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Free flexural vibration of symmetric beams with inertia induced cross section deformations 
 

A. Laakso1, J. Romanoff, H. Remes 
Department of Mechanical Engineering, Aalto University School of Engineering, P.O. Box 

15300, 00076 Aalto, Finland 
Abstract 
Beams with large thin-walled cross sections are not generally following the classical beam 
theories such as Euler-Bernoulli and Timoshenko theories. In free vibration, the cross section is 
deformed by the inertia induced body loads. These deformations may have significant effect on 
the beam modal frequencies, especially in applications involving non-structural masses. This 
paper presents a method to include the effect into vibration modal results obtained by the 
classical beam theories. Generalized mass and stiffness of the classical results are modified 
according to kinetic-, and strain energies of the cross section deformation. The method is 
validated in typical engineering case studies against fine mesh Finite Element Method and 
excellent agreement is found. 

Keywords: Modal analysis, Beam theory, Generalized mass, Generalized stiffness, Thin- 
walled, Finite Element Method 
Latin Symbols 
A 
b 
e 
E 
f 
G 
h 
I 
K 
L 
m 
M 

Amplitude, (Area in Eq. (47)) 
Breadth 
Unit vector 
Young’s modulus 
Frequency in Hz 
Shear modulus 
Height 
Second moment of area 
Generalized Stiffness 
Length 
Mass per unit length of beam 
Generalized Mass 
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q 
r 
S 
t 
T 
U 
w 
x, y, z, s, n 

Distributed  load 
Response 
Stiffener spacing 
Time 
Kinetic energy 
Strain energy 
Displacement 
Coordinates 

Greek Symbols 
δ 
θ 
λ 
 
ξ 
 
Ψ 
ω 

Convergence limit 
Thickness 
Wave length 
Poisson’s ratio 
Generalized coordinate 
Mass density of the material 
Deflection mode shape 
Frequency in rads-1 

Subscripts & Superscripts 
* 
B 
C 
CR 
dyn 
ef 
i 
n 
peak 
PU 
S 
sta 

Corrected value 
Global beam 
Cross section 
Cross section quantity Relative to global point unit amplitude enforced harmonic motion 
Dynamic 
Effective 
Mode number 
Iteration step number 
Peak value 
Periodic unit 
Stiffener 
Static 
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1 Introduction 
Beams with thin-walled cross sections are used in several fields of structural engineering 
including applications in marine, aerospace and bridge structures due to their excellent stiffness 
to weight ratio. Several models have been developed for modal analysis of these thin-walled 
beams. Euler-Bernoulli beam model [1] is accurate for slender beams with small cross section 
dimensions relative to length of flexural waves of the studied vibration mode. Due to its 
simplicity and availability on commercial Finite Element software, the model is still widely used 
in practical engineering. The shear-deformations can be accounted by Timoshenko beam theory 
[2, 3, 4] that provides significantly more accurate modal frequencies in beams that are deep 
relative to the length of flexural waves of the studied vibration mode. Drawback of practical 
applicability of Timoshenko’s beam model has been definition of shear correction factors for 
different cross sections; see for example Refs. [5,6,7,8]. However, these methods cannot account 
the influences of local deformations that occur solely on the beam cross-section plane.  
Effects of inertia induced cross section deformations have been studied by NACA in the 1950s & 
60s. The phenomenon was observed in vibration tests of box beams [9] and the effect has been 
analyzed for box beams in [10]; monocoques in [11]; angled sections in [12] and channel sections 
in [13]. Several bridge beams were studied in [14] by including cross section deformation into 
equations of motion. Generalized beam theory has been developed to take all the above-
mentioned effects elegantly into account inside the beam formulation [15]. It has been applied for 
vibration problems for example in [16]. Carrera et al. have applied unified formulation [17]  to 
Finite element vibration analysis of arbitrary beams [18]. The unified formulation allows any 
order beam theory to be systematically analyzed by one-dimensional Finite Element Method. 
Complicated structures have been studied by the method in [19, 20]. Beams with non-structural 
masses have been studied in [21, 22]. High order generalized beam theories give accurate result 
in comparison with 3D FE-models. However, even if these analyses require significantly less 
computational effort than the 3D FEM, several hundred DOFs are still needed. Thus, there is a 
need to develop the classical simple beam models further to account the effects of local cross-
section deformations on the global beam level modes.  
This paper provides a method to take the inertia induced local deformation effects into account in 
classical beam theories. The correction is based on the energy involved in the cross section 
deformation. It can be used to correct the beam modal results independent of the solution of the 
beam problem. This allows use of detailed numerical models where necessary, while carrying out 
straightforward parts of the problem effectively by simple analytical formulae. This kind of 
approach has value in conceptual design of structures in which the accuracy of solutions must be 
reasonable, while the computational cost must be extremely light.  
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2 Method definition 
2.1 Assumptions & Limitations 
The beam axis is denoted with x-coordinate, while the vertical direction is denoted by z-
coordinate. This study is limited to analysis of beams with symmetric cross sections with respect 
to xz-plane. Applied coordinate system, and structural dimensions are presented in Figure 1a. 
Cross section coordinate s goes around centerline of the cross section, and n is perpendicular to s.  
Small amplitude free vibration is assumed. Cross sections are assumed to have global reference 
points(s) that follow global bending behavior of the beam axis. The global reference points are 
defined in stiff points of the cross section, typically in intersections of plated parts. This study 
includes thin-walled cross sections, in which thicknesses θ are significantly smaller than cross 
section main dimensions (θ≪b & θ≪h). Examples of possible cross sections and their global 
reference points are presented in Figure 1b.  

