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SHEAR-CORRECTED REISSNER-MINDLIN PLATE MODEL 
 
J. Freund*  
Aalto University, School of Engineering, Department of Mechanical Engineering 
Puumiehenkuja 5 A, 00076 Aalto, Finland*Tel: +358 50 430 0665 
Email address: jouni.freund@aalto.fi (J. Freund) 
 
Abstract 
 

A new shear-corrected Reissner-Mindlin model is presented. The method reduces the 
modeling error of the classical model without affecting the form of the classical plate equations. 
Therefore, implementation on an existing software for the Reissner-Mindlin plate model is simple. 
The principle of virtual work and an explicit set of kinematic and kinetic assumptions is used in 
derivation. There, displacement assumption of the classical model is enhanced by a warping part 
which is eliminated to end up with equations for the classical part only. The equations differ from 
the classical ones in shear correction factors, modification in the source term, and stress 
expressions.  
 
Keywords: Reissner-Mindlin, refined plate model, shear correction factor, layered plate 
 
1 Introduction 
 

The classical Kirchhoff and Reissner-Mindlin plate models assume linearity of displacement 
for the in-plane component, the through-the-thickness one being constant. The rather severe 
assumption is the key to a simple and practical model, but it is also the source for the modeling 
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error compared to the full 3D elasticity model. In particularly, prediction of the transverse stress 
components is poor. With plates composed of orthotropic layers, classical models tend also to 
overestimate the stiffness and thereby underestimate the transverse displacement. The obvious way 
to reduce the modeling error of the classical models is to modify the assumptions of classical 
models into a less restrictive direction. 

The number of different refinements of the classical plate models in literature is impressive 
[1], [2], [3], [4], [5], and [6]. The equivalent single-layer theories in [7], [8], and [9] use a cubic or a 
higher order polynomial displacement in the thin direction without introducing additional unknowns 
over the classical model. Although modification of a kinematic assumption into a less restrictive 
direction reduces the modeling error, lack of regularity of the exact solution, e.g., due to 
discontinuities in material properties, may become a restrictive factor with this refinement type as 
finding a good continuous polynomial representation of a discontinuous function is difficult. 
Examples are the various layered sandwich and plywood plates. Layer-wise theories in [10], [2], 
[3], and [11] overcome this by the use of piecewise continuous displacements adapted to the plate 
structure. The choice is very good for structures of a few layers but becomes impractical when the 
number of layers is large.  The layer-wise theory in [12] combines physical plies into numerical 
layers to reduce the computational cost. In literature, less attention is paid to the kinetic assumption 
of the classical models. For example, refinements in [8] and [11] assume that the transverse normal 
stress vanishes whereas the assumption is rejected in [13] and [14]. 

The shear-corrected Reissner-Mindlin plate model of this work aims to reduce the modeling 
error of the classical plate model without adding to the complexity of plate equations. Following the 
convention of the engineering model, the principle of virtual work and an explicit set of 
assumptions are used in derivation. Displacement assumption consists of the classical and warping 
parts both considered as unknowns of a plate problem. Although plate equations for the two parts 
are connected through the stress expression, elimination of the warping part from equations of the 
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classical part turns out to be possible. The outcome differs from the classical plate equations in 
shear correction factors, modification in the source term, and stress expressions. The integral 
expression for the two-by-two shear correction matrix implied by the model is new. Reduction in 
the modeling error is indicated by comparing the exact model, classical model, and shear-corrected 
model solutions to isotropic, sandwich, and plywood plates. 
 
2 Plate models 
 

In what follows, the domain occupied by plate is denoted by 3Z   in which 2  is 
the reference plane and ( , )Z z z   the domain for the thin directions to be called also the 
transverse domain. Top and bottom surfaces and the boundary surface of the plate are denoted by 

3Z   and 3Z  , respectively. The external loading of the plate in the transverse 
direction consists of the volume force g , the surface load q  acting on the top surface, and surface 
load q  acting on the bottom surface. The interpolant q  of the surface loads, which satisfies q q  
at z  and q q  at z , is linear in the transverse coordinate. To shorten the expressions, the 
boundary conditions on the boundary surface are assumed to be homogeneous. 

