By the law of action and counteraction, this force is
equal in magnitude and opposite in direction to the force that the atoms at the edge of the film experience due
to the elastic bending of the film. Therefore, we can use the OCD simulations to calculate the total external
force experienced by the thin film through its edge. Regarding the conservation law of the total momentum, this
external force is of fundamental importance since, due to the fixed edge of the film, the system of the film and
the electromagnetic field cannot be considered to be closed.

Figure 5(a) presents the time dependence of the total force experienced by the edge atoms of the low-loss
silicon film due to the bending of the film. As expected, this force varies between temporal minima and maxima
in the course of time. The period of this elastic oscillation is determined by the elastic constants of the silicon
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Figure 5. Time dependence of the total force experienced by the structure supporting (a) the low-loss silicon film and (b)
the lossy graphite film through its edge. Positive values indicate force to the right in Fig. 1. By the law of action and
counteraction, this edge force is equal in magnitude and opposite in direction to the force that the thin film experiences
due to the structure supporting it through the edge. The edge torques for the low-loss silicon film and the lossy graphite
film are shown in panels (c) and (d). The wavelength of the field is λ0 = 1064 nm and the power is P = 1.5 mW.
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film. The corresponding force and the related elastic oscillation in the case of the lossy graphite film is shown in
Fig. 5(b). Note that the forms of the graphs in Figs. 5(a) and 5(b) are identical. However, the magnitude of the
force and the time scale of its oscillation are larger in the case of the graphite film. The larger magnitude follows
from the larger momentum transfer with the electromagnetic field due to the absorption losses. The larger time
scale of the oscillation of the edge force follows from the smaller elastic constants in the direction perpendicular
to the graphene layers forming the graphite film.

Figures 5(c) and 5(d) show the time dependence of the total torques experienced by the edges of the silicon
and graphite films, respectively. The total edge torques are seen to oscillate as a function of time as expected.
The period of these oscillations are determined by the elastic constants in the transverse direction of the film. In
particular, note that the period of the oscillation of the torque is shorter in the case of the graphite film than in
the case of the silicon film due to the large elastic constants of graphite along the graphene layers in its structure.
Thus, our simulation results are in good agreement with our understanding of the expected elastic behavior of
the silicon and graphite films based on their molecular structure.

4. CONCLUSIONS

In conclusion, we have used the OCD model to simulate the dynamics of medium atoms in lossy and low-loss
thin film structures. Our results show how the different force components related to reflection, transmission,
absorption, and the atomic MDW bend and twist the film. We have also investigated the time dependence of
the total forces and torques that are exerted to the structure supporting the thin film through its edge. The
simulations also aim at finding possible experimental setups for the studies of the coupled dynamics of light and
the thin film atoms and to relating the measurements to the properties of incoming light. The results also indicate
that thin film structures may not be optimal for the direct experimental verification of the atomic MDW effect
since it is hidden under other effects. The OCD model allows detailed simulations of the optoelastic dynamics
in any material geometry under the influence of the optical force field. For instance, one can model the coupled
field-medium dynamics in thin films for possible device development needs. The OCD simulations can also be
used for the optimization of possible setups that can be planned for the experimental verification of the atomic
MDW associated with light.
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[24] A. B. Djurǐsić and E. H. Li, “Optical properties of graphite,” J. Appl. Phys. 85, 7404 (1999).

[25] M. A. Hopcroft, W. D. Nix, and T. W. Kenny, “What is the Young’s modulus of silicon?” J. Microelec-
tromech. Syst. 19, 229 (2010).

[26] D. R. Lide, ed., CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL (2004).

[27] A. Bosak, M. Krisch, M. Mohr, J. Maultzsch, and C. Thomsen, “Elasticity of single-crystalline graphite:
Inelastic x-ray scattering study,” Phys. Rev. B 75, 153408 (2007).

Proc. of SPIE Vol. 10935  109350B-10
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 10 May 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