 
Figure 1. (a) Definition of coordinate systems and dimensions. (b) Examples of thin-walled 

symmetric cross sections, global reference points indicated by circles. 
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Length of flexural waves of beam vibration is assumed long in comparison with cross section 
dimensions (b≪λ & h≪λ). This means that locally in a point of cross section, the transversal 
bending stiffness of cross section dominates the longitudinal bending stiffness by nodes of the 
global wave. This is also known as cylindrical bending assumption in the cross section analysis. 
Additionally, Euler Bernoulli beam is applied in theory definition of Chapter 2. This means that 
Kinetic energy is assumed purely translational and all strain energy is caused by bending 
deformation. 
2.2 Mode shape definition 
Free vibration of a beam at mode i is considered. The beam is vibrating in xz-plane harmonically 
at the modal angular frequency ωi. The displacement, wi, can be written as:  

𝐰𝑖(𝑥, 𝑠, 𝜔𝑖, 𝑡) = 𝚿𝑖(𝑥, 𝑠, 𝜔𝑖)sin(𝜔𝑖𝑡)    (1) 
The displacement mode shape Ψi(x, s, ωi) can be divided into sum of global z-deformation shape 
of the beam ΨBi and total local n-deformation shape of the cross section ΨCi: 

𝚿𝑖(𝑥, 𝑠, 𝜔𝑖) = 𝐞𝑧𝛹𝐵𝑖(𝑥) + 𝐞𝑛𝛹𝐶𝑖(𝑥, 𝑠, 𝜔𝑖)    (2) 
This is illustrated in Figure 2. 

 
Figure 2.Sketch of the mode shape at location x as sum of global deformation and cross section 

deformation. 
Response of the assumed linear vibration is directly proportional to the excitation amplitude [23]. 
Due to the long wavelength assumption, the cross section in location x is supported (and excited) 
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only transversally by the global reference point(s). Therefore the local amplitude is directly 
proportional to the amplitude of the global reference point(s), which equals the global mode 
shape ΨBi(x): 

𝛹𝐶𝑖(𝑥, 𝑠, 𝜔𝑖) = 𝛹𝐵𝑖(𝑥)𝛹𝐶𝑅(𝑠, 𝜔𝑖)     (3) 
where ΨCR is the cross section mode shape relative to the global reference point amplitude i.e. the 
deformation caused by unit amplitude (z-directional) enforced displacement of global reference 
point(s). By combining Eq. (2) and Eq. (3), the mode shape gets the form: 

𝚿𝑖(𝑥, 𝑠, 𝜔𝑖) = 𝛹𝐵𝑖(𝑥)[𝐞𝑧 + 𝐞𝑛𝛹𝐶𝑅(𝑠, 𝜔𝑖)]    (4) 
2.3 Generalized Mass 
Let us consider vibration of mode i as free harmonic vibration of a generalized single degree of 
freedom system: 

𝜉𝑖(𝑡) = 𝐴𝑖 sin𝜔𝑖𝑡     (5) 
A is amplitude, and ξ a generalized coordinate, and t time. Kinetic energy of the system can be 
defined by generalized mass M* as follows: 

𝑇𝑖(𝑡) =
1

2
𝑀𝑖

∗𝜉𝑖̇
2
=

1

2
𝐴𝑖

2𝜔𝑖
2𝑀𝑖

∗cos2𝜔𝑖𝑡   (6) 
The generalized mass can thus be found by considering the peak value of kinetic energy of the 
vibration mode. That occurs when cos2ωit = 1. The generalized mass is thus the following: 

𝑀𝑖
∗ =

2𝑇𝑖
𝑝𝑒𝑎𝑘

𝐴𝑖
2𝜔𝑖

2      (7) 
The translation kinetic energy of the vibration mode is considered: 

𝑇𝑖(𝜔𝑖, 𝑡) = ∫ ∮
1

2
𝜌(𝑥, 𝑠)𝜃(𝑥, 𝑠)(𝐰𝑖̇ (𝑥, 𝑠, 𝜔𝑖, 𝑡))

2
d𝑠d𝑥

𝐿

0
   (8) 

Velocity is the first time derivative of the deflection shape:  
𝐰𝑖̇ (𝑥, 𝑠, 𝜔𝑖, 𝑡) = 𝜔𝑖𝚿𝑖(𝑥, 𝑠, 𝜔𝑖)cos(𝜔𝑖𝑡)    (9) 

The maximum occurs at the moment when the velocity is highest: that occurs when cos(ωit) = 1. 
The peak  kinetic energy of the vibration is thus: 

𝑇𝑖
𝑝𝑒𝑎𝑘(𝜔𝑖) =

𝜔𝑖
2

2
∫ ∮𝜌(𝑥, 𝑠)𝜃(𝑥, 𝑠)(𝚿𝑖(𝑥, 𝑠, 𝜔𝑖))

2
d𝑠d𝑥

𝐿

0
   (10) 

By inserting the mode shape from Eq. (4): 
𝑇𝑖
𝑝𝑒𝑎𝑘(𝜔𝑖) =

𝜔𝑖
2

2
∫ (𝛹𝐵𝑖(𝑥))

2
∮𝜌(𝑥, 𝑠)𝜃(𝑥, 𝑠)[𝐞𝑧 + 𝐞𝑛𝛹𝐶𝑅(𝑠, 𝜔𝑖)]

2d𝑠d𝑥
𝐿

0
  (11) 

For a prismatic beam with constant mass density distribution in x-direction, this simplifies into: 
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𝑇𝑖
𝑝𝑒𝑎𝑘(𝜔𝑖) =

𝜔𝑖
2

2
∫ (𝛹𝐵𝑖(𝑥))

2𝐿

0
d𝑥 ∮𝜌(𝑠)𝜃(𝑠)[𝐞𝑧 + 𝐞𝑛𝛹𝐶𝑅(𝑠, 𝜔𝑖)]

2d𝑠  (12) 
The peak kinetic energy per unit length and unit excitation amplitude can now be defined as x-
independent term: 

𝑇𝐶𝑅(𝜔) =
𝜔2

2
∮𝜌(𝑠)𝜃(𝑠)(𝐞𝑧 + 𝐞𝑛𝛹𝐶𝑅(𝑠, 𝜔𝑖))

2d𝑠    (13) 
The generalized mass now gets the form: 

𝑀𝑖
∗(𝜔𝑖) =

2

𝜔𝑖
2𝐴𝑖

2 𝑇𝐶𝑅(𝜔𝑖) ∫ (𝛹𝐵𝑖(𝑥))
2𝐿

0
d𝑥    (14) 

