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RSS Models for Respiration Rate Monitoring
Hüseyin Yiğitler, Ossi Kaltiokallio, Roland Hostettler, Alemayehu Solomon Abrar

Riku Jäntti, Neal Patwari and Simo Särkkä

F

Abstract—Received signal strength based respiration rate monitoring
is emerging as an alternative non-contact technology. These systems
make use of the radio measurements of short-range commodity wireless
devices, which vary due to the inhalation and exhalation motion of a
person. The success of respiration rate estimation using such measure-
ments depends on the signal-to-noise ratio, which alters with properties
of the person and with the measurement system. To date, no model
has been presented that allows evaluation of different deployments or
system configurations for successful breathing rate estimation. In this
paper, a received signal strength model for respiration rate monitoring
is introduced. It is shown that measurements in linear and logarith-
mic scale have the same functional form, and the same estimation
techniques can be used in both cases. The model is numerically and
empirically evaluated, and its properties are discussed in depth. The
most important model implications are validated under varying signal-
to-noise ratio conditions using the performances of three estimators:
batch frequency estimator, recursive Bayesian estimator, and model-
based estimator. The results are in coherence with the findings, and
they imply that different estimators are advantageous in different signal-
to-noise ratio regimes.

Index Terms—radio frequency propagation, received signal strength
measurements, respiration rate monitoring, frequency estimation

1 INTRODUCTION

Respiratory rate is an important vital sign that can be
used to monitor the progression of an illness [1], and to
predict events that need immediate clinical attention such
as a cardiac arrest [2]. The importance of this vital sign
is well acknowledged, and both contact and non-contact
measurement systems are commercially available [3]. Non-
contact respiration rate monitoring is advantageous com-
pared to contact systems in terms of improved patient’s
comfort and less patient distress, which result in improved
accuracy. In this paper, we consider non-contact respiration
rate monitoring using the received signal measurements of
commercially available low-cost standard wireless nodes.
The main aim of these kind of systems is to estimate the
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respiration rate using the low-amplitude signal variations
due to inhale and exhale motion.

The impact of respiration on the received signal has a
complex relationship with the geometry and electrical prop-
erties of the objects in the environment, which is referred to
as the radio channel. As the granularity of the channel mea-
surements increases, the information about the respiration
can be better seen in the measurements. For example, high
granularity measurements of different radar systems can be
used for developing high quality monitoring systems [4]–
[6]. However, higher quality channel measurements require
complicated and expensive measurement systems. In con-
trast, monitoring systems based on commercially available
narrowband communication systems are readily available,
cheap, and easy to deploy. For example, several studies
have evaluated the performance and different aspects of
orthogonal-frequency-division-multiplexing (OFDM) based
WiFi (IEEE 802.11 a, g, n, ac) [7], and low-power IEEE
802.15.4 compliant [8]–[10] systems. In this paper, narrow-
band and low-power systems, which provide received sig-
nal strength (RSS) measurements to assess the state of the
propagation channel, are considered. Such measurements
are the most challenging for breathing monitoring since
their measurements provide only coarse information about
the channel. However, it is possible to build very low-cost
systems using off-the-shelf components or using already
available radios of mobile devices or smart appliances.

Breathing monitoring using narrowband systems can be
efficiently realized using a single pair of transmitter (TX)
and receiver (RX) nodes [8]. The RSS measurements of the
RX can be modeled as a single tone sinusoid contaminated
with noise [9], which is given by

ζ(tk) = a0 + a1 cos(2πftk + Φ) + nz(tk), (1)

where a0 is the DC shift1, a1 is the amplitude of the sinu-
soidal signal, f is the respiration rate, Φ is the phase offset
of the breathing, tk is the kth sample time, and nz(tk) is
the measurement noise. The maximum likelihood estimate
of f using the discrete time observations ζ(tk) is known
to be equivalent to the peak of the discrete power spectral
density of the measurements [11]. However, the estimation
quality of this estimator exhibits a thresholding behavior
depending on the signal-to-noise ratio (SNR) of the mea-
surements, which is mainly defined by the model parameter

1. This term is usually eliminated by band-pass filtering or by DC
removal, and not considered as a model parameter.
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a1, and the variance of the noise nz(tk). When the SNR is
low, the mean-square-error increases very rapidly and the
estimation performance quickly degrades. This estimator is
used by the previous works without forming an explicit
link between physical parameters2 and the model parameter
a1, which is required to investigate the underlying reasons
of performance degradation of respiration rate estimation.
The work in this paper fills this gap by introducing an RSS
model in terms of physical parameters for respiration rate
monitoring. The model allows one to predict the expected
performance for a deployment scenario and patient’s posi-
tion, and better assess the required system configuration for
successful breathing monitoring.

