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Abstract

The ability to reliably detect damage and intercept deleterious processes, such as cracking, corrosion, and
plasticity are central themes in structural health monitoring (SHM). The importance of detecting such processes
early on lies in the realization that delays may decrease safety, increase long-term repair/retrofit costs, and
degrade the overall user experience of civil infrastructure. Since real structures exist in more than one dimension,
the detection of distributed damage processes also generally requires input data from more than one dimension.
Often, however, interpretation of distributed data — alone — offers insufficient information. For this reason,
engineers and researchers have become interested in stationary inverse methods, e.g. utilizing distributed data
from stationary or quasi-stationary measurements, for tomographic imaging structures. Presently, however, there
are barriers in implementing stationary inverse methods at the scale of built civil structures. Of these barriers,
a lack of available straightforward inverse algorithms is at the forefront. To address this, we provide 38 least-
squares frameworks encompassing single-state, two-state, and joint tomographic imaging of structural damage.
These regimes are then applied to two emerging SHM imaging modalities: Electrical Resistance Tomography
and Quasi-Static Elasticity Imaging. The feasibility of the regimes are then demonstrated using simulated and
experimental data.

Keywords
Elasticity Imaging, Electrical Imaging, Inverse Problems, Structural Health Monitoring

Introduction

In recent years, the use of distributed data and full-field measurements have been the source of significant research
interest in the field of structural health monitoring (SHM) (Farrar and Worden 2012; Ou and Li 2010; Balageas
et al. 2010). Much of this interest is derived from the fact that full-field or distributed data offers increased spatial
information relative to point data (Smyl et al. 2018c). While the use of distributed data does improve realizations
related to structural state, inverse methods afford us additional quantitative information on structural state by
incorporating a priori information in obtaining estimations of structural state from distributed data. Many forms of
data are available to researchers, which are often used to generate images of structural damage, such as cracking,
plasticity, impact, fatigue, and more. In particular, the use of photographic, piezoelectric, and electrical data have been
used in inverse method-based applications within SHM.

The use of photographic data sets has shown promise in Digital Image Correlation (DIC) and Computer Vision
based SHM. For in-plane imaging of plastic processes, DIC has proven to be a highly promising method — for which
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there are many available computational regimes (Pan et al. 2009). Some representative examples of DIC for SHM
purposes include evaluation of crack propagation in concrete elements subject blast loading (Kiintz et al. 2006),
evaluation of interfacial debonding (Corr et al. 2007), and evaluation of microscopic strain and damage evolution
in metals (Malitckii et al. 2018; Kang et al. 2007). Data sets generated from DIC have also been successfully used as
input data for inverse regimes; in particular, Quasi-Static Elasticity Imaging (QSEI) which aims to reconstruct elastic
properties from displacement fields (Smyl et al. 2018c). Computer Vision Techniques have also enjoyed much success
in damage localization (Cha et al. 2017), identification of bolt loosening in steel structures (Kong and Li 2018a), and
fatigue-crack detection (Kong and Li 2018b).

Implementation of piezoelectric sensors and actuators for lamb-wave based SHM has also been recognized as
a promising method for detecting damage/defects in structural members. Researchers have demonstrated this in
applications including defect detection in composite structures (Sohn et al. 2003; Paget et al. 2003), thin plates
(Gangadharan et al. 2009), plates considering various deformation physics (Rose and Wang 2004), and a large suite of
different problems. For this, a multitude of analytical, semi-analytical, and numerical approaches have been proposed
(Park et al. 2007; Rose 2014).

Within only the past 8 years, the electrical data has proven successful in tomographic regimes for imaging spatially-
distributed damage in structural members. Most often, researchers have been interested in imaging damage in concrete
(Smyl et al. 2018d; Seppinen et al. 2014a; Hallaji et al. 2014) or composite structures (Tallman et al. 2017, 2015)
by employing Electrical Resistance Tomography (ERT) — aiming to reconstruct the electrical conductivity from
distributed voltage measurements. In concrete applications, aiming to detect discrete cracking, authors have utilized
data obtained directly from the concrete surface (Karhunen et al. 2010) or from an electrically-conductive sensing
skin (Seppinen et al. 2014b). In composite materials, often the material is self sensing (glass fiber/epoxy laminate)
using electrically-conductive nanofillers. In both cases, ERT has been useful in applications from stain quantification
to reconstructing complex cracking distributions in large area sensors.

With the possible exception of lamb-wave based SHM, the aforementioned examples may be used in stationary
tomographic regimes aiming to reconstruct images of (potential) structural damage. This is in contrast to nonstationary
problems, where we quote the description from Kaipio and Somersalo (Kaipio and Somersalo 2005).

“In several applications, one encounters a situation in which measurements that constitute the data of an
inverse problem are done in a nonstationary environment. More precisely, it may happen that the physical
quantities that are the focus of our primary interest are time dependent and the measured data depends on
these quantities at different times.”

Moreover, the general use of stationary inverse problems for generating tomographic images of structural damage
is a rather recent development, largely due to the computational demands in cases with many (roughly, greater than
103 (Oberai et al. 2003)) degrees of freedom. Examples of early applications include elasticity imaging (Bonnet and
Constantinescu 2005), geometrical inverse problems using sensitivity analysis (Bonnet et al. 2002; Aithal and Saigal
1995), and general inverse problems employing boundary integral equations (Nishimura 1995; Mellings and Aliabadi
1995). More recently, researchers have taken advantage of rapidly improving computational resources by solving
stationary SHM inverse problems ranging from approximately 10* (Yang et al. 2017; Gallo and Thostenson 2016; Dai
et al. 2016) to more than 10° degrees of freedom (Zalameda et al. 2017; Smyl et al. 2017).

While considerable, computational challenges associated with implementing tomographic imaging within a SHM
context is only one of many hurdles. In localizing and quantifying structural damage (such as a discrete crack),
numerous considerations such as crack location, external loads, support conditions, and possibly most notably,
structural size have significant impacts on acquired data and therefore the quantitative information obtained (Yao
et al. 2014). To this end, the sheer ability to localize a crack using a tomographic modality is dependent on the input
data being above some distinguishability criteria. If we choose, for example, the distinguishability criteria proposed
by Isaacson (Isaacson 1986), we find that a crack is only detectable when two data sets D; (before damage) and D,
(after damage) are above some measurement precision ¢, via a mean-squares criterion: || Dy — D1 || > &, Practically
speaking, measurement precision is only the theoretical distinguishability floor for damage detection; errors resulting
from numerical modeling ¢,,, discretization €4 and sensor quality €4 also contribute, resulting in a more realistic
distinguishability criterion: ||Dy — D1|| > €,, + €5, + €4 + 5. These realizations imply a fundamental hurdle for
implementing tomography for damage detection: that sufficiently small damage(s) may be undetectable (or, in the
inverse problems sense, invisible (Greenleaf et al. 2009)).

In the context of damage tomography, the ability to even solve the intended computational inverse problem requires
a numerical model for the underlying physics. Pragmatically speaking, no numerical method is completely accurate
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(Surana and Reddy 2016; Oberkampf et al. 2002), resulting in ever-present uncertainty and modeling error £,,. Broadly,
there are four ways in dealing with €,,: (i) ignore it, (ii) improve the numerical method, (iii) develop an approximation
for €,, (e.g., using subtraction (Seppinen et al. 2014a), the Bayesian approximation error approach (Nissinen et al.
2007), deep learning (Adler and Oktem 2017), etc.), and (iv) a combination of (ii) and (iii). In some cases, such as
when structural damage processes are not significantly severe and/or complex, the use of (i) and (ii) may be sufficient
(Smyl et al. 2018d); but, oftentimes, this is not true. The veiled need for (iii) in damage tomography may lie in the
fact that damage in structures, either local or distributed, is notoriously nonlinear and difficult to model — although
significant progress has been made in multi-scale numerical and constitutive modeling (LLorca et al. 2011; Nguyen
et al. 2011; Liu and Zheng 2010).

Despite these ever-present practical challenges, we are inspired by the recent developments in stationary tomography
of structural damage and increases in availability of computational resources which have helped to promote usage in
SHM. At present, however, one barrier to the practical implementation of stationary tomography for SHM of built
structures is the lack of availability of straightforward inverse frameworks and a transparent detailing of functionalities.
In contrast, there is substantial literature detailing nonstationary inverse damage detection frameworks using vibration
measurements (Wang and Chan 2009). These regimes have utilized, for example, natural frequency analysis (Moradi
et al. 2011; Hejll 2004), modal displacement response (Zhang et al. 2013), modal strain energy (Cha and Buyukozturk
2015), changes in frequency (Salawu 1997), power spectrum (Gillich and Praisach 2014), and more. In solving
these problems, algorithm complexity has ranged from advanced solution regimes including neural networks, genetic
algorithms, particle swarm optimization, multi-objective function approaches, hybrid multi-objective approaches, and
stochastic optimization approaches for non-convex problems (Jafarkhani and Masri 2011; Perera et al. 2010) to more
basic regimes such as Finite Element updating, various gradient-based approaches, Newton methods, and quasi-
Newton methods (Fan and Qiao 2011).