The integral term can be solved from definition of generalized mass of uncorrected beam 
solution. That is [23]: 

𝑀𝑖 = ∫ 𝑚(𝛹𝐵𝑖(𝑥))
2𝐿

0
d𝑥     (15) 

⇒ ∫ (𝛹𝐵𝑖(𝑥))
2𝐿

0
d𝑥 =

𝑀𝑖

𝑚
     (16) 

Now the Eq. (14) simplifies into: 
𝑀𝑖

∗(𝜔𝑖) =
2𝑀𝑖𝑇𝐶𝑅(𝜔𝑖)

𝑚𝐴𝑖
2𝜔𝑖

2        (17) 
2.4 Generalized Stiffness 
Generalized stiffness can be similarly defined by modal strain energy of generalized single 
degree of freedom system: 

𝑈𝑖(𝑡) =
1

2
𝐾𝑖
∗𝜉𝑖

2 =
1

2
𝐴𝑖

2𝐾𝑖
∗ sin𝜔𝑖𝑡    (18) 

𝐾𝑖
∗ =

2

𝐴𝑖
2𝑈𝑖

𝑝𝑒𝑎𝑘 =
2

𝐴𝑖
2 (𝑈𝐵𝑖

𝑝𝑒𝑎𝑘 + 𝑈𝐶𝑖
𝑝𝑒𝑎𝑘)   (19) 

Strain energy of the global beam deformation UBi can be written by using generalized stiffness of 
the uncorrected beam solution. That is: 

𝐾𝑖 =
2

𝐴𝑖
2𝑈𝐵𝑖

𝑝𝑒𝑎𝑘      (20) 
The strain energy of the cross section deformation UCi is defined as: 

𝑈𝐶𝑖(𝜔𝑖, 𝑡) =
1

2
∫ ∮𝐸𝐼(𝑠) [

𝜕2[𝛹𝐶𝑖(𝑥,𝑠,𝜔𝑖)sin⁡(𝜔𝑖𝑡)]

𝜕𝑠2
]
2

d𝑠
𝐿

0
d𝑥   (21) 

Peak strain energy occurs when the displacement is at its extreme position, i.e. sin(𝜔𝑡) = 1. By 
applying that, and the cross section deformation of Eq. (3) the peak strain energy of the cross 
section gets the form: 

𝑈𝐶𝑖
𝑝𝑒𝑎𝑘(𝜔𝑖) =

1

2
∫ ∮𝐸𝐼(𝑠) [

𝜕2(𝛹𝐵𝑖(𝑥)𝛹𝐶𝑅(𝑠,𝜔𝑖))

𝜕𝑠2
]
2

d𝑠
𝐿

0
d𝑥   (22) 
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⇒ 𝑈𝐶𝑖
𝑝𝑒𝑎𝑘(𝜔𝑖) =

1

2
∮𝐸𝐼(𝑠) [

𝜕2𝛹𝐶𝑅(𝑠,𝜔)

𝜕𝑠2
]
2

d𝑠 ∫ (𝛹𝐵𝑖(𝑥))
2𝐿

0
d𝑥   (23) 

In above equation, the x-independent term represents peak strain energy per unit length and unit 
excitation amplitude. It is denoted as: 

𝑈𝐶𝑅(𝜔) =
1

2
∮𝐸𝐼(𝑠) [

𝜕2𝛹𝐶𝑅(𝑠,𝜔)

𝜕𝑠2
]
2

d𝑠    (24) 
Now, by applying Eq. (20), Eq. (23) & Eq. (24) into Eq. (19), the corrected modal stiffness can 
be written as: 

𝐾𝑖
∗(𝜔𝑖) = 𝐾𝑖 +

2

𝐴𝑖
2𝑈𝐶𝑅(𝜔𝑖) ∫ (𝛹𝐵𝑖(𝑥))

2𝐿

0
d𝑥   (25) 

By applying Eq. (16) this simplifies into: 
𝐾𝑖
∗(𝜔𝑖) = 𝐾𝑖 +

2𝑀𝑖𝑈𝐶𝑅(𝜔𝑖)

𝐴𝑖
2𝑚

    (26) 
2.5 Frequency by iteration including cross section response analysis 
Angular eigenfrequency ωi of the considered mode i can be calculated from generalized stiffness 
and mass properties as follows: 

𝜔𝑖 = √
𝐾𝑖
∗(𝜔𝑖)

𝑀𝑖
∗(𝜔𝑖)

      (27) 
However, as can be seen, the generalized mass and stiffness are functions of the angular 
frequency itself. More specifically, the terms TCR and UCR in Eq. (17) and Eq. (26) are functions 
of the angular frequency. This relation makes it necessary to use iterative approach to solve Eq. 
(27).  
This is done by separate iteration for each mode i. Angular frequency of iteration step n+1 is 
obtained from the previous step n by following equation: 

𝜔𝑛+1 = √
𝐾𝑖
∗(𝜔𝑛)

𝑀𝑖
∗(𝜔𝑛)

      (28) 
where corrected modal mass and stiffness are obtained from Eq. (17) and Eq. (26). 
Initial guess for the frequency is needed for the iteration. In this paper, the initial guess is decided 
based on the beam solution frequency ωB and cross section lowest eigenfrequency ωC. Relation 
of these frequencies defines the initial guess as presented in Table 1. This definition for initial 
guess is used in all case studies presented in this paper. However, it is barely a guess that works 
in cases of this study, but is not general in wider sense. 
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Table 1. Initial guesses of angular frequency ω0 based on relation of frequencies of beam solution ωB 
and the lowest mode of the cross section ωC. 