In this paper, an RSS model of narrowband communi-
cation systems for respiration rate monitoring is presented.
The model is derived for the respiration rate monitoring
starting from the reflection based RSS model, which was
previously explored for RSS-based localization [14], [15].
Based on this model, first, it is shown that the breathing
signal is frequency modulated into the RSS in linear scale
due to small periodic movements. Such a signal exhibits
relatively strong components on more than one frequency
tone so that breathing estimators making use of this feature
(see [16]) perform better in high SNR conditions. Then, it
is shown that the RSS in logarithmic scale also has the
same form, and an explicit model is derived. The model
itself allows us to evaluate feasibility of different breathing
rate estimation techniques by enabling SNR evaluation of
any given deployment. The impact of several parameters
are evaluated both numerically and empirically. This paper
makes the following contributions:
• A series expansion of the reflection-based RSS model is
derived. This allows one to find several approximations to
the observed RSS variations.
• An RSS model for small periodic perturbations (e.g.
breathing motion) is derived. It is shown that the RSS
variation due to such a motion yields discrete tones at
the harmonics of the perturbation frequency. In particular,
a single tone approximation of the model allows one to
represent the model model parameter a1 in Eq. (1) as a
function of physical parameters. This allows explicit SNR
calculation for a given deployment and patient’s position,
geometry and electromagnetic properties.
• It is also shown that when the object has a non-zero
velocity, the movement shifts the frequency of the periodic
movement, making the estimation a challenging problem.
• Based on the models, various scenarios observed in em-
pirical data are discussed and their impact on the observed
RSS is shown.
• Three different respiration rate estimators are compared,
and their performances are linked to the implications of the
model.

The remaining part of the paper is organized as follows.
First, the related work is summarized in Section 2. The RSS
measurement model and its series expansion are derived

2. Electromagnetic constitutional parameters (electrical permittivity,
magnetic permeability and conductivity) of a considered propagation
scenario and the geometrical parameters of a TX-RX pair and the sur-
roundings (including the objects of interest) are referred to as physical
parameters. Interested reader is referred to [12] and [13, ch. 3] for a
detailed description of the physical parameters.

in Section 3. The model implications are discussed after
numerical evaluation and empirical validation in Section 4.
The breathing rate estimation techniques are introduced in
Section 5, before giving empirical evaluations in Section 6.
The conclusions are drawn in Section 7.

2 RELATED WORK

The importance of respiration rate has resulted in devel-
opment of several respiration rate monitoring systems us-
ing different physical parameters (e.g. temperature, chest
effort) [3]. In this section, we only provide a brief review of
radio-frequency based respiration rate monitoring methods,
focusing on RSS-based approaches. The reader is referred
to, for example, the works by AL-Khalidi et al. [3] and Folke
et al. [17] for comprehensive technological overviews.

Respiration rate monitoring using radio frequency de-
vices is a non-contact solution that has attracted significant
attention. There are three different radar technologies that
have been used for the purpose as has been reviewed by Li
et al. [18]. The first work that appeared in the literature uses
continuous wave (CW) Doppler radar system. Several stud-
ies have been published to analyze different aspect of these
systems, and it has been shown that they can estimate the
heart rate along with the respiration rate [19]. The impulse
radio ultra wideband (IR-UWB) systems are also used for
respiration rate monitoring [5]. They radiate and consume
little power, may coexist well with other instruments, and
perform better in environments with interference and severe
multipath [20]. The characteristics of the received signal of
IR-UWB systems were investigated by Venkatesh et al. [21].
However, these systems cannot cope with the impact of
other motion or presence of more than one person [6]. Linear
frequency modulated continuous wave (LFM-CW) systems
can distinguish different reflector positions using their lin-
early varying frequency. This property has been used by
Adib et al. for first estimating position of multiple persons
in an environment [22], and then estimating the vital signs
of each individual [6]. In this work, we show that indeed
RSS has similar characteristics as the measurements of radar
solutions, but require more carefully adjusted deployments.

The radar based solutions require a sophisticated hard-
ware development for the vital sign monitoring. However,
recent works on environmental sensing motivated RSS-
based respiration rate monitoring using commodity wireless
communication devices. The first work studying the feasibil-
ity of such systems makes use of multiple links formed by a
mesh network of IEEE 802.15.4 nodes to estimate the breath-
ing rate of a single person in the environment [9]. Later, this
system was extended to estimate the location of a breathing
person [10]. Several practical problems associated with the
system are addressed in [8] by using only one pair of TX-
RX nodes, detecting the moments breathing estimation is
not possible, and using various signal processing techniques
to improve SNR of the measurements. Due to widespread
availability of WiFi, the communication channel measure-
ments of these systems have also been used for respiration
monitoring [7], [23]. The work by Abdelnasser et al. is based
on the RSS measurements of WiFi systems [23]. On the other
hand, the channel state information (CSI) output of OFDM-
based WiFi radios provide higher granularity measurements
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of the communication channel, and have been used for
vital sign monitoring purposes [24]–[26]. The CSI contains a
complex channel gain estimate3 at each sub-carrier. In case
the transmitted power is constant, the amplitude variation
of these gains define the RSS variation at each sub-carrier
in the linear scale. It can be argued that the RSS-based
models and algorithms can be applied directly to CSI-based
systems that use amplitudes of the complex CSI vector
components. Therefore, RSSI based system developments
are more general, and provides insights on the worst case
performance of CSI based developments.