According to the principle of virtual work, the in-plane displacement components xu , yu  and 
the transverse displacement zu  of a linearly elastic body satisfy 

       T T 0z z z zZ Z ZW dV u gdV u qdA        
  

       
     (1) 

for all variations xu , yu , and zu . In the virtual work expression, the in-plane stress and in-plane 
strain are defined by 
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 
x
y






  
  
  

,  and  
/ /
/ /zx x z

zy y z
u z u x
u z u y






          
    

         
. (3) 

The model for an orthotropic linearly elastic material is given by (Appendix A) 
       zE C    ,  (4) 
    G  ,   (5) 

   Tz z zC E      (6) 
in which the elasticity matrices  

 
1 4 5
4 2 6
5 6 3

E E E
E E E E

E E E
 
 


 
  

,   1 3
3 2

G GG G G
 

  
 

, and  
1
2
3

C
C C

C
 
 

  
 
 

  (7) 

are assumed to depend on the transverse coordinate only. The principle of virtual work and the 
expressions in Eqs. (1) to (7) comprise the exact plate model whose solution will be called as the 
exact solution to the plate problem.  
 
2.1 Equivalent single-layer theory 
 

In equivalent single-layer theories, one tacitly assumes that displacement is smooth so a 
polynomial series representation, like a truncated Taylor series, with respect to the transverse 
coordinate suffices. The kinematic assumption is the key to the simple Kirchhoff and Reissner-
Mindlin models and the refined third order model by [7] and [8]. In terms of the in-plane translation 
components, transverse translation component, and the rotation components  
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the in-plane displacement assumptions of these models can be written as 
     0 0u u w z   , (9) 
     0 0u u z  , (10) 

         
3

0 0 0 02
4 ( )3

zu u z wt       (11) 

in which   T{  }x yu u u . Transverse displacement zu w  of the models coincides. Expression of 
the Reissner-Mindlin model in Eq. (10) follows from the assumption that the normal line segments 
to the reference plane 0z   move as rigid bodies in deformation. Expression of the Kirchhoff 
model in Eq. (9) assumes additionally that the line segments remain normal to the reference plane in 
deformation, which implies the Kirchhoff constraint    0 0w     on Eq. (10). Expression of 
Reddy’s third order model [6] in Eq. (11) contains an additional warping term, which is chosen so 
that the transverse shear stress vanishes at the top and bottom surfaces / 2z t  .  

All these models assume additionally that 0z   which is taken into account by eliminating 
the transverse normal strain z  from constitutive Eq. (4) with Eq. (6). This gives the modified form 
of Eq. (4) 
            T1( ) pzE C C EE       (12) 

in which  pE  is the well-known elasticity matrix for plane stress. 
 
2.2 Shear-corrected plate model 
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The shear-corrected plate model suggested here is motivated by the displacement assumption 
in Eq. (11). However, the model aims to reduce the modeling error further by considering the 
warping term as an unknown to be determined as part of a plate problem. To keep the mathematical 
form of the classical Reissner-Mindlin equations, the derivatives of the warping term with respect to 
the in-plane coordinates are assumed to be negligible in the displacement gradient expression.  The 
warping part is also restricted by orthogonality to the classical part which means that the integral of 
their product vanishes when calculated over the thickness. The condition ensures uniqueness of the 
warping part. 

In more precise forms, the kinematic assumptions of the shear-corrected model are 
       0 0u u z u     and z zu w u  ,   (13) 

     0 0z    ,      0 uz 


  


, and z zuz


 


,   (14) 

  0Z u dz  ,   0Z z u dz  , and 0zZ u dz   on     (15) 
in which  0 ,  0  and  0  are the well-known strain measures of the classical Reissner-
Mindlin model. The strain expressions in Eq. (14) follow the from displacement assumption in Eq. 
(13) and definitions in Eq. (2) when derivatives of the warping part, except those with respect to the 
transverse coordinate, are omitted. It is important that the assumption does not restrict the warping 
displacement to being a function of the transverse coordinate only. 

In contrast to the classical models, the shear-corrected model does not use any kinetic 
assumptions and the constitutive equations 
         0 0( ) zE z C uz  


   


,  (16) 

       0( )G uz 


  


,  (17) 
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     T 0 0( )z z zC z E uz  


   


  (18) 
follow directly from Eqs. (4), (5), (6) and strain expression in Eq. (14). It is noteworthy that the first 
term of Eq. (16) is not the expression for the classical model, as the elasticity matrix is not modified 
to take into account the kinetic assumption of the theory. Elimination of the transverse warping 
displacement from Eqs. (16) and (18) gives the form 
         0 0 1( ) zp zE z CE       (19) 
which indicates that the transverse normal stress affects the in-plane components of stress, whereas 
the effect is not present in the classical model. 
 