Possible explanations for the comparatively higher number of available vibration-based damage detection
frameworks, with respect to stationary frameworks, results in part from factors discussed in the following. (a) The
relative versatility in acquiring time-dependent data from accelerometers, laser systems, etc., whereas stationary
tomography may require large-area sensors and/or advanced data acquisition systems posing practical challenges — a
emerging topic that is currently the source of much research interest (Rashetnia et al. 2018). (b) The ability of vibration-
based frameworks to meaningfully implement simple (e.g. one-dimensional) models in localizing damage (Reynders
and De Roeck 2010). (c) The overall effectiveness of vibration-based methods for localizing damage. One potential
advantage of stationary tomography in SHM is that it typically includes only a few data sets, therefore focus is often in
promoting spatial resolution and accurately reconstructing damage geometry — these aims do not necessarily require
large transfers of data or elegant optimization regimes. Rather, accomplishing these aims requires implementation
of prior knowledge in regularization schemes, construction of noise models, appropriate use of error approximation
methods, constrained optimization, and appropriate parameterizations that accurately represent the problem physics.
The development of stationary inverse methods incorporating the aforementioned functionalities is a central theme of
this article.

In this work, we focus on deriving and providing generic, adaptable, and straightforward regimes promoting
improvements in spatial resolution and damage localization, which may be applied to a large suite of stationary inverse
SHM problems. While this article is intended to serve as a primer for new users of stationary tomography in SHM.
The article may also be a useful refresher to those who are already well-versed in inverse problems. For this, we derive
a total of 38 least-squares frameworks for one state, two state, and joint tomographic imaging. Precisely, we aim to
accomplish the following goals in this article:

e Derive one-state, two-state, and joint frameworks for stationary tomography of structural damage.

e Apply the frameworks to two promising SHM modalities: ERT and QSEI

e Demonstrate the frameworks’ feasibility to image damage in structures using experimentally- and numerically-
obtained data.

We note that, in this article, and in stationary tomographic applications in SHM in general, we are usually interested
in fitting a computational model having n unknown parameters with m measurements (where m > n, making the
system overdetermined). Broadly speaking, such a problem in SHM is referred to as a non-linear regression problem,
meaning that the numerically-modeled data is non-linear in the unknown parameters and imposed conditions (such
as boundary conditions, source terms, etc.) (Mueller and Siltanen 2012; Hartley 1961). In solving the non-linear
regression problems, we utilize non-linear least squares approaches. This is done for three primary reasons, (i)
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simplicity in implementation, (ii) ease of adaptability to include different regularization regimes and constraints, and
(iii) rapid minimization.

At this point, it is apparent that the primary contribution of this article is the development and presentation of
computational frameworks for structural damage tomography. With this in mind, it is important to place these aims
in the context of inspection and monitoring processes. Overall, the frameworks provided in this article are intended
to promote improved resolution and quantitative information on spatial structural damage processes. This task is
iterative and computationally demanding, where the demand increases proportionally with the desired resolution and,
roughly speaking, the size of the geometry investigated. As such, these frameworks are not presently intended for
online monitoring processes. While this is a possible limitation in implementing the frameworks, there are also
several promising avenues for utilization, such as, detection of damage processes not apparent or accessible via
visual inspection, damage localization, remote detection of spatial damage processes, quantifying damage severity,
quantifying spatial changes in damage over an inspection period, and incorporation of quantitative tomographic
information into statistical models. To sum up, we strive to provide stationary tomography frameworks taking
advantage of a priori knowledge to increase quantitative information on structural damage processes that may not
be available through interpretation of data alone.

The paper is organized as follows. First, we provide a brief background on stationary inverse problems in the context
of one-state problems. Following, we derive and provide frameworks (including cost functions and least squares
solutions) for one state, two state, and joint tomography. Next, we integrate three different regularization schemes,
constrained optimization, and (in the case of joint imaging) structural operators into the frameworks. We then, for
clarity, provide as summary table including critical aspects for all the frameworks provided. Following, we apply
selected frameworks to ERT and QSEI and provide examples testing the frameworks’ feasibility. Next, a primer for
first-time users of the damage tomography framework and recommendations/potential pitfalls in using the proposed
frameworks are discussed. Lastly, conclusions are presented.

Stationary inverse problem frameworks
Single-state problems

The solution to a single-state stationary inverse problem involves estimating distributed parameters 6 from data d. To
do this, we generally aim to match some model U to the data by writing the observation model

d=U(®) )

where U is called a forward model, usually solved computationally, for example by employing the finite difference
or finite element method (Hansen 2005). The use of computational models in SHM applications is centered on the
reality that structures may have arbitrary geometry, boundary conditions, and constitution — in such cases analytical or
semi-analytical models are often not available. In an attempt to solve the basic problem posed in Eq. 1, we may aim to
minimize a data discrepancy functional, such as

Uy =|ld-U(®)|] )

where || - || is the Euclidean norm and the subscript “1” denotes the number of states considered. In general, however,
solutions resulting from minimization of Eq. 2 may fail due to the ill-posed nature of the inverse problem, meaning
that one of the following criteria is not satisfied: (i) a solution is unique, (ii) a solution exists, and (iii) the behavior of a
solutions changes continually with the problem conditions (Kaipio and Somersalo 2005) (in other words, small changes
in problem conditions/parameter values result in small changes in the solution — this is also known as the “stability”
criterion). To handle the ill-posedness, we require regularization, which will be further detailed later. Moreover, the
formulation of the problem in Eq. 2 is unrealistic, as any measured data contained some error e, which is commonly
assumed to be Gaussian. Therefore, we re-derive the observation model by writing

d=U(0) +e. 3)

In reality, additional sources of error also exist which add uncertainty to solutions of the inverse problem. A primary
culprit is modeling error, i.e. errors in U that do not precisely match the problem physics (Surana and Reddy 2016).
Such errors may be accounted for by adding a second error term in equation 3 using, for example Bayesian approximate
error modeling (BAE) (Nissinen et al. 2007). In this work, however, we assume the modeling error as additive in the
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term e to maintain simplicity in our regimes. We then aim to minimize the following functional in obtaining our inverse
solutions

Uy =||Le(d = U@O))II* + R(6) )

where R (6) is a regularization functional and L, is the Cholesky factor of the inverted noise covariance matrix W =1
(.e. LT L, = W~1). To obtain W, we have many options. Possibly the most convenient and robust methods include
obtaining statistics by repeated measuring of a non-evolving structure or simply estimating W by trial and error (e.g.
assume the measurement noise/errors are some small percentage of the measurement magnitudes). As for R(#), there
are numerous options for regularization that may be chosen based on the problem physics which will be discussed in
much detail in the following section.

To solve the inverse problem, many approaches are available including iterative (Tallman et al. 2017; Hallaji et al.
2014) or non-iterative methods, for example by applying factorization (Schmitt 2009; Gebauer and Hyvonen 2007),
D-bar (Knudsen et al. 2009; Isaacson et al. 2006), or monotonicity (Garde and Staboulis 2017; Tamburrino et al. 2003;
Tamburrino and Rubinacci 2002). In this article, we focus on iterative methods due to their effectiveness in facilitating
increased resolution and application of problem constraints. In solving the problem of minimizing the functional in
Eq. 4, we employ a Gauss-Newton regime equipped with a line-search to compute the step size si, in the solution

0 =0p_1+ Ské )

where 6}, is the present estimate and @ is the update at iteration k given by

0= (JgW Iy +T5") 1 (Jg W Hd - U(0k_1)) (6)
where F;zl = LX Ly is the inverted prior covariance matrix related to the Cholesky factor/appropriate regularization
matrix L. Moreover, Jy = a%ée) is the Jacobian matrix. Regularization and computation of the Jacobian matrix will

be further detailed in later sections.

Two-state problems

In a two-state problem, we aim to utilize two data sets, d; and ds, to simultaneously image two structural states using
a stacking method. These states could be, and are commonly, undamaged and damaged states with corresponding
measurements d; and ds, respectively. Correspondingly, we aim to estimate the distributions #; and 6. To do this, we
begin by designating the change in parameters between measurements d; and ds as A6 resulting in

02 =61 + Af @)
which may then be used in generating the two-state observation model*
dy = U(Ql) + e
d2 = U(Ql + AH) + €9

where e; and es are the measurement noises for measurements d; and ds, respectively. We may then concatenate to
obtain the following matrix representation

®)

dl o U(&l) €1
)= oo ho) 2] ®
~ ——
D U(®) £
where
_ |0
o-[2] w0

which can be conveniently used to write the stacked observation model

*This model has previously been referred to as nonlinear difference imaging (Smyl et al. 2018d; Liu et al. 2016, 2015a)
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D=U(O)+E. (11)

Following Eq. 11, we may write the two-state functional to be minimized as

Uy = [|Le(D — U(O))[]” + R(O) (12)

where R(0O) is now a compound regularization functional which may incorporate prior information related to the
physics of each structural state and Lg is the Cholesky factor defined as LY Lg = W !, where W is a block form of
the stationary noise matrices for each state (W, and W,,):

We, 0 } (13)

We = [ 0 W.,
In solving the minimization problem posed in Eq. 12, we again employ a Gauss-Newton approach by recasting Eq.
5 for the stacked parameterization as

O = Ok_1 + 5,0 (14)
where O is explicitly given by
6 = (JoWs 'Jo + ) (JoWe (D — U(O)-1)) (15)
where the Jacobian Jg = g—g = Jp and is given by
AU (81) 0
Jo = |oudiine  ov@,+a0) | - (16)

9(01+A0) 9(01+A0)

Joint problems

Joint inverse problems aim to estimate different physical properties by simultaneously solving different tomographic
problems. Often, the aim is to improve an individual modality’s resolution and/or quantitative information by taking
advantage of a complimentary modality’s strength; for example, ERT is excellent at detecting sharp features whereas
QSEI often offers smoother reconstructions. Therefore, when sharper features are desired in QSEI, joint imaging with
ERT is advantageous. There are numerous approaches for solving such problems (Ward et al. 2014; Ehrhardt et al.
2014), most often used in medical or geophysical applications. In SHM, however, the use of joint inversion is scarce
due to a general lack of available algorithms — an issue we aim to address herein.