Relation of frequencies ωB & ωC 
𝜔𝐵 ≤ 0.9𝜔𝐶 

0.9𝜔𝐶 < 𝜔𝐵 ≤ 2𝜔𝐶 
2𝜔𝐶 < 𝜔𝐵 

Initial guess ω0 
𝜔𝐵 

0.9𝜔𝐶 
0.99𝜔𝐶 

For nth iteration step, the frequency depended terms in  Eq. (17) and Eq. (26) are:  
1) 𝑇𝐶𝑅(𝜔𝑛). Peak Kinetic energy of unit length of beam cross section under unit enforced z 

displacement at frequency ωn. 
2) 𝑈𝐶𝑅(𝜔𝑛). Peak Strain energy of unit length of beam cross section under unit enforced z 

displacement at frequency ωn. 
These terms can be calculated by forced vibration analysis of unit length of the cross section in 
yz-plane. Plane strain state is applied in the cross section analysis. Unit displacement in z-
direction is applied in the global reference point(s) as enforced motion. The energy terms TCR and 
UCR are solved either once as functions of frequency, or separately for each iteration step. The 
used option depends on the solution method of the cross section response analysis. The cross 
section enforced motion analysis can be carried out by any suitable method, analytic or 
numerical, direct or modal.  
The iterative procedure is presented in Figure 3. This iteration will be continued until desired 
degree of convergence is found. In analyses of this study convergence parameter δ is chosen so 
that the frequencies of adjacent steps are equal up to 6 significant digits. 
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Figure 3.Iterative procedure for the local deformation correction.  

2.6 Convergence study and range of validity 
Thin-walled cantilever steel beam with symmetric channel section is chosen for convergence 
study. Beam dimensions are the following: height h = 0.2 m, width b = 0.4 m, thickness θ = 0.007 
m and length L = 5 m, and material properties: Young’s modulus E = 206 GPa, Poisson’s ratio ν 
= 0.3 and mass density ρ = 7850 kgm-3. Geometry of the structure is presented in Figure 4.  
 

 
Figure 4. Geometry of the convergence study beam. 
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First, global modes of the beam are considered. Secondly the cross section behavior is studied 
under enforced displacement. Then iterative correction of Figure 3 is applied for all modes, and 
iteration convergence is studied. Finally, the results are compared with fine mesh Finite Element 
model. The normalized mode shapes are here taken as [24]: 

𝐵𝑖𝛹𝐵𝑖(𝑥) = sin 𝛽𝑖 𝑥 − sinh 𝛽𝑖 𝑥 − (
sin𝛽𝑖𝐿+sinh𝛽𝑖𝐿

cos𝛽𝑖𝐿+cosh𝛽𝑖𝐿
) (cos 𝛽𝑖𝑥 − cosh𝛽𝑖𝑥)  (29) 

Numerical values for parameters βiL can be found in [24]. Factors Bi are used to normalize the 
mode shapes so that maximum absolute deflection is unity. Numerical values of them for the 4 
first modes are presented in Table 2. Angular frequencies can be calculated by [24]: 

𝜔𝑖
2 =

𝛽𝑖
4𝐸𝐼

𝑚
       (30) 

Generalized masses can be calculated as follows [23]: 
𝑀𝑖 = 𝑚∫ 𝛹𝐵𝑖(𝑥)

2𝑑𝑥
𝐿

0
     (31) 

Generalized stiffness is obtained from the relation between frequency and generalized mass. 
𝐾𝑖 = 𝑀𝑖𝜔𝑖

2 = 𝛽𝑖
4𝐸𝐼 ∫ 𝛹𝐵𝑖(𝑥)

2𝑑𝑥
𝐿

0
     (32) 

For the studied first 4 modes, the integral term equals with high numerical accuracy the 
following:  

∫ 𝛹𝐵𝑖(𝑥)
2𝑑𝑥

𝐿

0
≅ 0.25𝐿 =

𝐿

4
⁡∀⁡𝑖 ∈ [1,4] ∈ ℤ    (33) 

The resulting numerical values are presented in Table 2. Normalized mode shapes are presented 
in Figure 5. 
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Table 2. Parameter values, generalized properties, and frequencies of first 4 flexural modes 
Mode number, i 
Parameter, βiL 
Normalization factor, Bi 
Generalized mass, Mi 
Generalized stiffness, Ki 
Frequency in Hz, fi 

1 
1.87510407 
2.72444111 
19.42776 

33614 
6.620 

2 
4.69409113 
1.96373507 

19.42776 
1320155 
41.488 

3 
7.85475744 
2.00155221 
19.42776 
10350232 
116.167 

4 
10.99554073 
1.999932886 

19.42776 
39745261 
227.642 

 
Figure 5. Normalized mode shapes of 4 first modes of the cantilever beam. 

Cross section is analyzed under unit amplitude excitation in z-direction. The situation is presented 
in Figure 6. Unit length (in x-direction) of cross section is used. Young’s modulus is modified to 
simulate the plane strain state in the cross section plane:  

𝐸𝐶 =
𝐸

1−𝜈2
      (34) 

-1
-0,8
-0,6
-0,4
-0,2

0
0,2
0,4
0,6
0,8

1

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

ψ
B

x

Mode 1 Mode 2 Mode 3 Mode 4

n 
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Figure 6. Definition of half cross-section under forced support motion.  

At first, the lowest vibration mode of the cross section is defined. The cross section acts as a 
cantilever beam, similar as Eq. (30):  

𝜔𝐶
2 =

𝛽1
4𝐸𝐶𝐼𝐶

𝜌𝜃
      (35) 

⇒ 𝑓𝑐𝑠 = 75.9043…Hz     (36) 
Forced response to unit motion in z-direction is next considered. This equals the response for  
1/√2 motion in the normal n-direction. Static response rsta to uniform inertia load q is first 
studied. It follows from Newton’s 2nd law:  

𝑞 = 𝜌𝜃𝑎(𝜔) =
𝜌𝜃𝜔𝑖

2

√2
     (37) 

where ωi is angular frequency of the enforcing motion. Generalized coordinate was defined as 
response in  s = LC in n-direction. Static response to the uniform inertia load is [25]: 

𝑟𝑠𝑡𝑎(𝜔𝑖) =
𝑞𝐿𝐶

4

8𝐸𝐶𝐼𝐶
=

𝜌𝜃𝜔𝑖
2𝐿𝐶

4

8√2𝐸𝐶𝐼𝐶
    (38) 

Only the first cross section mode is assumed to have notable effect on the global vibration.  
Dynamic response of the first mode is found by multiplying the static response by dynamic 
amplification factor as follows. 