3 Plate equations 
 

Derivation of the plate equations for the shear-corrected model follows the usual lines of 
dimension reduction. After substituting the displacement and strain expressions in Eqs. (13) and 
(14) into the virtual work expression in Eq. (1), the principle of virtual work, integration by parts, 
and the fundamental lemma of variation calculus imply the equilibrium equations and the pairs of 
work-conjugate boundary conditions. 

 With the Lagrange multiplier method for the orthogonality conditions in Eq. (15), the virtual 
work expression takes the form int ext lagW W W W       in which 

             T Tint T0 0 0( ) z zZW z u u dzdAz z         


  
          
  ,      (20) 

ext ( ) ( ) ( )z zZ ZZ ZW w gdz q dA u gdz dA u q dA   
   

           ,    (21) 

       T Tlag zZ Z ZW u dz z u dz u dz dA    


      
     .  (22) 
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The Lagrange multipliers   ,   , and  , which correspond to  0u ,  0 , and w  of the 
Reissner-Mindlin model,  depend on the planar coordinates but not on the transverse coordinate. 
The consequences of the principle of virtual work can be deduced in two steps. 
 
3.1 Classical equations 
 

First, by selecting  u , zu ,   ,   , and   to vanish, the principle of virtual work 
implies the condition 

           T T T0 0 0 ( ) 0ZZ Zz dzdA w gdz q dA      
 

      
       (23) 

for all  0u ,  0 , and w . With the usual stress resultant definitions of the internal forces 
   ZN dz  ,    ZM z dz  , and    ZQ dz  ,  (24) 
and contribution coming from the external volume and surface forces 

ZZf gdz q


  ,  (25) 
Eq. (23) takes the form 

           T T T0 0 0 0N M Q dA wfdA   
 

     
   .  (26) 

The variational equation indicates that the shear-corrected model preserves the form of the classical 
plate equations. The steps for finding the equilibrium equations in terms of the stress resultants from 
Eq. (26) are well-known and they are not repeated here. 
 
3.2 Warping equations 
 

Second, by choosing  0u ,  0 , and w  to vanish, the outcome is the condition 
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   T z z z zZZ u u u g dzdA u q dAz z     
 

                 
    

       T T 0zZ Z Zu dz z u dz u dz dA   


      
      (27) 

for all  u , zu ,   ,   , and  . This condition is clearly satisfied if 

   T z z z zZZ u u u g dz u qz z     


  
           

  

       T T 0zZ Z Zu dz z u dz u dz         
     (28) 

for all  u , zu ,   ,   , and   at all points of  . Condition in Eq. (28), which is 
stronger than that in Eq. (27), is the key to a practical implementation. 

Assuming that the warping displacement components are continuous in the transverse 
coordinate and have continuous derivatives up to and including second order except on I  (material 
layer interfaces, for example), integration by parts in Eq. (28) gives an equivalent form 

               T
\

T TzI ZZ I u z dz u n uz       


 
         

   

( )z z z z z z zI ZZ u g dz u u n qz      


 
          

    

       T T 0zZ Z Zu dz z u dz u dz          . (29) 

The unit outward normal 1zn   at the top surface, 1zn    at the bottom surface, and the jump 
bracket 0( ) lim [ ( ) ( )]a z a z a z      . Finally, assuming a traction condition on the top and 
bottom surfaces, the fundamental lemma of variation calculus implies the boundary value problem  

      0zz   


  


 in \Z I ,  (30) 
  0   on I  and   0   on Z ,  (31) 
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  0Z u dz   and   0Z z u dz    (32) 
for the in-plane warping displacement components. The boundary value problem for the transverse 
displacement is given by 

0z gz 


  


 in \Z I ,  (33) 
0z    on I  and 0z zn q    on Z ,  (34) 

0zZ u dz  .  (35) 
From the physical viewpoint, the Lagrange multipliers represent distributed constraint volume 
forces needed to enforce the orthogonality constraints. The jump conditions for the transverse stress 
components indicate that stress needs to be continuous even when material properties change 
abruptly at the layer interfaces. 
 
4 Warping solution  
 

Equilibrium Eqs. (30) to (35) and constitutive Eqs. (16) to (18) are simple enough to allow an 
analytical integral solution. In the first step, equilibrium equations are used to find the transverse 
stress components. Thereafter, integration of the constitutive equations gives the warping 
displacement. In what follows, the notation is simplified by being explicit only with the dependency 
on the transverse coordinate, although the Lagrange multipliers and the warping displacement 
components depend on the in-plane coordinates too.  