In this work, we consider two kinds of joint problems (i) stacked joint models and (ii) stacked joint models with
a common structural operator. The aim in (i) is simply to solve two stationary tomographic problems simultaneously
and the aim in (ii) is to simultaneously reconstruct two stationary tomographic problems assuming the models have
an underlying similarity in their structure (Haber and Oldenburg 1997). In essence, (ii) is an extension of (i); we will
therefore first derive a joint imaging regime for (i).

Stacked joint models: We begin with the realization that there are two data sets, dy and ds, corresponding to
parameters ¢; for imaging modality 1 and 9 corresponding to imaging modality 2, respectively. We reinforce that
modalities 1 and 2 may relate to stationary problems with entirely different physics. The observation model is then

di =Us(91) +ex
d2 = U2(192) + €9

which is similar to the observation model in non-linear difference imaging (Smyl et al. 2018d; Liu et al. 2016, 2015a).
We note, however, that ¢; and 5 are not fundamentally linked by any parameter related to a change of state and there
are differences in the forward models for each problem, therefore we denote U; and U, separately. Moreover, since
we are dealing with separate imaging modalities, e; and e, are not considered to be stationary and modeled separately
(i.e., We, # We,). As in the previous subsection, we may conveniently concatenate as follows

a7

di| _ |Ui(vh) el

) = o] + 2] 1o
—~ ———

Dg Us(©7) Eg
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where the subscript J denotes joint” and

05 =

U1
192] . (19)
We then formally write the stacked observation model

Dy =Ug(07) +&7. (20)
Resulting from Eq. 20, we obtain the joint functional to minimize

Vs =|lLsy(Ds —Us(ON))>+Rs(O7) 1)

where L 7 is obtained using non-stationary noise statistics with Eq. 13 and R 7(©7) is a compound regularization
functional incorporating prior information related to the problem physics. Since the estimation parameters 1J; and
are not fundamentally linked by a change of state and are treated independently, we require a different approach to
solve the minimization problem than was used in previous subsection. Using the Gauss-Newton approach with

@jk = @Jk—l +Sk®j (22)
we stack the independent parameters from each modality using

S = (o, "W, " g, + TR (o, " We, “H(d1 — Ur(915-1))
(Jo, " We, ™ oy + TR 1T, " We, ' (do2 — Ua(925,-1))

[©]

(23)

where Jy, = Lgﬁl) and Jy, = ngéfz).

Stacked joint models with a common structural operator: We again aim to jointly reconstruct parameters [, 9J2]7
from data [d;, dg]T. In this section, we assume that parameters ¥/; and J5 have a similar structure; for example, in the
case of localized cracking in a structural member we may surmise that the localized changes in 9J; and 95 are common
in structure/geometry. To accomplish this, we require a common structural operator €, herein referred to as simply
“structural operator.” In this work, € is defined as a term added to a cost functional which relates similarities in the
spatial distributions of 97 and 5. There are many choices (Haber and Oldenburg 1997); here, we consider a simple
thresholding operator accepting a normalized parameter 0 < 9,, < 1:

1, if .
@) = b o<t (24)
0, otherwise.

where 0 < t < 1 is a threshold parameter and 1,, is obtained simply by normalizing with respect to the maximum
value, i.e. ¥, = 19:%. In the case that damage significantly decreases the parameters, i.e. ¥ — 0 and 5 — 0 (and
¥,, — 0 by default), Eq. 24 may be interpreted as an operator linking the spatial similarities in damage locations for
low values of t.

To incorporate the structural operator € into the inverse regime, we penalize the misfit by adding a structural cost
functional

ﬁl,max ﬁ?,max

w3 () (2 @5
i=1

to the joint imaging functional (Eq. 21), thereby penalizing discrepancies between the solutions of ©; and ¥ with NV
degrees of freedom as follows

Vse=[Ls(D7 —Us(O°+R7(07)+r¥e (26)

where the scalar x controls the weighting of the structural operator. In solving this problem, we may adopt the same
regime provided in Eq. 23 with the updated objective functional in Eq 26.
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Regularization and constrained optimization

In this section, we provide practical information that is useful in providing accurate prior information and constraints
for stationary inverse problems, as they apply to imaging damage in structures. We begin with regularization
techniques, which are essential for handling the ill-posedness of the inverse problems and incorporating spatial
information related to the problem physics. Following, we discuss the numerical implementation of constraints to
ensure solutions are physically realistic and to help improve the minimization behavior of the regimes. Lastly, a
summary table and brief discussion of the derived frameworks will be provided.

Regularization

Standard least-squares methods generally fail at solving ill-posed problems — for this reason, we require regularization.
We may also use regularization as a way of incorporating prior information in our minimization regimes, which is
immensely helpful when the form of regularization closely matches the problem physics. As an example, it is well
known that many forms of cracking have sharp features. Therefore, edge-preserving regularization (such as total
variation (TV)) is well-suited for such a case. On the other hand, when a damage process is smoothly distributed,
Tikhonov or weighted-smoothness regularization may be better choices (Smyl et al. 2018d). Since we are often
interested in reconstructing damage which may smooth or sharp, we will detail all aforementioned regularization
schemes which may be incorporated in the single-state, two-state, or joint imaging frameworks (recall that R denoted
a regularization functional and 'z was a prior covariance matrix).

Tikhonov regularization Possibly the most simplistic regularization technique is Tikhonov regularization. In
Tikhonov regularization, we consider the following functional with the subscript ”7” denoting " Tikhonov”

Ry = ||Tr0]? 27)

where 6 again represents the estimation parameter and I'y is given by

FT = OzTI (28)

where [ is the identity matrix and a7 is a weighting parameter. Of practical importance, ap largely controls the
smoothness of solutions and may be easily optimized using L-curve analysis (see (Mueller and Siltanen 2012) for
details). While simple, Tikhonov regularization is robust, easy to implement, and an efficient means to preliminary test
a developed inverse algorithm.

Weighted-smoothness regularization Another regularization approach that is useful in cases where distributed
parameters are expected to be smooth is weighted-smoothness regularization. In this technique, we use the
regularization functional, with the subscript WS, given by

Rws = ||LWS(9 - 96Xp)”2 (29)

where .y, is obtained by determining the best homogeneous (one-parameter) estimate for § and Ly, s is the the
Cholesky factorization of the matrix 'y g, (i.e. F;l,ls = Lw STLW s). Further, there are a multitude of ways to obtain
fexp, however one simple method is to simply sweep an expected space of a homogeneous ¢ and find the minimum:
Oexp = min||d — U(Bexp)||- Tw s, on the other hand, is determined element wise, where the matrix element (¢, j) for
a distributed parameter 6 at locations x; and z; is given by

[l — ;]
20
where the scalars a, b, and c are positive and d;; is the Kronecker delta function. In a basic sense, parameter a controls
the weighting, b is incorporates spatial correlation, and ¢ is small positive parameter which is used to guarantee
that inverse of 'y g exists (Kaipio and Somersalo 2005). Therefore, this method offers more ability to be tuned to
application-specific parameters than Tikhonov regularization; for example, one can directly control the smoothness
of expected fluctuations in 6 by adjusting b and also the regularization weighting via a and c¢. Where as Tikhonov
regularization only allows for adjusting . However, users should be aware that poor selection of a, b, and ¢ may

result in substandard reconstructions.
In addition, the use of weighted smoothness requires the addition of a gradient term in the Gauss-Newton schemes
since the model is differential, unlike Tikhonov regularization. The gradient, updated at each iteration k, is given by

T'ws(i,j) = aexp ( - ) + cdyj (30)
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gws = ek—l - eexpra/s (31)

and is incorporated into, for example, the one-state solution regime as follows

0= (JgW Iy +T3ls) H(Jg WH(d — U(0k-1)) — gws)- (32)
Extension to the two-state and joint imaging regimes are also done in the same straight-forward manner.