𝑟𝑑𝑦𝑛(𝜔𝑖) =
𝑟𝑠𝑡𝑎(𝜔𝑖)

1−
𝜔𝑖

2

𝜔𝐶
2

      (39) 
Now, the shape of relative cross section deformation in n-direction can be written: 

𝛹𝐶𝑅(𝑠, 𝜔𝑖) =
𝑟𝑑𝑦𝑛(𝜔𝑖)

𝐵1
[sin 𝛽1 𝑠 − sinh 𝛽1 𝑠 − (

sin𝛽1𝐿𝐶+sinh𝛽1𝐿𝐶

cos𝛽1𝐿𝐶+cosh𝛽1𝐿𝐶
) (cos 𝛽1𝑠 − cosh 𝛽1𝑠)]   (40) 

y 
z 

s 
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The peak kinetic energy of unit length of the cross section under unit enforced z-motion can now 
be calculated by Eq. (13): 

𝑇𝐶𝑅(𝜔𝑖) =
𝜔𝑖

2𝜌𝜃

2
∫ (𝐞𝑧 + 𝐞𝑛𝛹𝐶𝑅(𝑠, 𝜔𝑖))

2𝑑𝑠
𝐿𝐶

0
    (41) 

The coordinate transformation of en into y- and z- components yields  
𝑇𝐶𝑅(𝜔𝑖) =

𝜔𝑖
2𝜌𝜃

2
∫ (1 +

𝛹𝐶𝑅(𝑠,𝜔𝑖)

√2
)
2

+ (
𝛹𝐶𝑅(𝑠,𝜔𝑖)

√2
)
2

𝑑𝑠
𝐿𝐶

0
   (42) 

The symbolical solution of Eq. (42) could be obtained by commercial software, however it is not 
presented here due to its excessive size. For fluency, numerical solution is presented for 
parameter values of this case for θ, ρ, LC, β1, and B1: 

𝑇𝐶𝑅(𝜔𝑖) ≈ 0.2828427119 + ⁡0.1565983509𝑟𝑑𝑦𝑛(𝜔𝑖) + 0.07071067782𝑟𝑑𝑦𝑛(𝜔𝑖)
2  (43) 

The peak strain energy of unit length of the cross section under unit enforced z-motion can now 
be calculated by Eq. (24): 

𝑈𝐶𝑅(𝜔𝑖) =
𝐸𝐶𝐼𝐶

2
∫ [

𝜕2𝛹𝐶𝑅(𝑠,𝜔𝑖)

𝜕𝑠2
]
2

𝑑𝑠
𝐿𝐶

0
≈ 68.2931𝐸𝐶𝐼𝐶𝑟𝑑𝑦𝑛(𝜔𝑖)

2  (44) 
All the information needed for the iterative procedure of Figure 3 is now available. Initial guesses 
ω0 are defined based on Eq. (30) & Eq. (35) as shown in Table 1. Global beam properties Mi and 
Ki calculated by Eq. (31) & Eq. (32) can be found in Table 2. Cross-section forced vibration 
results UCR and TCR are calculated by Eq. (43) and Eq. (44).  
Convergence limit δ is chosen so that the iteration is continued until frequencies of two adjacent 
iteration steps are same in 6 significant digits. For the first mode, this convergence occurs already 
after two steps. Second, third and fourth modes require 3, 4, and 4 steps accordingly. The 
convergence processes are illustrated in Figure 7. 
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(a)

 

(b)

 

(c)

 

(d)

 
Figure 7. Convergence of the modal frequencies: (a) Mode 1, (b) Mode 2, (c) Mode 3, (d) 

Mode 4. 
Results are validated against Finite Element model consisting of 1600 4 node shell elements. The 
validation model is solved by NX Nastran 9.0 Finite Element software. Symmetry boundary 
condition is applied in the symmetry plane. Shell model results are normalized so that global 
reference line maximum deflection is unity. This makes the generalized mass and stiffness results 
comparable with the analytical solution. Comparison of results is presented in Table 3. 

Table 3. Comparison of results for validation study. 
Generalized Mass [kg] Beam Corrected Beam Shell FEM Generalized Stiffness [kNm-1] Beam Corrected Beam Shell FEM Frequency [Hz] Beam Corrected Beam Shell FEM Error in Frequency vs. Shell [%] Beam Corrected Beam 

Mode 1 19.428 19.518 19.560  33.614 33.691 33.687  6.6202 6.6124 6.6050  0.23 0.11 

Mode 2 19.428 24.524 24.596  1320.2 1497.9 1470.1  41.488 39.334 38.911  6.62 1.09 

Mode 3 19.428 276.12 185.81  10350 53453 38093  116.17 70.026 72.062  61.2 -2.82 

Mode 4 19.428 4617.9 4042.8  39745 1013067 1042604  227.64 74.545 80.824  182 -7.77 
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It can be seen that negative error grows towards higher modes. This is caused by the fact that 
wavelength is shorter and therefore assumption of infinite wavelength in cross section analysis is 
no longer valid. This leads to too flexible cross section and thus lowers the combined frequency. 