Integration of the equilibrium equations gives the transverse stress expressions    
     3

1 6( )( ) ( )( )2 z z z z z z z z Qt            ,   (36) 

z z z z zq q qz z z z  
 

   

 
  

 
.    (37) 
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The second form of Eq. (36) follows after integration of the first form over the thickness, using the 
definition of the transverse shear stress resultant in Eq. (24), and elimination of the Lagrange 
multiplier    by using the integrated form. Therefore, irrespective of the material properties, the 
transverse shear stress is quadratic in the transverse coordinate and vanishes at the bottom and top 
surfaces. The solution to the transverse normal stress is linear interpolation to q  and q  acting 
on the top and bottom surfaces with the shorthand notation q  (notice the sign change in the bottom 
surface traction vector and the difference between q  and q , the former being the linear 
interpolant to q  and q ).  To clarify the difference: if the surface forces are due to external 
pressure so that q p    and q p  , q p    is constant, whereas q  depends on the transverse 
coordinate.  

The transverse stress expressions in Eqs. (36) and (37) and the transverse stress constitutive 
equations in Eqs. (17) and (18) imply the equations  

       1 03
6 ( )( )u z z z z G Qz t 


 


     


,    (38) 

       T T0 01z zu q C z Cz E   
     

 
  (39) 

for the warping displacement components. The way to find the integral solutions 
       1 03

6( ) ( , ) ( )( ) ( )z
zu z H z z z G Q dt     





 

 
      

 
 ,   (40) 

       T T0 01( ) ( , ) ( ) ( ) ( )( )
zz z zu z H z q C C dE        







    
      (41)  

and the definition of kernel ( , )H z  therein are given in Appendix B. Finally, the second 
orthogonality condition in Eq. (32) and solution in Eq. (40) imply the constitutive equation 

     
16 12 2 0( ) ( ) ( )36

z
z

tQ z z z z G z dz 







 
 

  
  
  (42) 
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for the resultant transverse shear stress (Appendix B). The constitutive equation of the shear-
corrected model given by Eq. (42) differs substantially from that of the classical model 
        0 0( ) ( )z

zQ G z dz z z G 



     (43) 

in which the overbar denotes the mean value over the thickness of the plate. 
  
5 Implementation 
 

Implementation of the shear-corrected model assumes a numerical or an analytical method for 
the classical plate problem in its variational form: Find  0u ,  0 , and w  such that  

           T T T0 0 0 0W N dA M Q wf dA    
 

         
       (44) 

for all  0u ,  0 , and w . The definitions of the stress resultants in Eq. (24), the stress 
expressions in Eqs. (19) and (37) give the constitutive equations 
         0 0N A C D    ,   (45) 
         0 0M C B E    ,  (46) 
in which the 3-by-3 matrices 
   

z
pzA E dz



  ,    
z

pzC z E dz



  ,    2z
pzB z E dz



  ,    (47) 

and the 3-by-1 matrices 
   

1z
z zD C qdzE 




  ,    
1z

z zE z C qdzE 




      (48) 
depend on the plate properties. The definitions for the classical and shear-corrected models differ in 
the last terms of Eqs. (45) and (46) and in the constitutive equation for the resultant shear stress 
implied by Eqs. (42) and (43) 
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      0( )Q K z z G      (49) 
in which the shear correction factor (2-by-2 matrix here) 

     
15 12 2( ) ( ) ( )36

z
z

z zK G z z z z G dz




 

 
  

  
  

   (50) 
depends on the matrix of the transverse shear module. 
 
5.1 Stress expression 
 

The solution to the plate problem gives directly the translation and rotation components  0u , 
w , and  0  thereby the strain measures  0 ,  0 , and  0  of the classical model. The stress 
resultants follow from the constitutive Eqs. (45) and (46). Expression  
         0 0 1( )p zE z C qE        (51) 
for the in-plane stress components follow from Eqs. (19) and (37) and expressions  
     02

6 ( )( )( ) z z z z K Gz z  
 

   


,   (52) 

z q  ,  (53) 
for the transverse stress components from Eqs. (19), (36), and (49). It is noteworthy that the 
transverse stress components are always continuous whereas the in-plane components may be 
discontinuous.  
 