Total Variation regularization Often, we are interested in reconstructing images where the parameter distribution has
sharp edges or is blocky. In structural applications, such distributions may result from cracking, fracture propagation,
localized plasticity, etc. (Seppinen et al. 2014a). While smoothness-promoting regularization methods can certainly
be used in such cases (Tallman and Hernandez 2017), improved accuracy of damage location and distribution can be
gained by using sharpness-promoting regularization. For this purpose, Total Variation regularization is most commonly
used. For a parameter distribution 6, the isotropic TV functional is given by

N
Rov(0) = arv > VI(VO)[e, [ + 8 (33)
h=1

where ary is the TV weighting parameter, V0)|., is the gradient of 6 evaluated at degree of freedom ey, and 3 is
the stabilization parameter (i.e. when 3 = 0, the functional may not be differentiable). For a detailed discussion of
TV regularization, including anisotropic TV and statistical incorporation of TV, we refer the reader to (Gonzélez et al.
2017; Lassas and Siltanen 2004). We remark that TV can be quite challenging to use, particularly when the parameters
ary and B are poorly selected. Some choices for selecting these parameters are detailed in, e.g. (Niinimaki et al.
2016). From experience with structural applications, the use of a confidence-based selection of ay and 5 following
(Gonzdlez et al. 2017), has proven robust. In this work we select ary using

= - 34
ary eexp/d ( )

where p,, is the % confidence that 6 lies between (0, fexp,) and d is the width of the finite element. For 5 we use

Bexp )2
B=c(™2) (35)
d
where ( is a small number. For general purposes, the values of p, = 90.0% and ¢ = 10~2 have proven robust and are
recommended as a starting point.
To implement TV in the imaging regime, we again require I'7y (also denoted as the TV Hessian) and gradient
vectors, I'ry and gy, respectively. For I'ry, we use

%R 0;
Ty = ow%() (36)

where 6; refers to the i*" degree of freedom in #. Moreover, we may compute the gradient using

B OR1v (0;)
grv =aryv—g5—" 37

It is important to note that there are numerous regimes to compute the derivatives. Some choices include using finite
differencing following (Lefkimmiatis et al. 2012) or Gateaux derivatives following (Vogel and Oman 1996). As in the
previous subsection, ['7y and g7y may be incorporated into any regime provided herein. For example, the one-state
solution:

0= (JgW g +Tqy)  (Jg W Hd = U(0-1)) — gv)- (38)
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Constraints

The use of constrained optimization is useful (if not, essential) in structural imaging problems for the following
reasons (i) solutions can be constrained to real numbers (i.e. § > 0) avoiding numerical problems with forward
operators and ensuring solutions are realistic, (ii) solutions may be bounded between known physical limitations
(say 0 < 6 < Bimpossible), and (iii) often, constraints result in faster minimization since the solution space is limited
to a more feasible set. In the case of imaging structural damage, using for example ERT or QSEI, we can often
place realistic constraints based on simple assumptions, such as the realization that damage can only decrease 0,
resulting in (0 < 6 < Ocxpp) (Smyl et al. 2018d). Unfortunately, however, the practical implementation of constraints in
structural imaging problems is rarely reported. In this subsection, we will address this by providing a simple method
for constraining the imaging frameworks provided herein.

There are two components to constraining the regimes provided. First, we must penalize degrees of freedom that are
near or outside our specific constraint(s) in the objective function. Secondly, we must incorporate the first- (gradient)
and second-order (Hessian) terms in our least squares update. For simplicity, we will illustrate this by considering the
single-state problem and only consider upper and lower constraints for simplicity.

We may begin by defining a simple type of constraints using barrier functions, which is essentially an interior-
point method. Let’s first assume we have the following constraints: ¢; = 0 < 6 < g2, where g has a positive value.
In this approach, we have barrier functions B (0;) where the ¢ = 1,..., N are the degrees of freedom and k = 1, 2.
In generating the barrier functions, we employ second order convex polynomials in the representation By (6;) =
@y (0;)by(0;) where @ (6;) is a function defining an interval where the polynomial by (6;) = a102 + b10; + ¢; with
coefficients a1, b; and c; is turned on.

A nice feature of applying constraints in this way is its flexibility. One may select different locations for ¢; and
g2 in a manner which accurately represents the problem physics. Numerically speaking, however there are a few
considerations (i) suppose we want to add the polynomial constraint at g3, we must define the interval o using a small
barrier length ¢, resulting in the interval [g3 — ¢, ¢3] and (ii) non-negativity constraints must be slightly above zero to
avoid issues with forward models, for example using the interval [10~7,10~%]. In practice, these numerical realities
rarely affect results.

To implement barrier functions into the cost function, we simply add barrier functionals (depending on whether the
user wants to add 1 or 2 barrier functions) using

N
Vo = ko »_ Br(0;) (39)
i=1
where k¢ is a positive constant that controls the weight of the constraint(s) and “C” denotes constraint. Lastly, we
require the gradient and Hessian related to the constraints, which is done in a straight-forward manner by computing
the vector of length IV

_ dB(0;)
gc = 7(1(92-

the square diagonal Hessian matrix (off diagonals are zeros) is computed by filling the diagonal with the following
entries

(40)

d*B(0;)
Te=—7F7—7 41
As an example, we may incorporate the gradient and Hessian into the single-state regime as done previously:
0= (JfW Ty +T' +Te) " HJgW=Hd — U(fr-1)) — 9c)- 42)

Mixed regularization with constraints

In previous problems, we considered functionals utilizing the same regularization functional for each state. In many
cases, however, we would like to apply different prior models and constraints to accurately represent the physics of
each state. For example, in (Smyl et al. 2018d) the authors utilized the two-state approach considering (i) an initial
undamaged state where the parameters 6, were assumed to be smoothly distributed and (ii) the second state where the
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cracking was assumed to result in sharp distributions of Af. To accomplish this, the researchers utilized compound
regularization in the form

R(0) = Rws(01) + Rry (AF). 43)

Clearly, there are numerous combinations of mixed regularization that may be employed to accurately incorporate
prior models relevant to states’ physics — when using multiple data sets with stacking or joint inversion. Moreover,
models such as Eq. 43 offer advantages over non-stacked models, since much of the noise and modeling errors may
be absorbed in the (often) uninteresting distribution of 6, (Liu et al. 2016, 2015a).

Incorporation of mixed regularization in two-state least squares regimes may be done in many ways. In the case of
the compound functional in Eq. 43, we may, for example write a mixed regularization block-diagonal matrix I"j;r as
follows

| Tws 0
T'yvr = [ 0 FTVi| . (44)
or simply use mapping matrices for each state, as detailed in (Liu et al. 2015b). The choice is mostly dependent on the
users’ data structure. In the case of the prior model gradients, we may simply concatenate gradient vectors yielding
gr R, although mapping matrices may also be used. Compiling these realizations, again considering the compound
functional in Eq. 43, we may write the compound regularization of the constrained two-state problem

Uy pr = ||Le(D - U(O))|> + Rws(61) + Rrv(A0) + U (45)

in general, however, we may write

o nmr = ||Le(D = U(O))|]> + R1(61) + Ra(A0) + Ve (46)

where the subscript “M R” denotes the use of mixed regularization functionals and R; and R2 are the appropriate
regularization functionals chosen by the user.

In the case of the joint regimes, we obtain a similar result for the functionals. For example, we may consider the
functional for joint imaging with a structural operator and mixed regularization terms given by

Vye=|Ls(Dg —Uz(ON?+R71(91) + Rz 2(V2) + k¥ (47)

where Rz 1 and R o are simply the selected regularization functional for the appropriate physics representing
parameters ©¥; and )5, respectively. To obtain the least-squares update for the joint approaches, we may simply modify
Eq. 23 with the appropriate regularization matrix and gradient vector.

Framework summary

At this point, the reader may notice that constraint Hessians, constraint gradients, prior covariance matrices, and
regularization gradients are simply added or subtracted to the least squares updates. Moreover, the reader may also
note that the integration of constraints and different regularization techniques to the cost function may be done by just
selecting, adding, and/or removing the desired functionals. This flexibility is one primary advantage of the proposed
frameworks, although it may add some ambiguity to new users. For this purpose, Table 1 is provided to summarize all
cost functionals and least-squares updates for the 38 frameworks provided in this work (representing all combinations
of regularization methods, constraints, and models).

Remark: As a health warning, the use of unregularized approaches is, in general, not recommended due to the ill-posed
nature of many inverse problems in SHM. In some special cases of tomography, however, the use of regularization
is not necessarily required, potentially owing to a low condition number (a metric for how ill-conditioned a problem
is) (Aster et al. 2018). Some cases may include DIC applications employing optical flow (Smyl et al. 2018a) or
some applications of radiation-based tomography with low noise and numerous measurements (Chen et al. 2016).
For completeness, we have included the unregularized frameworks in Table 1. Moreover, constraints should be used
wisely; for example in single-state problems where complex numbers are not expected, the constraint § > 0 is both
simple to employ and very useful.
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Table 1. Summary of tomographic frameworks provided in this work, including single-state, two-state, joint - stacked, and joint - structural operator approaches. For this, the
cost function (CF) and least-squares updates (LS) are provided as indicated in the far left columns. For brevity, the shorthand abbreviations were used: unconstrained (UC),
constrained (C), unregularized (UR), Tikhonov regularization (Tik), weighted-smoothness regularization (WS), Total Variation Regularization (TV), and mixed regularization
(MR).
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Applying the inverse frameworks to ERT, QSEI, and joint ERT/QSEI

This section aims to integrate some of the one-state, two-state, and joint approaches in practical applications using
two promising SHM imaging modalities: ERT and QSEI. Since 38 modalities were provided (cf. Table 1), we select
only a few of the frameworks for demonstration purposes. To accomplish this, we start by detailing the integration of
ERT and QSEI in some of the frameworks provided. Following, we provide some examples using data generated from
experiments and simulation. Lastly, we discuss the results.