3 Extension to generic case 
The theory of Chapter 2 was derived based on the assumptions of Euler–Bernoulli beam theory in 
both global level and in cross-section analyses. This chapter extends the applicability into more 
general models as an approximate method. 
Extension to generic case is done by assuming that Eq. (17) and Eq. (26) can be used as 
approximate solutions regardless of the methods used to obtain K, M, TCR and UCR. Validity of 
this assumption is proven in case studies against fine mesh FEA, and results from literature. The 
selected case studies represent relevant engineering problems. Effects of separate modelling 
options in both global and local levels are studied in case study 1, and applicability to 
periodically stiffened structure in case study 2. 
3.1 Implementation into FEM 
Applicability of the method into FEM provides great practical importance due to current wide 
availability of FE-tools. The presented method can be easily used so that K, M, TCR and UCR  are 
solved by FEA. Separate FE-Models are needed for the global level beam and the cross-section 
analyses. Alternatively, either the global beam, or the cross section can be solved by some other 
method. 
M and K can be obtained by modal analysis of global level beam model. Global beam can be 
analyzed by any beam model that does not already include inertia induced cross section 
deformations.  
TCR and UCR are obtained by peak kinetic and strain energies of cross section model by enforced 
support motion analysis. Enforced unit amplitude z-displacement at frequency ωn is applied in 
global reference point of the cross section. Cross section can be modeled by in plane beam model 
or plane strain 2D model. In case of 2D plane strain mesh, special attention should be paid on 
stiffness of the enforced hard point node. It should be rigidly stiffened into surrounding nodes if 
there is a risk of significant local movement of the node relative to its adjascents. 
3.2 Analysis of periodic structures 
In many practical applications of thin walled beams, they are periodically stiffened in transversal 
direction. Structures that are periodic in x-direction can be analyzed by using 3 dimensional 
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periodic unit FE-model instead of planar model of the cross section. The model can be built up as 
considered necessary by using different element types including, beam, plate, shell, and 3D solid 
elements.  
Sufficient minimum size for a periodic unit model of example structure is highlighted in Figure 8. 
Due to symmetry of the stiffeners in the example case, sufficient periodic unit model length LPU 
is half of the stiffener spacing S. Thus only half thickness of the stiffener is included in the 
periodic unit model. 

 
Figure 8. Periodic unit highlighted in a stiffened structure. 
The enforced displacement should be applied in the global reference line in whole length of the 
periodic unit model. Symmetry constraints must be applied in x-direction at ends of such model. 
This approach is reasonable for structures consisting of many similar periodic units i.e. LPU << L. 
Peak energies obtained by the periodic unit models must be scaled into unit length quantities as 
follows: 

𝑇𝐶𝑅(𝜔) =
𝑇𝑃𝑈(𝜔)

𝐿𝑃𝑈
      (45) 

𝑈𝐶𝑅(𝜔) =
𝑈𝑃𝑈(𝜔)

𝐿𝑃𝑈
     (46) 
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3.3 Case Study 1: Bridge cross section 
Concrete bridge from Refs. [14] & [26] is selected as the first study case. The structure is LB = 
45.72 meters long concrete road bridge with cross section dimensions h = 3.3 m, b = 10.058 m, θ1 
= 0.3 m, θ2 = 0.4 m. The cross section is presented in Figure 9. The bridge is pinned in both ends. 
The concrete material is assumed isotropic and linear elastic as in Refs. [14] & [26]. Young’s 

modulus of the concrete is E = 27.793 GPa, Mass density ρ = 2570 kgm-3, and Poisson’s ratio υ = 
0.2. 

 
Figure 9.Cross section dimentions of the concrete bridge beam. 

 
The structure is analyzed by several different models to allow comparison of results. Finite 
element method solver NX Nastran 9.0 is used for all the analyses. Pre- and Post-processing of 
the models is done with Femap 11.1. software. Global level beam is analyzed by both Euler-
Bernoulli and Timoshenko (Nastran PBeam) formulations. Cross section properties of the global 
beams are obtained by the default cross section tool in Femap 11.1. Cross section deformation is 
studied by 3 different modelling techniques: Euler-Bernoulli and Timoshenko beams, and 2D 
plate elements. Additionally, 2 different validation models of the complete structure are created: 
First by shell elements and second by 3D hexaedral elements. Used models and their size 
parameters are presented in Table 4. 
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Table 4. FE-models used in case study 1. 
Global beam models 
Euler Bernoulli 
Timoshenko 
Cross section models 
Euler Bernoulli beam 
Timoshenko Beam 
Plane strain plate 
Full models for Validation 
Shell 
3D Solid 

Elements 
20 
20 

 
29 
29 
533 

 
2902 

243126 

Nodes 
21 
21 

 
30 
30 
671 

 
3032 

306862 

DOFs 
60 
60 
 

85 
85 

1990 
 

17579 
1836585 

Similar mesh is used for both Euler-Bernoulli and Timoshenko beam analyses, only element 
formulation is changed. The mesh is modeled to run in centerlines of the cross section parts. 
Furthermore, the validation shell model is created by extruding beam model of the cross section 
into x-direction. This way mesh sizes and mass distributions in the cross section are similar 
between the models. Similarly the 3D solid model is created by extruding the plate cross section 
model. The latter models have 4 elements in plate thickness direction.  
All used beam elements are 2 noded, plate and shell elements 4 noded, and solid elements 8 
noded. Additionally rigid elements are used in ends of the validation models and as global 
reference point strengthening in the plate cross section model. Modal solution is used for global 
beams and validation models, and direct method for cross section analyses. Coupled mass 
definition is used in all analyses.  
Boundary conditions are applied in ends of the global beam. All translations are constrained in x 
= 0, and y- and z- translations in x = L. For validation models the constraint is applied in node 
near the neutral axis that is connected to all cross section nodes by rigid element. Additionally, all 
nodes in xz-symmetry plane are constrained by y-symmetry (translation in y-direction and 
rotations around x- and z- constrained). Furthermore in cross section models all nodes are 
constrained by x-symmetry (translation in x-direction and rotations around y- and z- constrained). 
Table 5 presents the modal frequencies by various models, and Table 6 presents the same 
frequency results as relative error against 3D solid validation model. It can be seen that the 
influence of local deformation is hardly visible for the first mode. However, the influence 
increases towards higher modes. In case of the third mode, the local deformation affects the 
results by similar order of magnitude as the shear deformations and rotational inertia of 
Timoshenko’s beam model. This is caused by the fact that the relative deformation of the cross 
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section increases with the global frequency. This can be seen in Figures 10, 11, and 12. The 
Figures illustrate the deformation shapes of the analyzed modes by the 3D solid model, and 
related deformations of the cross section model as part of global Timoshenko beam. The 
presented cross section deformations are responses for unit amplitude enforced motions acting at 
the global modal frequencies and applied in the global reference point. 
All models with center-line cross sections (Beam models with EB and TB cross sections and the 
global shell model) are slightly more flexible in comparison to those with actual 2D geometry 
cross section models (Beam models with shell cross sections and 3D solid model). This is caused 
mainly because of too long spans between center-line corners, which leads to lower stiffness. 
Additionally, the T-connection includes double material in the overlapping part, leading to 
slightly too high mass.  
The Timoshenko beam model with shell cross section is kinematic equivalent to the 3D solid 
model. Thus, comparison of results of these models gives best measure for evaluating 
performance of the present method. As visible in Table 6, the negative error grows slightly 
towards the higher modes. This behavior is similar as observed in the convergence study of 
Chapter 2.6. Thus it seems that the additional assumptions made in the extension to generic case 
in Chapter 3 do not significantly affect in the performance of the method in this case study. 
 