5.2 Warping displacement expressions 
 

The warping displacement solution in terms of the strain measures of the classical model 
follow from Eqs. (40) and (41) 
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          1 02
6( ) ( , ) ( )( ) ( )z

zu z H z z z G K G I dt     





 

 
      

 
 ,   (54) 

       T T0 01( ) ( , ) ( ) ( ) ( )( )
zz z zu z H z q C C dE        







    
  . (55)  

However, these expressions are seldom needed in practice due to the orthogonality conditions in Eq. 
(15), which imply that, e.g., the mean value of the displacement is given by the classical part. In 
practical applications, this gives a precise enough picture about displacement of a plate. 
 
6 Application examples 
 

A rectangular simply supported plate of side length L  and thickness t  is used as an 
application example. The origin of the transverse coordinate is placed at the mid-plane so / 2z t   
and / 2z t   . In addition, the elasticity matrices in Eq. (7) are restricted by conditions 

5 6 3 3 0E E C G     to allow a simple solution to the exact model [15]. Symmetry of the material 
properties with respect to the mid-plane is assumed to disconnect the in-plane and bending 
deformation modes of plate. 
 With the surface load 

0 sin( )sin( )x yq q L L
 

        (56) 
acting on the top surface, the displacement solutions to the exact, classical, and shear-corrected 
models are all 

20 ( ) ( )cos( )sin( )x xq L x yu L u zE t L L
 

 ,     (57) 
20 ( ) ( )sin( )cos( )y yq L x yu L u zE t L L

 
 ,    (58) 
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30 ( ) ( )sin( )sin( )z zq L x yu L u zE t L L
 

 .   (59) 
The transverse stress solutions are 

0( ) ( )cos( )sin( )zx zxL x yq zt L L
 

  ,     (60) 

0( ) ( )sin( )cos( )zy zyL x yq zt L L
 

  ,    (61) 

0 ( )sin( )sin( )zz zz x yq z L L
 

       (62) 
and the in-plane stress solutions  

20( ) ( )sin( )sin( )xx xxL x yq zt L L
 

  ,     (63) 
20( ) ( )sin( )sin( )yy yyL x yq zt L L

 
  ,    (64) 

20( ) ( )cos( )cos( )xy xyL x yq zt L L
 

  .    (65) 
Solutions to the models differ only in the 9 dimensionless functions ( )xu z , ( )yu z , ( )zu z , ( )zx z , 

( )zy z , ( )zz z , ( )xx z , ( )yy z , and ( )xy z . The combinations of the geometrical parameters t  
and L , the reference Young’s modulus E , and loading 0q  have been chosen to allow comparison 
in a dimensionless form with a convenient scaling. All solutions in the comparison are exact to the 
models.   
 
6.1 Isotropic material 
 

The first example assumes an isotropic material, so elasticity matrices take the forms 
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  2
1 0

1 01 0 0 (1 ) / 2p EE







 
 
 
  

,   
1 0
0 1G G  

  
 

,  and  

1
1(1 )(1 2 ) 0

EC 

 

 
 

  
   

 

.   (66) 

The diagonal elements 5 / 6  of the shear correction matrix given by Eq. (50) coincide with the 
classical values in literature. The stress expressions 

     0 02
1 0 1

1 0 ( ) 111 0 0 (1 ) / 2 0
E z q




    




   
              

,  (67) 

   2 2 02
5 1( )4z t Gt    ,  (68) 

z q  ,  (69) 
follow from Eqs. (51) to (53) by substituting the elasticity matrices there. The solution to the 
warping displacement  

   
2

02
1 (3 20 )12

zzu t   ,      (70) 

       
2 2 2 2T T 00 012 (1 )(1 2 21 1 ) 1 12( ) ( )1 1 24 1 24z qt z t tz zz t Eu    










    
 

 
 


, (71) 

where  1  is a 2 by 1 matrix of ones, follows from Eqs. (54) and (55). It is noteworthy that the 
warping displacement expression in Eq. (70) differs from the a priori expression in Eq. (11) [7], [8]. 
Also, the shear-corrected model gives a warping displacement in the transverse direction, whereas 
theory in [7] and [8] does not. There, the two first terms are due to the Poisson effect and the last 
term represents shrinkage or elongation of the line segments caused by the external surface load.  