ERT

In ERT, we aim to reconstruct the electrical conductivity o from potential measurements V. For this, the dependence
of o on electrode potentials U is modeled by the Complete Electrode Model (CEM) which consists of the differential
equation

V-(oVu)=0, z€Q (48)
and the boundary conditions
du
u+&o—=U, xz€e,{=1,...,L (49)
dn
du L
0—=0, z¢€ o\ | e (50)
=1
d
cas =1, ¢=1,...,L (51)
e dn

where () is the domain, Of) is its boundary, u is the electric potential, 72 is the unit normal, and e; represents the [th

electrode (Cheng et al. 1989; Somersalo et al. 1992). Additionally, &;, U; and I; are the contact impedance, electric
potential, and electrical current corresponding to electrode ¢;. In the CEM, the current is conserved, by writing

L
Z I,=0 (52)

and the potential reference level must be fixed as follows

L
S u=o. (53)
=1

To solve the CEM (Eqgs. 48 - 53) using finite element modeling (FEM), we discretize the o by approximating it
using a piecewise linear basis following (Vauhkonen et al. 1999, 2001). Utilizing the single state observation model
in Eq. 3, we note that, in ERT, we have d =V, # = o, and the forward model is given by the CEM, resulting in the
single-state ERT observation model

V=U(o)+e. (54)

resulting in the following regularized and constrained ERT functional to be minimized

Vprra = ||Le(V = U(0)|P* + R(0) + ¥ (55)

where the subscript ERT, 1 denotes the type of imaging (E'RT") and the number of states (1) with the regularization
and constraint types to be defined later.

For the two-state model, we have the initial state 6; = o1, the change in state A@ = Ao, and the second state
03 = 09 = 01 + Aoc. Based on this, we may write the observation model for measurements V7 and V5

i :U(Ul)+€1

56
VQZU(01+AU)+€2 (56)

where we may concatenate the solution vector following Eq. 10 using
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Opnr = {219} - [Z;} (57)

and the data vector using D = [V;, V5] By substitution, we may reformulate the generic functional in Eq. 12 as

Uprre = ||Le(D — U(Oprr))||* + R(Oprr) + Ve (58)

To solve the single- and two-state ERT problems in Eqgs. 55 and 58, respectively, we employ the Gauss-Newton
method with the ERT Jacobian J, computed following (Vilhunen et al. 2002). This is done by substituting the
appropriate data (V' and D), parameters (o and O gy, regularization terms, and constraints into the least-squares
regimes. In other words, by substituting into the LS updates in provided Table 1 and carrying through the Gauss-
Newton regimes detailed in Section .

QSEI

In QSEI, we aim to find the inhomogeneous elastic modulus F using displacement fields u,,, knowledge of the
structural geometry, and the external forces. In structural applications, u,,, may be obtained, for example, from Digital
Image Correlation (DIC) (Kang et al. 2007). In solving the QSEI problem, we require the forward model, which is
solved using a well-known elasticity FEM regime, given by

Ny,
U = Z K3'F, (59)
=1

where IV, is the number of unknown displacements, Kﬁl is the compliance matrix, and F; a force vector (Surana and
Reddy 2016).

By corroborating this information with the generic frameworks, we note that, for the single-state problem, we have
6 = E and d = u,,. Using Eq. 3, we may then write the single-state observation model

um = U(E) +e. (60)

which results in in the following regularized and constrained QSEI functional to be minimized

Vosert = || Le(um — U(E))|]> + R(E) + ¥c (61)

where the subscripts follow the description provided in the previous subsection and the regularization and constraints
are yet to be defined.

For the two-state model, we again have the initial state §; = F1, the change in state A9 = AF, and the second state
0 = F5 = E1 + AE. Based on this, we then write the observation model for measurements u; and uo

Uy = U(El) + e

62
UQZU(E1+AE)+€2 (62)

where we concatenate the solution vector using

Ogser = {219} = [AEE} (63)

and the data vector D = [uy,uz])T. By substitution, we may reformulate the generic functional in Eq. 12 using the
same methodology from the previous subsection as

Vosere = ||Le(D —U(Ogser)||* + R(Ogser) + Yo (64)

Lastly, the solution to Eq. 64 is preformed in the same manner specified in the final paragraph of the previous
subsection with the j*" column of Jz computed using central differencing as follows

U(Br_1 + A7) —U(Ex_1 — A7)

Jgj = AT (65)
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where A7 is a pertubation computed as a function of the machine precision € using A’ = Q/g following (An et al.
2011). We note that the central-difference perturbation method requires 2/N,; solves of the of the forward model,
where N, refers to the number of elements (degrees of freedom, when the inverse problem is solved element wise).
To reduce the computational demand by half, at the cost of the precision of Jg, we may use forward differencing,
where the j*" column of Jg is given by

U(Ek-1 + AJ) —U(Fk-1)
A '

In cases where additional accuracy is required and the shape functions of K are accessible, one may also use the

Adjoint Method, as described in (Oberai et al. 2003) or the semi-analytical method described in (Vilhunen et al. 2002).

(66)

Je,j =

Joint ERT/QSEI imaging

With ERT and QSEI modalities fully described, we now aim to combine both modalities into a joint imaging regime.
We begin by defining the observation by substituting the appropriate ERT and QSEI parameters into Eq. 17. To do this,
we first denote the separate forward models for ERT and QSEI using Ugrr = U; (Egs. 48 - 53) and Ugser = Us
(Eq. 59). Following, we prescribe (¢/; = o) and (1J2 = F) and write the joint ERT/QSEI observation model as

V = UERT(O') + e

. (67)
um = Ugspr(E) + ez
Using Eq. 67, we may then write the joint/stacked parameterization
o
O7.5/Q = [ E} : (68)

where the subscript ”7, E/Q” denotes the parameter represents joint a ERT/QSEI parameter. Further, we write stacked
observation model

Dy =U7(075/0)+E7. (69)

and the constrained and regularized solution to the joint problem with a structural operator as

Vs p/o=ILs(Ps—Us(07 Q) +R7(075/q)+ r¥e. (70)

where the regularization and constraint functions will be defined in the application section. Lastly, for clarity, we
provide the entire least-squares estimate for this imaging regime explicitly as follows

(Jo "W, My + TR + 1) Y, " We, N (V — Urgrr(ok-1)) — gc)
(Je"We, " Jp + T3+ 1) N (Je" We, um — Ugser(Fr—-1)) — gc)

where the appropriate regularization gradient should be applied to the right-hand sides when employing weighted
smoothness or TV functionals.

07 = (71)

Tomographic applications

This section provides examples of one-state, two-state, and joint tomographic imaging of structural members of various
geometries. We begin by using experimental and simulated data to image cracking processes in reinforced concrete
beams using ERT, both single-state and two-state imaging is applied. Following, simulated QSEI data is used to image
damage in plates with single- and two-state approaches. Lastly, we use joint ERT/QSEI imaging for detecting damage
in a simulated plate.
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ERT imaging of cracked concrete beams

To demonstrate the efficacy of one- and two-state ERT, we utilize experimental data from (Smyl et al. 2018d). In
the experiment, a 152 x 508 x 152 mm lightly-reinforced concrete beam was loaded in three-point bending. On the
surface of the beam, a silver sensing skin with 28 copper boundary electrodes was applied for use in ERT measurements
(cf. the left column of Fig.1). A total of 54 1.0 mA direct current injections were applied between electrodes ¢ and
j,i=6,21and j = 1,...,28,i # j. Corresponding to each current injection, 1,458 adjacent electrode potentials were
measured.