 
Figure 10. Mode 1 shape by solid validation model, and cross section response by plate model as part 

of global Timoshenko beam mode 1. 
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Figure 11. Mode 2 shape by solid validation model, and cross section response by plate model as part 

of global Timoshenko beam mode 2. 

 
Figure 12. Mode 3 shape by solid validation model, and cross section response by plate model as part 

of global Timoshenko beam mode 3. 
Table 5. Eigenfrequencies of 3 lowest flexural modes of the bridge by different model combinations. 

EB: Euler-Bernoulli Beam & TB: Timoshenko Beam 
Frequency [Hz] EB model EB model with EB Cross section EB model with TB Cross section EB with Shell Cross section  TB model TB with EB Cross section TB with TB Cross section TB with Shell Cross section  18192 DOF Shell Model 1841172 DOF 3D Solid Model 

Mode 1 3.224 3.214 3.213 3.215  3.102 3.093 3.092 3.094  3.080 3.094 

Mode 2 12.896 12.210 12.188 12.285  11.222 10.775 10.760 10.824  10.749 10.880 

Mode 3 29.016 21.538 21.307 22.361  22.144 18.487 18.386 18.806  18.843 19.390 
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Table 6. Error in % versus 3D solid validation model by different model combinations. 
Error in Frequency vs. 3D solid [%] EB model EB model with EB Cross section EB model with TB Cross section EB with Shell Cross section  TB model TB with EB Cross section TB with TB Cross section TB with Shell Cross section  18192 DOF Shell Model 

Mode 1 4.21 3.87 3.86 3.91  0.25 -0.04 -0.05 -0.01  -0.45 

Mode 2 18.5 12.2 12.0 12.9  3.15 -0.96 -1.09 -0.51  -1.20 

Mode 3 49.6 11.1 9.88 15.3  14.2 -4.66 -5.18 -3.01  -2.82 
 
Table 7 Presents the iteration steps needed for convergence. All calculated model combinations 
find convergence within 5 steps. Table 8 presents comparison with literature results with similar 
definitions. The presented results are in agreement with those of [26] and [14]. 

Table 7. Iteration steps required for 6 significant digit convergence in frequency. 
Iterations until convergence EB model with EB Cross section EB model with TB Cross section EB with Shell Cross section TB with EB Cross section TB with TB Cross section TB with Shell Cross section 

Mode 1 2 2 2 2 2 2 

Mode 2 3 3 3 3 3 3 

Mode 3 5 5 4 3 3 3 
 

Table 8.Comparison with literature. [26] Euler Bernoulli beam & [14] Euler Bernoulli beam with 
cross section deformations. 

Frequency [Hz] EB model EB model with EB Cross section Huang et al. [26] Hamed&Frostig [14] 

Mode 1 3.2239 3.2137 3.2200 3.1720 

Mode 2 12.896 12.210 12.962 12.067 
 
3.4 Case study 2: Ship transversal deck beam 
The second case study provides example of a periodic structure. The considered structure is a 
transversal (here x-directional) deck beam typical for passenger ships. Typical ship deck is 
continuous, and includes similar beams with constant spacing, here b = 2.5 m. Model of the 
considered beam is presented in Figure 13. Symmetry in y-direction is applied in both sides of the 
beam to model continuity of the deck. The beam consists of a T-profile connected to a deck plate 
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that is stiffened by perpendicular (y-directional) flat bar stiffeners.  The beam is supported in z-
direction by 4 supports between the clamped ends (x-deformation is unconstrained in x=L). Spans 
between the supports are: 3.6 m, 5.4 m, 6 m, 5.4 m, and 3.6 m in that order. 
The T-beam consists of 0.45 m high web of 0.007 m thickness and 0.15 m wide flange of 0.01 m 
thickness. The deck plate is 0.006 m thick and has 0.1 m high and 0.008 m thick flat bar stiffeners 
with spacing 0.6 m. Additionally, the deck plate has evenly distributed non-structural mass 40 
kgm-2 on it. Material properties are: Young’s modulus E = 206 GPa, Poisson’s ratio ν = 0.3 and 
mass density ρ = 7850 kgm-3. 

 
Figure 13. Dimensions of the (half) deck beam structure. 

FE model consisting of 40 2-noded Nastran PBeam (Timoshenko beam) elements is used for the 
global modal analysis. Periodic unit model is needed for finding UPU & TPU for equations (45) & 
(46). The 0.3 meter long model consists of 63 4-noded shell elements. The results are validated 
against shell element model with similar mesh size as the periodic unit model. Mesh sizes of the 
shell element models are about 0.1 meters per element. Properties of the FE-models of this case 
study are presented in Table 9 

Table 9. FE-models used in case study 2. 
 