Fig. 1 compares the exact model, shear-corrected model, and classical model solutions to 
displacement and stress when 5L t , 010E q , and 1/ 3  . For a homogeneous simply 
supported plate, displacements by the classical and shear-corrected models almost coincide with the 
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exact solution even when the plate is thick. Solutions to the transverse stress components by the 
classical model are poor but the shear-corrected model predicts all the components well. 

 
Fig.1 

 
6.2 Symmetric sandwich 
 

The second example is a symmetric three-layer sandwich plate composed of isotropic skin (s), 
layers of thickness st , and core (c) of thickness ct . The elasticity matrices are the same as in the 
previous example, the only difference being the different values of the Young’s module and 

Poisson’s ratio for the skin and core materials. The shear correction matrix in Eq. (50) simplifies to 
1 0[ ] 0 1K k  

  
 

  (72) 
in which the shear correction factor is given by 

6
3 2 2 4 3 2 2 3 4

( 2 )
22 (10 25 16 ) ( 10 40 60 3 )

5 1
06 c s c s

c c s sc s c c s s s c c c s c s c s s
k G G t t

G t G tG t t t t t G t t t t t t t t t


    


 
.   (73) 

If the shear module coincides or thickness of the core or skin vanishes, the shear correction factor 
takes the classical value 5 / 6 . For the other typical values 0 / 1st t   and 0 / 1c sG G  , the 
value is smaller than 5 / 6  and can become very small for soft cores. 

Tab. 1 and Tab. 2 show the effect of the relative skin layer thickness /st t  and module ratio 
/c sG G  to the transverse displacement modeling error at 0z  .  Modeling errors of the classical 

and shear-corrected models increase in the module ratio and decrease in the thickness ratio. 
Predictions of both models are poor for a sandwich plate composed of a very soft core and rigid 
skin layer of about the same thickness. In all cases, the shear-corrected model overestimates and the 
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classical model underestimates the transverse displacement. Overall, the modification in the shear-
corrected model reduces the modeling error of the classical plate model substantially. 

 
Tab.1 

 
Tab.2 

 
Fig. 2 compares solutions to displacement and stress when 10L t , 2c st t , 010sE q , 
100s cE E , and 1/ 3s c   . Due to the rather soft core, the transverse displacement, as 

predicted by the classical model, is way too small. The prediction by the shear-corrected model is 
more accurate and on the safe side concerning the design of plate structures. Again, solutions to the 
transverse stress components by the classical model are poor. The shear-corrected model gives a 
closer fit to the exact solution although the exact transverse stress is not close to quadratic in the 
transverse coordinate. 

 
Fig.2 

 
6.3 Cross-ply laminate 
 

A symmetric cross-ply structure of orthotropic layers is a good model for plywood and also a 
popular test problem for refined plate models. In the example, the stiff direction of 1n  layers is 
aligned with the x axis whereas the remaining n  layers are aligned with the y axis. Thickness of 
the layers is constant / (2 1)t t n   .  In the orthotropy   system of the layers, in which  
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axis is aligned with the stiff direction, Young’s module, Poisson’s ratios, and shear module are 
taken to be E E  , E E E    ,            ,      , 
G G G   , and G G   (see Appendix A.). With notation   

* 2(1 )(1 2 )
EE

  


  
 ,  (74) 

 elasticity matrices of the layers in the x  and y directions are  

 

* 2 *
* * 2

(1 ) (
(

0
0

0
1 )

1 ) (1 )
0pE

E E
E E

G
  

   

 
 
 
 
 









 

,  
1 0
0G G



 
  

 
,   * 1

0
1C E



 

 
 

  
 






 ,  (75) 

 

* 2 *
* * 2

(1 ) (1 )
(1 ) )

0
(

0
0

0
1pE E

G
E E

E
   

  

 
 




 

 
 

 

 ,  
0

0 1G G  
  

 
,   * 1

0
1

C E


 

 
 

  
 






 ,  (76) 

respectively. The diagonal elements of the shear correction matrix according to Eq. (50)   
0[ ] 0xx
yy

kK k
 

  
 

  (77) 

are given by 
1(

(1 )(1 )
10 2 )
6 nxx n

nk a a n n


      


 ,  (

(1 )( )
10 1 2 )
6 n nyy nk a a n n



   




    
, (78) 

in which  

5
20(1 ) 1

(1 2 )n n na n
 




.  (79) 

The value of na  reduces fast in the number of layers, so one may simplify the setting by using 
0na  . If 1   or 0n  , the classical values 5 / 6xx yyk k   are obtained.  
Fig. 3, Fig. 4, and Fig. 5 compare solutions to displacement and stress when 10L t , 

010E q , 1/100  , and 1/ 3  . Results for the single-layer structure in Fig. 3 are qualitatively 
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much the same as for the isotropic material. For the five-layer structure in Fig. 4 and the 21 layer 
structure in Fig. 5 transverse displacement solution by the classical model indicates a way too stiff 
behaviour. In both cases, the transverse stress solutions by the classical model are poor. 