For the reconstructions, we utilized a rectangular FEM mesh with N,; = 9,680 triangular elements and N,, = 5, 047
nodes. Since the problem was solve node-wise, this resulted in 5,047 degrees of freedom for each reconstructed state.
In solving the problems, we selected three different regularization methods, including Tikhonov, WS, and TV denoted
as Ry = Ry, Rws, and Ry, respectively. For this, we chose the respective regularization parameters as A = 1073,
the weighted smoothness parameters @ = 1072, b = 0.5, and ¢ = 103, and TV regularization with p, = 90% and
¢ = 1072. For the initial guess, We Set 0 = Oqyp, Where 0y, 1s the one-parameter homogeneous estimate. In addition,
we apply a positivity constraint ¥, = ¥l (o > 0) and an upper constraint ¥%, = UZ (0 < oy.f), where the superscript
is simply an index for keeping track of the constraints and k¢ = 1073, We recall that U}, results from the fact that
conductivity is always a positive value and W% results from the assumption that cracking can only reduce o with
respect to the reference state. We then obtain the following minimization problem

Vo, = arg min [[|Le(V — U + R + ¥ (0) + ¥ (0)]- (72)

0<Oref

For the two-state problem, we select different combinations of regularization functionals (denoted R,, and R,
respectively) for reconstructing o1 and Ao. Since o is undamaged and assumed to be distributed smoothly, we
choose Tikhonov and WS regularization in estimating o;1. On the other hand, Ao is expected to have sharp changes
due to cracking; therefore, both Tikhonov and TV regularization are chosen. For the initial guess in the two-state
problem, we set © grr = [Texp, 0], Where the initial guess for Ac = 0 is a zero vector. For the constraints, we set
U3 = 0% (01 >0), ¥ = Ul(oz > 0), and ¥2, = U, (Ac < 0) (since cracking can only reduce the conductivity
of the sensing skin). Based on these realizations, we have the following two-state minimization problem

Vprr,2 = arg min [|Le(D = U(®prr))||* + R, (01) + Ras(Ac) + Vi (o1) + U (03) + V& (Ad)]. (73)

0220
Aoc<0

Moreover, since we are interested in comparing both one- and two-state reconstructions of cracking, we normalize
reconstructions of o and o, as detailed in (Smyl et al. 2018d). The normalized one- and two-state solutions are
written as 0,1 = Uif and 0,9 = g—f, where each estimate ranges from O (cracked area) to 1 (background value).
Reconstructions, showing unitless o, 1 and o, 2, for these cases are shown in Fig. 1.

Reconstructions in Fig. 1 clearly show that, with the exception of the one-state reconstruction using R, the one-
and two-state frameworks localized both cracks. Images in Fig. 1, therefore support the feasibility of the proposed
frameworks for use in ERT imaging of discrete structural damage. It is important to remark that, while the two-state
estimates generally capture both crack geometries better than the the one-state estimates, more background artifacts are
present when Tikhonov regularization is used. This observation is most evident when Tikhonov regularization is used
for both states, i.e. R,, = R and Ra, = R7. On the other hand, when WS is used to estimate o1, reconstructions
improve. Further yet, the most visually accurate reconstructions are realized when R,, = Rws and Ra, = Rrv.
This realization demonstrates the importance in using prior information to accurately estimate crack geometries. In this
example, the use of prior information was encoded by spatial information in o7 via Ryys(o1) and sparsity of Ao via
Rrv(Ac). Intuitively, the reconstruction improvement in the former case — relative to the one-state reconstructions
—is an expected result, since the two-state framework allows for appropriate prior models representing the physics of
each state, the use of two data sets, and the proper use of constraints on each state. We note, however, that the improved
resolution of the two-state framework results in doubling of the computational demand since both o; and Ao, having
the same degrees of freedom, are simultaneously reconstructed. Such demand may be reduced by incorporating region
of interest information, as discussed in (Liu et al. 2015a).

To investigate the computational behavior of the ERT reconstruction frameworks, we analyze the minimization
behavior of the cost functionals for the one- and two-state problems, Vg7 1 and W gy 2. Since the values of the
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Figure 1. ERT imaging of a cracked reinforced concrete beam with an applied silver sensing skin: left column, photograph of
the cracking pattern and electrode numbers shown in white. Middle column, one-state ERT reconstructions of the cracking
pattern using Tikhonov, WS, and TV regularization denoted by R, = Rr, Rws, and Rrv, respectively. Right column,
two-state ERT reconstructions of the cracking pattern =using Tikhonov and WS regularization in estimating o1 and
Tikhonov/TV regularization in estimating Ao (functionals for o1 and Ao denoted as R, and Ra.). Images are normalized
and the colorbar is unitless .
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Figure 2. Minimization curves for one- and two-state ERT problems reporting normalized cost functionals,
\I’ERT,I /max(\I/ERTJ) and \I/ERT,Q/maX(\IIERT,Q), respectively.

functionals vary by orders of magnitude (e.g. the data-discrepancy term in Wggr7 2 is double that of Vg7 1 and
different regularization functionals differ in magnitude), we plot the cost functionals normalized with respect to their
maximum values. The normalized functionals are provided in Fig. 2. While all normalized functionals converge to
similar values, we immediately observe two primary differences in one- and two-state functionals shown in Fig 2: (i)
the drops in ¥ gr7,; are initially more gradual than those of ¥ g r7 2 and (ii) as a whole, the one-state problems require
more iterations to reach the stopping criteria. Observation (i) is explained by the poor initial guess for Ac = 0, which
is quite far from the final estimate, yet is quickly compensated for in the first iteration(s). The low iterations required
to reach stopping criteria for the two-state problems, relative to the one-state problems, lies in the fact the the problems
physics are more accurately captured using (a) physically-realistic constraints on each state and (b) prior knowledge
of spatial properties inherent in o1 and Ao (when Ryys and Ry are used), which cannot be fully captured using
one-state frameworks.
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QSEI imaging of damage in plates

In this subsection, we test the one- and two-state frameworks with application to QSEI of plate geometries. For both
frameworks, we use simulated displacement data generated using the FEM forward model using a fine mesh with
N¢; = 1,800 three-node triangular elements. Following, we add Gaussian noise to the displacement data with 1%
and 2% standard deviation and then interpolate the data onto a coarser mesh with No; = 450 elements using linear
interpolation to avoid an inverse crime. We note that this inverse problem was solved element-wise, resulting in a total
of 450 degrees of freedom in E. Moreover, for computing the Jacobian, we utilized central differencing following Eq.
65. For the plate geometries, we use dimensionless units where the 10 x 10 plate has a uniform thickness of 0.1, a
fixed left side, and a uniformly distributed load at on the right-hand side of 1 unit per unit length. Moreover, although
the dimensions of the QSEI examples are unitless for demonstration purposes, the mean elastic modulus (near 300)
and Poisson’s ratio v = 0.30 were selected to reflect those of steel (£ = 200 GPa and v =~ 0.30).

For the purposes of illustration, we begin by conducting one-state reconstructions of a narrow crack using the three
forms of QSEI regularization R g discussed in this article: Tikhonov, WS, and TV denoted as Rg = Rr, Rws,
and Ry, respectively. The same regularization parameters in the previous section are also adopted here and the
initial guess for the one-state QSEI problem is the homogeneous estimate /2 = Fey,. The ground truth and one-state
reconstructions for noise levels of 1% and 2% are provided in Fig. 3. Note that, since the inverse problems in this
subsection are solved in a piece-wise constant manner, the reconstructions are also shown as piece-wise constant.
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Figure 3. QSEI reconstructions of a narrow crack using Tikhonov, weighted smoothness (WS), and TV regularization using
displacement data corrupted with 1% and 2% noise. The colorbars represent the unitless elastic modulus E.

Reconstructions in Fig. 3 support the feasibility of the one-state framework, using all three forms of regularization,
for use in QSEI imaging in the presence of significant random noise, interpolation errors, and modeling errors. Indeed,
in all the reconstructions the crack was localized, while reconstructions using TV and Tikhonov regularization provided
the best images — which is expected, since both methods are known to be rather robust (Oberai et al. 2003). On the other
hand, weighted smoothness did not perform as well at both noise levels and was a rather poor prior model selection.
This is due to the unsuitability of weighted smoothness for detecting non-smoothly distributed inclusions.

To test the feasibility of the two-state frameworks in the context of QSEI, we consider a problem where the
undamaged state E; is smoothly distributed and the damaged state has a simulated crack with the same geometry
as in the one-state QSEI problems. We note here, however, that one-state solutions for QSEI problems with highly
inhomogeneous backgrounds result in poor reconstruction quality (Smyl et al. 2018c) and is therefore not considered
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herein. In solving the two-state QSEI problems, we use the same regularization functionals for Rz, and R a g as those
in the two-state ERT problems. Moreover, we use similar constraints as in the two-state ERT problem; namely, we set
U =UL(E >0), U2 = V(Fy > 0), and U2, = ¥, (AE < 0), Reconstructions for this example are shown in
Fig. 4.
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Figure 4. QSEI reconstructions of an inhomogeneous background and crack-like inclusion using the two-state framework
considering noise levels of 1% and 2%: left column, true image and reconstructions of the background elastic modulus E;
middle column, true image and reconstructions of the change in the elastic modulus due to localized damage A FE; right
column, true image and final estimates of E = E; + AE. Reconstructions utilize Tikhonov regularization Rz, = R and
weighted smoothness regularization Rg, = Rw s in estimating E£; and Tikhonov regularization Rag = Rt and TV
regularization Rar = Rrv in estimating AFE.