Global beam model 
Periodic unit model 

Elements 
40 
63 

Nodes 
41 
84 

DOFs 
114 
294 
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Validation shell model 4549 4806 22742 
 
Two sets of global beam bending stiffness properties are applied. In the first case properties are 
taken directly from the Femap 11.1. cross section tool. In the second case, they are calculated 
separately to include axial stiffening effect by transversal stiffeners [27] and the effective breadth 
of the deck plate flange [28]. 
Young’s modulus for the deck plate part of the cross section is given in [27]: 

𝐸𝑑𝑒𝑐𝑘 =
𝐸

1−𝜐2(1+
𝐴𝑆
𝑆
)
= 231.461…GPa     (47) 

Above, AS is cross section area of a stiffener, and S is spacing of the stiffeners. The effective 
breadth of the deck plate is taken from [28]: 

𝑏𝑒 =
4𝜆sinh2(π𝑏/𝜆)

π(1+𝜈)[(3−𝜈)sinh(2π𝑏/𝜆)−2(1+𝜈)(π𝑏/𝜆)]
     (48) 

In Eq. (48), b is total breadth of the beam (2.5 m), and λ deformation wavelength of the 
considered deformation shape. Average wavelength for the beam length is used. The wavelength 
is based on the assumption that number of waves in internally supported beam with clamped ends 
is 1 plus a half wave for each internal support for the first mode, and half wave more for each 
higher mode. Average wavelengths, effective breadths, and effective second moments of area for 
the first 3 modes are presented in Table 10. 

Table 10. Assumed average wavelengths, effective breadths, and effective (half cross section) second 
moments of area for the first 3 modes. 

 
Mode 1 
Mode 2 
Mode 3 

# of waves 
3 

7/2 
4 

λ 
8 m 

48/7 m 
6 m 

be 
1.4998... m 
1.3107... m 
1.1535... m 

I*/2 
1.9335… × 10-4 m4 
1.8722…× 10-4 m4 
1.8116…× 10-4 m4 

 
Mode shapes of the first 3 modes by global beam model are presented in Figure 14. Figure 15 
presents periodic unit responses at corresponding modal frequencies. Figures 16, 17 and 18 
present modes 1, 2, and 3 of the validation model respectively. 
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Figure 14. Mode shapes by global beam model: (a) Mode1, (b) mode 2, and (c) Mode 3 

 
Figure 15. Responses of periodic unit model excited by unit amplitude forced excitation of final 

frequency of: (a) global mode 1, (b) global mode 2, and (c) global mode 3. 
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Figure 16. Mode 1 of the validation shell FE-model. 

 
Figure 17. Mode 2 of the validation shell FE-model. 
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Figure 18. Mode 3 of the validation shell FE-model. 

Comparison of modal masses, stiffnesses and frequencies are presented in Table 11. The results 
by the present methods match with the validation model results with excellent accuracy, 
especially when effective breadth and deck plate stiffness are used for the beam anaylsis. 

Table 11. Results comparison of case study 2. 
Generalized mass [kg] PBeam FEMAP 11.1. default PBeam with bef [28] and Edeck [27] Present method with default PBeam Present method with bef [28] and Edeck [27] Shell model Generalized stiffness [Nm-1] PBeam FEMAP 11.1. default PBeam with bef [28] and Edeck [27] Present method with default PBeam Present method with bef [28] and Edeck [27] Shell model Frequency [Hz] PBeam FEMAP 11.1. default PBeam with bef [28] and Edeck [27] Present method with default PBeam Present method with bef [28] and Edeck [27] Shell model Error of frequency vs. Shell [%] 

Mode 1 6.00×102 
6.00×102 
1.05×103 
1.04×103 
1.06×103 

 1.81×107 
1.77×107 
2.43×107 
2.36×107 
2.41×107 

 27.63 27.30 24.19 23.98 23.98  

Mode 2 7.66×102 
7.66×102 
2.21×103 
2.11×103 
2.12×103 

 4.42×107 
4.23×107 
7.84×107 
7.31×107 
7.24×107 

 38.25 37.39 29.97 29.59 29.42  

Mode 3 1.03×103 
1.02×103 
4.00×103 
3.71×103 
3.81×103 

 7.80×107 
7.31×107 
1.64×108 
1.47×108 
1.50×108 

 43.91 42.52 32.20 31.70 31.53  
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PBeam FEMAP 11.1. default PBeam with bef [28] and Edeck [27] Present method with default PBeam Present method with bef [28] and Edeck [27] Iterations for 6 digit convergence Present method with default PBeam Present method with bef [28] and Edeck [27] 

15.2 13.8 0.88 -0.02  4 4 

30.0 27.1 1.87 0.55  6 6 

39.3 34.8 2.13 0.54  6 6 
4 Conclusion 
This study presented a correction of beam modal properties by modifying its modal stiffness and 
mass according to kinetic and strain energies involved in cross section deformation. The 
correction itself is independent of solution methods used for the subproblems: Modal analysis of 
the beam global level, and enforced support motion response analysis of the cross section. 
Therefore, it is possible to apply the correction with any structural models and analytical or 
numerical solving methods, or any combination of them. This makes it possible to use detailed 
numerical models where necessary, while carrying out straightforward parts of the problem 
effectively by simple analytical formulae. This kind of approach has value in conceptual design 
of structures in which the accuracy of solutions must be reasonable, while the computational cost 
must be extremely light.  
The method requires iterative solution of the frequency, involving cross section response analysis 
in each step. It was shown in on open channel cross-section that the convergence of iteration is 
very fast and accurate results can be found with only 2-4 iterations. The frequency results are in 
good agreement with 3D-Finite Element analysis used for validation. However, the method tends 
to slightly underestimate the frequencies towards higher modes. This is caused by assumption of 
infinite wavelength in cross section analysis. 
The method was tested for relevant case studies. Case study on closed bridge cross-section from 
Ref. [14] showed that the present method allows shear deformations and rotational inertia to be 
taken into account in both global beam level analysis and cross section analysis. This leads to 
improved accuracy in flexural modes. The second case study considered a T-beam attached to a 
stiffened panel, which is typical structure in passenger ship decks. The study showed that the 
presented method is suitable for analysis of periodically stiffened beams. The agreement between 
the proposed method and the 3D-FEA was found to be very good in all case studies.  
The study was limited to beam bending problems with respect to their symmetry plane. 
Transverse bending or torsional modes that are important for example in the bridge applications 
are not included in this paper. Extending the applicability of the presented method for the 



29  

torsional modes is left for further work. Further studies are needed for studying applicability of 
the method for analyses involving damping.  
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