 
Fig.3 

 
Fig.4 

 
Fig.5 

 
7 Conclusions 

 
The shear-corrected plate model combines the benefits of the equivalent single-layer and 

layer-wise models in a new manner in which the aim is to reduce the modeling error of the classical 
plate model without compromising its simplicity.  Although the solution to the warping 
displacement part is layer-wise, plate equations of the shear-corrected model correspond to the 
single-layer theory. Therefore, the computational complexity of the method is independent in the 
number of layers whereas the computational complexity of a layer-wise theory is proportional to the 
number of layers. This gives huge savings, e.g., in plywood applications. For sandwich structures of 
a thick, soft core and thin, stiff skin layers, a layer-wise theory is still a very good choice. 

The additional condition of uniform warping allows a simple integral solution to the warping 
displacement part, but it excludes the effect of warping constraints like clamped edges. Rejecting 
the assumption is possible but only with the prize of nonstandard plate equations of increased order. 
The kinetic assumption of the vanishing transverse normal stress is not used. In the classical model, 
the assumption counteracts the rather severe kinematic assumption, but the effect is likely to be 
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opposite with a less restrictive kinematics. The integral solution to the warping displacement is 
exact to the plate model used. There, loading of the plate is in the transverse direction, orthotropy 
coordinate systems and the plate coordinate system differ in rotation along the transverse direction, 
material properties were assumed to depend on only the transverse coordinate, etc. These 
assumptions simplify the derivation and the final outcome but do not restrict the method itself.  

 Implementation of the method in terms of shear correction factors and a modified source term 
uses equations of the classical mathematical form so application of the well-established numerical 
methods and software designed for the Reissner-Mindlin model is possible. The generic integral 
expression for the shear correction factor differs substantially from the ones in literature [16], [17], 
and it is given by the model itself. The stress expressions of the shear-corrected model are of the 
same type as those of the classical model. Therefore, e.g., integration of the full elasticity equations 
for an improved transverse stress prediction is not needed [18]. This is important in practice as the 
calculation requires derivatives of the in-plane stress components whose evaluation out of a 
numerical solution to the plate equations is tricky. 
 
This research did not receive any specific grant from funding agencies in the public, commercial, or 
not-for-profit sectors. Declarations of interest: none. 
 
Appendix A. Orthotropic material model 
  

The material model for an orthotropic layer of plate, which is adapted from the classical 
representation in [19], 
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1

T

1/ / 0 0 0 /
/ 1/ 0 0 0 /

0 0 1/ 0 0 0[ ] [ ]0 0 0 1/ 0 0
0 0 0 0 1/ 0

/ / 0 0 0 1/

x xx
y yy
xy xy
zx zx
zy zy
z zz

E E E
E E E

GT TG
G

E E E

    

    







    

  

  

 

 

 

  


     

         
    

        
    
    
   
       




  (A.1) 

depends on Young’s module E , E , E , Poisson’s ratio  ,  ,  ,  ,  ,  ,  
shear module G ,G , G , and orientation angle  of plate xyz  coordinate system relative to 
the orthotropy   coordinate system. Due to the symmetry, the number of independent elasticity 
parameters is 9. The transformation matrix  

2 2
2 2

1cos ( sin sin 0 0 021sin cos ( sin 0 0 02
sin(2 ) sin(2 ) cos(2 ) 0 0 0[

) ( ) (2 )
( ) ) (2 )

i

]
0 0 0 cos( ) sin( ) 0
0 0 0 s n( ) cos( ) 0
0 0 0 0 0 1

T

  

  

 







 

 
 
 
 
 
 
 

  
 
 
 
 
 
 
 

  (A.2) 

assumes that the   axis and z  axis are aligned. The more concise representation of the material 
model in Eq. (A.1) 
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zz zz

E E E C
E E E C
E E E C

G G
G G
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 

 

 

 

 

 

    
    
    
       

    
    
    
    
      

  (A.3) 

contains 13 expressions of Young’s module, shear module, Poisson’s ratio and the orientation angle 

of a layer.  
 