In this work, we model the RSS of narrowband com-
munication systems for small periodic perturbations with
unknown frequency, direction, and amplitude. It is shown
that, similar to the signals in the radar systems developed
by Venkatesh et al. [21], the received RF signal contains
the frequency modulated periodic vital signals, which has
a periodic series representation. The resulting model shows
explicit relation between the respiration signal and initial
position of the person, their orientation with respect to
the link-line, their electrical properties, the amplitude of
the breathing, and the wavelength of the communication
system. Due to the logarithmic transformation taking place
in typical RSS measurement systems [27], we also show that
the RSS measurements in a logarithmic scale has a series
representation having non-zero tones at only the discrete
multiples of the respiration rate. These results show that the
single tone model in Eq. (1) is an approximation to both
linear scale and logarithmic scale RSS measurements. The
series coefficients allow one to calculate the SNR of the res-
piration signal, which in turn enables assessing the perfor-
mance of single tone parameter estimation techniques [11].
Therefore, this work covers the derivations for IR-UWB
radars [21], extends them for practical RSS measurement
systems, and represents the model parameters as functions
of physical parameters.

The respiration rate monitoring using the radio chan-
nel measurements have the similar characteristics among
different technologies as recently been studied by Hillyard
et al. [28]. In the work, four different technologies are
compared, and it is identified that approximately half of the
estimates are within 1 breaths-per-minute neighborhood of
the actual respiration rate. As the derived models in this
work imply, regardless of the technology, this performance
is as expected since the SNR of the measurements is mainly
defined by the person’s orientation with respect to link-
line and their position. Similarly, the derived model is
coherent with empirical results of Luong et al. [29], real-
time spectrum analyzer measurements in [8], and findings
of Wang et al. [25]. The model describes the implications of
these empirical works, while also shedding light on various
interesting situations arising in practical deployments; e.g.,
the measurements showing only odd or even harmonics
depending on the physical parameters. In summary, the

3. CSI is available in OFDM based WiFi devices, and it is a vendor
specific channel measurement output such that its dependence on
the communication channel parameters may be different for differ-
ent brands. However, in principle, they all can be converted to RSS
measurements. On the other hand, RSSI is ubiquitously available in
wireless nodes, including the ones of low-cost wireless communication
technologies (e.g. Bluetooth).
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Fig. 1. A propagation scenario for RSS modeling and considered ref-
erence frame. The transmitter (TX) node placed on point pt emits a
narrowband signal and the receiver (RX) node placed on pr receives the
signal. Incident ray is reflected from point p on the surface of the object,
which has a distance dt = ‖pt − p‖ m to the TX and dr = ‖pr − p‖ m
to the RX. The incident ray has θi radians incidence angle. The TX and
RX are separated by d = ‖pt − pr‖ m.

developed model can be used for validating and plan-
ning various deployment conditions that enable successful
breathing rate monitoring.

3 RECEIVED SIGNAL STRENGTH MODELS

In this section, we first review the RSS model, and then
derive temporal variations of the RSS in linear scale for an
object4 making movements in the form

p(t) = p0 + g(t)δ, (2)

where p0 is a reference point at t = 0, t is the time
elapsed since the epoch, g(t) is the low-amplitude periodic
displacement with frequency f and ‖δ‖ = 1 is the constant
movement direction for the Euclidean norm ‖ · ‖. Then,
the derived models are extended for the RSS measurement
systems that perform logarithmic transformations.

3.1 Background

For environmental sensing applications, the phenomenon
of interest is estimated using the variation in RSS measure-
ments P[k] compared to the measurement acquired when
the object of interest is not in the medium, that is, the
baseline RSS Pr . A detailed analysis of the baseline RSS is
provided in [27], and it is concluded that if the complex
channel gain α is constant, RSS is approximately a Gaussian
random variable. This result also implies that if the medium
is constant for the duration of acquiring the baseline RSS,
their population mean converges to a constant Pr due to the
strong law of large numbers (SLLN). Then, the time average of
the measurements also converges to the same constant since
the channel is mean ergodic when the environment is static.
In other words, the baseline RSS Pr is given by

Pr = 10 log10(2σ2 + %σ2), (3)

where % is the signal-to-noise ratio (SNR) of the received
signal under static channel conditions, and σ2 is the noise
variance of the zero mean Gaussian noise in signal samples.