Results shown in Fig. 4 clearly display that the two-state framework also works for QSEI. In all cases, the inclusion
was accurately localized and the ellipsoidal shape was well captured. Moreover, the smooth distribution of £, was
recognizably reconstructed, with the exception of the case where R, = R7. Indeed, we observe visible cross-talk
in this case, mostly apparent in F; reconstructions, which results from using the uninformative prior model R in
estimating F'. This illustrates that the use of physically-realistic constraints is not always sufficient in preventing
cross-talk between states F; and AFE (or in parameterizations #; and A6, in general). Lastly, as in the two-state ERT
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Figure 5. Minimization curves for one- and two-state QSE| problems reporting normalized cost functionals,
\I’QSElyl/maX(\I}QSE]’l) and \I/QSEI,Q/maX(\I/QSELz), respectively.

example, we again visually observe that images of undamaged and damaged states are most accurately reconstructed
what structural prior information is incorporated in regularization schemes for both states.

In addition to the visual quality of the QSEI reconstructions, we are also interested in the iterative minimization
behavior of the QSEI reconstructions. Similar to the previous subsection, the normalized cost functionals for the one-
state and two-state QSEI reconstructions are provided in Fig. 5. Immediately, we observe the large differences in the
minimization behavior between the one- and two-state frameworks: namely that, despite the notably more difficult
problem in simultaneously reconstructing two parameter fields (F; and AFE), the two-state functionals consistently
reach a lower minimum than the one-state functionals. This observation is in contrast with the one- and two-state
ERT functionals, which reached comparable normalized minimum values. This result may indicate that QSEI is
more sensitive than ERT to the way in which the inverse problem is parameterized. Some possible explanations for
this include, (i) high susceptibility to errors induced via interpolation of data to a coarse mesh, (ii) reconstruction
improvement via error absorption in [ reconstructions, (iii) differing degrees of modeling errors in QSEI and ERT
forward models, and (iv) differing sensitivity of the parameter field to input data (i.e. differences in ill-posedness
between the QSEI and ERT inverse problems).

Joint ERT/QSEI imaging of damage in plates

In this subsection, we aim to demonstrate the feasibility of a joint framework with a structural operator for simultaneous
ERT and QSEI reconstruction of a discrete crack numerically. We begin by observing the form of Eq. 70 and note that
the magnitudes of the data norm, regularization functional, and constraint functional may differ by orders of magnitude.
While Eq. 70 is certainly feasible for joint reconstruction, we observed that, due to the large differences in functional
magnitudes, results were generally more reliable with less visual artifacts when the cost functional was modified by
taking the base 10 logarithm of each component and adding positivity constraint as follows

Vs e/q=log(|Ls(Dy — UJ(®J,E/Q))||2) +10g10(R7(©7.8/q)) +logio(kc¥e) + logio(k¥e)  (74)

where ko = 1073, k = 1.0, and the threshold parameter 7 = 0.1 were selected. For regularization, TV was utilized,
ary =6 x 1072 and B = 160 were used for both ERT and QSEI reconstructions. Since no information on joint
ERT/QSEI imaging is available in the literature, these parameters were selected on the basis of trial and error. To
corroborate the joint approach, we compare joint results with a dual problem, namely, simultaneously reconstructing
E and o by simply adding the cost functions provided in Egs. 55 and 61 and separately solving each minimization in
the same Gauss-Newton loop with different search directions and steps. The resulting dual problem cost functional is
the written as ¥ p = \IIERT,I + \I’QSEI,I-
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(a) (b)

Figure 6. Discretizations used for (a) simulating joint ERT/QSEI data and (b) solving the joint inverse problem. ERT
electrodes are shown in red.

For both the joint and dual problems, we use the same 10 x 10 unitless data simulation and inverse meshes shown
in Fig. 6a and 6b for the QSEI and ERT problems, respectively. The target 4 x 0.12 unit length crack was modeled
as a discontinuous inclusion in the fine mesh using six node triangles with quadratic basis functions and N,; = 3,653
and N,, = 7,515 elements and nodes. The inverse mesh, on the other hand, uses a continuous mesh with the same
order triangles and N; = 423 and N,, = 904 elements and nodes. The selection of the higher-order triangles and
discontinuous mesh was done to (i) test the efficacy of joint reconstructions employing higher order hpk elements
(Surana and Reddy 2016), (ii) test the regimes’ robustness to added modeling uncertainties — in addition to the standard
1.0% noise commonly used in ERT and QSEI reconstructions, and (iii) demonstrate the simulated ERT/QSEI data
may be generated by means other than setting £/ =~ 0 or ¢ = 0 at the target location (as is commonly done). Moreover,
we investigate a node-wise solution to the QSEI problem (rather than element-wise), which doubles the degrees of
freedom in E relative to the three-node triangular meshing. This also increases the computational demand by roughly
a factor of 4. This is due to the increased degrees of freedom by solving the problem node wise, thereby significantly
increasing the time required to compute a pertubed Jacobian. We therefore utilize the Jacobian computation technique
used in (Vilhunen et al. 2002), requiring only one forward solution per iteration, rather than the perturbation method
with central differencing requiring 2.N,, solves of the forward model.

To simulate the ERT data, 16 equally spaced electrodes were used and a unitless homogeneous background
conductivity o = 10 was considered. A total of 16 direct current injections were applied between electrodes ¢ and
j,i=1,5,9,13 and j = 1,...,16,7 # j. Corresponding to each current injection, 225 adjacent electrode potentials
were measured. In simulating the QSEI data, a uniform tensile force of 1 unit/length was applied to the right side
of the geometries with a homogeneous and unitless background E = 10, while the left side was fixed. The same
displacement field interpolation scheme for interpolating the simulated data to the inverse mesh used in section was
also used here.

Reconstructions for the dual and joint problems are shown in Figs. 7a and 7b, respectively. Images shown in Fig. 7
clearly localize the crack location and capture the crack angle for both the dual and joint approaches, supporting the
feasibility of both frameworks. Interestingly, ERT reconstructions are visually most accurate. The improved resolution
in ERT images largely results from the fact that added interpolation error is not present in ERT measurements, which
also explains the smoothness in QSEI crack reconstructions.

As a whole, the joint reconstructions with a structural operator are only slightly better that the dual problem
reconstructions. This observation is supported by Fig. 8, reporting the normalized drops in the cost functionals and
an overall lower normalized minimum in the joint cost function relative to the dual problem. Moreover, the drops
in the cost functionals for the dual and joint problems decrease only slightly before the the functionals increase,
which resulted in termination of the algorithm and storing of the previous iteration as the final estimate. There are
numerous potential reasons for the observed behavior of the dual and joint problems, which highlight some challenges
in dual/joint inverse problems. Some common factors contributing to the challenges in joint problems are discussed in
the following itemization:

e The use of coupled regularization. The regularization scheme used in this approach was selected based on the
physical realization that the crack is sharp and TV regularization is therefore a natural choice. However, the
choice of dependent variables in 5 and a7y were static for ERT and QSEI, i.e. they did not change at each
iteration. Moreover, the selection was done by trial and error and is therefore not optimal. Better selection
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Figure 7. QSEI (left column) and ERT (right column) reconstructions for the (a) dual problem and (b) joint problem with a
structural operator. Reconstructed parameters o and E are unitless.

of these parameters may be conducted by taking into account the noise level, relative tradeoffs with the data
discrepency norm, convergence rate of the joint cost functional, etc. (Holler et al. 2018).

Selection of a structural operator W¢. There are countless possible choices for Wy, which may have a
significant effect on the reconstruction quality; for example, one may chose functional proportionality to the
gradient of the normalized parameter field €(,,) o< €(V4,), the curvature of the normalized parameter field
¢(9,) x €(V?49,) (Haber and Oldenburg 1997), or a combination €(¥,,) x &(V?9,, + V¥, + 9,,). Often, a
smoothing function § is applied to the parameter field €(¥,,) x F(V?9,, + V¥, + 9,,), which may improve
the numerical behavior by avoiding saw-tooth instabilities resulting from sudden drops in V.

Choosing the threshold 7. At present, the optimized selection of a static 7 for joint ERT/QSEI reconstruction
is ambiguous. Intuitively, one may wish to select 7 = 0.5 as a first approximation. In our analysis, howeyver,
we found that 7 = 0.5 led to significantly over-penalized and over-smoothed reconstructions. By decreasing
T, reconstruction sharpness improved and reconstructions were more robust to changes in regularization
parameters. One should use this observation with some caution when selecting more complicated structural
operators. On the other hand, 7 may selected at each iteration, by sweeping through representative values such
that the lowest cost functional is minimized.

Selection of structural operator and constraint weighting coefficients x and xc. This issue was somewhat
circumvented by taking the logarithm of each component in Eq. 74, essentially scaling the component
functionals to values ranging from 1 - 8, rather than the disproportional 10 - 10, This is a a rather rudimentary
technique, where more advanced scaling of x and k¢ may be chosen iteratively or statically, based on a suite of
parameters, such as the noise level, choice of regularization, convergence, etc. (Matthews and Anastasio 2017)

Despite the present challenges in joint ERT/QSEI imaging, which, to the authors’ knowledge was first
proposed/addressed herein, joint ERT/QSEI imaging was effective in localizing damage in distributions of both o
and E. Moreover, the joint framework is promising, in that, it doubles the information given by tomography — which
may be used in a complimentary or independent manner. In future research, optimization of regularization parameters,
U, 7, and the weighting coefficients in joint frameworks will be further investigated.