Appendix B. Integral solution 

 
Consider the solution ( , , )a x y z to equations 

( , , ) ( , , )a x y z x y zz 





   z z z   ,   (B.1) 

( , , ) 0z
z a x y z dz



   and  ( , , ) 0z
z za x y z dz



    (B.2) 
in which ( , , )x y z  is given. The equation set overdetermines ( , , )a x y z  and, therefore, existence of 
the solution is possible only under a constraint on data ( , , )x y z . Integral identity  

( , , ) 1( , ) ( , , ) ( , , )z z
z z

a x yH z d a x y z a x y z dzz z


 


 

  


 

   ,    (B.3)  
where the kernel 

,   1( , ) ,   
z zH z z zz z

 


 



 

 
 

  
     (B.4)  

implies the solution  
( , , ) ( , ) ( , , )z

za x y z H z x y d   




     (B.5) 
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to the differential equation and the first of the integral constraints. The second integral constraint, 
the differential equation, and the integral identity imply that 

1( , , ) ( )( ) ( , , ) 02
z z
z zza x y z dz z z z z x y z dz
 

 
       .  (B.6) 
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Fig. 1. Displacement and stress by the exact (broken), shear-corrected (dotted), and classical (solid) 
models as the functions of /z z t . Isotropic plate with 5L t , 010E q , and 1/ 3  . 
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Fig. 2. Displacement and stress by the exact (broken), shear-corrected (dotted), and classical (solid) 
models as the functions of /z z t . Sandwich plate problem with 10L t , 2c st t , 010sE q ,  

100s cE E , and 1/ 3s c   . 
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Fig. 3. Displacement and stress by the exact (broken), shear-corrected (dotted), and classical (solid) 
models as the functions of /z z t . Single layer plywood plate with 10L t , 010E q , 1/100  , 
and 1/ 3  .  

 

 
 
Fig. 4. Displacement and stress by the exact (broken), shear-corrected (dotted), and classical (solid) 
models as the functions of /z z t . Five layer plywood plate with 10L t , 010E q , 1/100  , 
and 1/ 3  .  
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Fig. 5. Displacement and stress by the exact (broken), shear-corrected (dotted), and classical (solid) 
models as the functions of /z z t . Plywood plate of 21 layers with 10L t , 010E q , 1/100  , 
and 1/ 3  .  
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Table 1. Effects of the relative skin layer thickness /st t  and rigidity ratio /s cE E  on the transverse 
displacement modeling error at the mid-surface 0z   ( czu ~ classical model, szu ~shear-corrected 
model, ezu ~ exact). Thick plate with / 1/10t L  . 
 _______________________________________________________________________________  
 / 1/ 8st t   / 1/16st t    / 1/ 32st t   
 /s cE E  /c ez zu u  /s ez zu u  /c ez zu u  /s ez zu u     
 _______________________________________________________________________________  
 1 1.00 1.00 1.00 1.00 1.00 1.00  

 10 0.84 1.04 0.91 1.03 0.91 1.03 

 210  0.30 1.16 0.43 1.13 0.59 1.10 

 310  0.05 1.41 0.07 1.22 0.12 1.18 
 410  0.01 3.44 0.01 1.49 0.01 1.24 
 510  <0.01 23.6 <0.01 4.09 <0.01 1.56 
 _______________________________________________________________________________  
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Table 2. Effects of the relative skin layer thickness /st t  and rigidity ratio /s cE E  on the transverse 
displacement modeling error at the mid-surface 0z   ( czu ~ classical model, szu ~shear-corrected 
model, ezu ~ exact). Thin plate with / 1/100t L  . 
 _______________________________________________________________________________  
 / 1/ 8st t   / 1/16st t    / 1/ 32st t   
 /s cE E  /c ez zu u  /s ez zu u  /c ez zu u  /s ez zu u     
 _______________________________________________________________________________  
 1 1.00 1.00 1.00 1.00 1.00 1.00  

 10 1.00 1.00 1.00 1.00 1.00 1.00 

 210  0.97 1.01 0.98 1.00 0.99 1.00 

 310  0.78 1.04 0.86 1.03 0.92 1.02 
 410  0.27 1.16 0.38 1.13 0.54 1.09 
 510  0.04 1.41 0.06 1.22 0.10 1.18 
 _______________________________________________________________________________  
 

 

 

 

 

 

 

 