Recommendations for implementing damage tomography frameworks

In this section, we provide basic recommendations for implementing structural damage tomography frameworks. We
begin by providing a brief tutorial for first-time users implementing damage tomography. Owing to the complexities
of solving stationary damage tomography problems in general, we include only essential aspects required for new
users to implement one-state least-squares based damage tomography. Following, we concisely provide general
recommendations for implementing damage tomography frameworks.
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Figure 8. Minimization curves for the dual and joint problems, the cost functionals are denoted by ¥p and ¥ 7 g /q,
respectively.

Approaching damage tomography for the first time

For users who are new to damage tomography, the initial coding of a damage tomography algorithm can be a daunting
task. For this health reasons, we recommend that the user begin their journey with the most simple framework: one-
state tomography. One way of approaching this task is to list the bare minimum function requirements needed to solve
a least-squares based damage tomography problem:

Forward model

Cost function

Jacobian

Linesearch

Iterative loop including a stopping criteria

M

Although all items in the enumeration are essential, item (1) is possibly the most important for first implementations.
This is especially true when experimental data d is used, since the forward model needs to accurately represent
the problem physics. Luckily, in many cases, open source FEM software is readily available. In implementing such
software, users should take note that the majority of open-source FEM software solves problems where the parameter
field is homogeneous — therefore, the user will generally need to write a loop to update the inhomogeneous parameter
field at each iteration.

After the user has acquired a forward model U, the user will then need to decide exactly which tomography
problem he/she would like to solve. For the very first implementation we recommend solving a Tikhonov regularized
least squares problem without weighting (adding the weighting matrix W is very straight forward). Using the same
nomenclature as in previous sections for estimating a parameter ¢, the least squares update would be written explicitly
as

0= JTT+T:) (I (d—U(0r-1)) (75)

where a7 = 1073 is a recommended starting point for the Tikhonov regularization parameter in I'z- and the Jacobian
J, updated at each iteration k, can most simply be computed using Eq. 66 (obviously substituting the correct parameter
Or—1).

Moreover, since the problem is solved iteratively, the user will need to make an initial guess for 6;—1. For this, one
could use the best homogeneous guess (recommended) or simply make a guess based on an a reasonable expected
value. Now that the user has a sketch of the least squares problem, he/she will need to write down the corresponding
cost functional. Since weighting is not used at this point, the cost functional may be written simply as

U =|ld-U@®)* + ITro]l*. (76)

The last items required are a linesearch and an iterative loop with some stopping criteria. For the linesearch, which
is required to ensure W is maximally decreasing at each step, the user may simply write a function which searches for
the step length s which minimizes ¥ (0;_1 + sx0) in a trust region, for example (0,2). It is important to remark here
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that since we generally assume 6 > 0, we need to ensure this to avoid numerical problems with U (such as complex
numbers). For the purposes of a first attempt at tomography, the projection method may be used, where we simply
project values of @ < 0 such that > r where r is a small number (e.g. 10~#). In writing the iterative loop, there are
three primary items to consider: (i) that 6, J, and s, are updated at each iteration, (ii) 6 and Wy are stored at each
iteration, and that (iii) the the program is terminated once a stopping criteria is reached. There are many examples for a
stopping criteria; we recommend a simple form, such as (V3 _; — ¥ < tol or Uy, > Wy _1) where tol is a sufficiently
small number. To summarize this algorithmic components discussed in this subsection, pseudocode is provided in
Algorithm [.

Data: d, resulting from (a) experiment or (b) noisy simulations utilizing U
Result: Damage tomography, reconstructing parameter ¢
initialize 6;—1, W—1,maxiterations, I'r = a1, r, tol;
for k = 2:maxiterations do
Compute J;
Compute § = (JTJ +T:H)"YJIT(d — U(Ok_1));
Find s, using linesearch by solving: min(¥ (0 _; + s10));
Update solution: 6, = 0,1 + s.0;
Project 05, < 0 to ensure 6y, > 7;
Compute Uy (6y);
Store Wy, and 6
ifU, | — VU, <tolor ¥y > Uy_; then
| Break
end

end
Algorithm 1: Generic pseudocode for first-time users of damage tomography aiming to reconstruct the parameter
field 6.

General recommendations and potential pitfalls

The primary motivation for providing one-state, two-state, and joint frameworks that may be parameter-
ized/constrained/regularized in a flexible and combinatory manner is to promote creative solutions, potentially
improving reconstructions obtained using damage tomography. However, it is the experience of the authors that, simply
increasing the complexity of the tomographic approach does not necessarily yield better reconstructions than simple
regimes. In the following, we concisely list some practical recommendations and potential pitfalls in implementing the
damage tomography frameworks derived in this article and general recommendations related to damage tomography
functionalities in general.

1. Increasing the degrees of freedom in the inverse problem does not guarantee improvements in reconstructions.
While increasing the degrees of freedom in a numerical forward model often lowers the error in, e.g., FEM
forward models, the same is not always true for inverse problems. In fact, by increasing the degrees of freedom,
not only does the inverse problem become more computationally demanding, the size of the solution space may
also increase (Benning and Burger 2018).

2. Use prior knowledge whenever possible. Prior knowledge, often associated with the way a parameter field
is regularized, may also be incorporated in the implementation of constraints, selection of framework
parameterization, selection of regularization schemes, error approximation, and much more. Often, simply
considering the problem physics, especially regarding how the state of the parameter field changes before and
after damage, offers significant prior information.

3. Begin solving damage tomography problems using the most simplistic model first. Often, one-state solutions
offer sufficient resolution for the task at hand. Implementing two-state and joint regimes is time intensive
(coding), computationally demanding, and should only be considered if the results from one-state solutions
are insufficient.

4. In general, projection — alone — is not sufficient. This pitfall is subtle and is often not considered until the user
has issues deciphering why the problem is not behaving as expected. Applying a positivity constraint by only
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projecting values such that the parameter field is greater than 0, e.g. § > 0, can lead to problems. As a rule of
thumb, the constraint gradient(s) and Hessian(s) should always be included in the least-squares update.

5. Terms in the least-squares updates should be be reflected in the cost functional. This may seem like common
sense, however, a lot of heartache can be avoided if terms in the least-squares update (related to constraints,
regularization, etc.) are properly reflected in the cost function. This comment is increasingly important as the
complexity of the framework increases and terms are possibly lost due to human error.

6. More data does not always improve reconstruction quality. This comment is somewhat counter-intuitive.
However, in some cases, especially in cases where successive data sets were collected using different means,
noise models that worked for one data set may not work as well for others — in such cases simply adding more
data may actually degrade reconstruction quality. For example, data set one may have Gaussian-distributed noise,
where data set two has Poisson noise. As another example, using a expected noise variance (a) for data one and
noise variance (a) for data two may not be sufficient some cases. We note however, that this phenomenon is not
common in our experience and should not be the first consideration when tailoring a tomographic framework

7. Visualization is an powerful tool in understanding problem behavior. It is certainly gratifying to observe accurate
reconstructions of damage when the solution framework is fully functional. However, much of solving inverse
problems involves attempting to understand why the algorithm is not working and debugging. For this purpose,
it is helpful to plot and visualize aspects such as: the data fidelity (e.g., real data d vs. U(#)), the rate at which
the cost function is being minimized, and updated reconstructions at each iteration.

8. Starting “from scratch” is not necessary. There are many open source tomographic regimes available, which
may serve as a starting point, benchmark, or reference for new users. Some open source options include:
EIDORS (ERT) (Adler and Lionheart 2006), open source D-Bar for ERT (with experimental data) (Hauptmann
et al. 2017), OpenQSEI (QSEI) (Smyl et al. 2018b), Ncorr (DIC) (Blaber et al. 2015), and more.

Conclusions

This article focused on the development of straightforward frameworks for stationary tomography of structural
damage. In this effort, we provided 38 tomographic frameworks for one-state, two-state, and joint imaging of structural
damage. The frameworks were based on least-squares inverse methods and are adaptable for incorporating different
regularization, constraints, and structural models based on realization of the problem physics. To give insight into
potential practical applications, the frameworks were applied to two emerging structural imaging modalities, Electrical
Resistance Tomography (ERT) and Quasi-Static Elasticity Imaging (QSEI). Following, selected frameworks were
employed to test their feasibility to image damage in structural members using experimental- and numerically-obtained
data. Lastly, a primer for first-time users of the damage tomography framework and recommendations/potential pitfalls
in using the proposed frameworks were discussed.

ERT, QSEI, and joint ERT/QSEI frameworks were shown to be effective in detecting damage, especially in the case
of discrete cracking. In doing this, it was also demonstrated that the frameworks were robust to considerable levels of
random measurement noise, interpolation errors, and modeling errors. In the case of joint ERT/QSEI tomography, a
novel imaging regime, the images showed moderate artifacts and over smoothing. The causes of these discrepancies
were found to result primarily from non-optimization of coupled regularization parameters, a simplistic structural
operator, the selection of the threshold parameter, and rudimentary nature of weighting component functionals
within the joint cost functional. Despite the present shortfalls, joint ERT/QSEI imaging offers double the structural
information than individual tomographic regimes and therefore has significant potential for stationary tomography of
structural damage.
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