4. In this paper, we assume that the object is rigid so that any
movement affects all points in its interior and on its boundary by the
same amount.
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Therefore, a practical measurement model5 for environmen-
tal sensing applications is

r[k] , P[k]− Pr ≈ 10 log10

( |α[k]|2
|αr|2

)
+ ν[k], (4)

where α[k] is the channel gain when kth RSS sample is
acquired, and αr is the constant channel gain of the baseline
RSS. The last term ν[k] is the joint noise process of all noise
sources including white noise, round-off errors, quantiza-
tion noise, and any source of uncertainty due to modeling
errors, and its variance depends also on the current SNR
value %[k], which is time varying for the non-static case.

The expression in Eq. (4) implies that the complex chan-
nel gains α[k] and αr define the measurements. For the
scenario visualized in Fig. 1, the ratio of the channel gains6

has already been investigated in [14] and [15]. It has been
shown that the ratio can be written as

R , |α|
2

|αr|2
= 1 +G2 − 2G cos

(
2π∆

λ

)
, (5)

where ∆ is excess path length traversed by the ray reflected
from the object’s surface compared to the direct path, G is
the effective reflection coefficient, λ denotes the wavelength,
and we have dropped sample index [k] from G and ∆. The
effective reflection coefficient is defined as

G , Γ

(1 + ∆/d)η/2
, (6)

where Γ is the Fresnel reflection coefficient and η is the
path loss exponent modeling the fading experienced by both
of the components [30, ch. 4]. The excess path length ∆
parametrizes the ellipse tangent to the interacting object at
the point p (cf. Fig. 1), and is defined as

∆ , ‖p− pt‖+ ‖p− pr‖ − ‖pr − pt‖ = dt + dr − d, (7)

for the symbols visualized on Fig. 1.

3.2 Effect of Low-amplitude Periodic Perturbations
In the previous section, we analyzed the variation of RSS
when the object abruptly appears in position which yield
∆ meters of excess path length when p0 is the reflection
point shown in Fig. 1. Now, suppose the object makes a
time varying movement in a constant direction δ, that is,
the reflection point p0 moves to p(t) = p0 + g(t)δ at time
instant t. At this new position, the excess path length can be
found using its Taylor series expansion around p = p0 as

∆(p) = ∆(p0) + g(t)(∇p∆)>δ +O(g2(t)),

where superscript > denotes the matrix transpose,∇p is the
gradient with respect to position p, and we have used the
fact that ∆ is a smooth function of both coordinates except
at p = pr or p = pt. If the movement has a small amplitude

5. A detailed derivation of the model can be found in [12], and the
underlying model assumptions are discussed in [14]. In the remaining
part of this paper, we assume that the model assumptions are satisfied.

6. The channel gain ratio follows from logarithmic scale definitions.
If linear scale measurements are going to be used without calculating
the amplitude ratio, the subsequent developments are valid through
the relation d−η/2(R − 1), which has the same spectral properties as
R but with different DC term and amplitude scale. See Eq. (13) and its
coefficients in Eq. (14).

|g(t)| � 1, the second and higher order terms in the Taylor
series expansion can be ignored, and one can write

∆(p) ≈ ∆0 + g(t)

[
p0 − pr
‖p0 − pr‖

+
p0 − pt
‖p0 − pt‖

]>
δ, (8)

where ∆0 = ∆(p0) and we have explicitly written the
gradient of ∆ with respect to p at p = p0. Let us denote
the inner product in Eq. (8) as

δ∆ ,
[
p0 − pr
‖p0 − pr‖

+
p0 − pt
‖p0 − pt‖

]>
δ. (9)

Then, Eq. (5) can be written as

R ≈ 1 +G2(p)− 2G(p) cos

(
2π
δ∆
λ
g(t) + 2π

∆0

λ

)
. (10)

It is to be noted that, for small amplitude perturbations satis-
fying |g(t)δ∆| � d, we have G(p) ≈ G(p0). Consequently,
the frequency of the cosine term in Eq. (10) is defined by
the perturbation amplitude g(t)δ∆, i.e., R is a frequency
modulated version of g(t).

The amplitude ratio R can be further simplified
when g(t) is a periodic function7. Suppose that g(t) =
A sin(2πft), so that the affective amplitude of the periodic
movement Ã, and constant phase ψ can be defined as

Ã , 2πA
δ∆
λ
, ψ , 2π

∆0

λ
. (11)

Then, the Fourier series expansion of the cosine terms in
Eq. (10) are given by

cos
(
Ã sin(2πft) + ψ

)
=

∞∑

m=−∞
Jm(Ã) cos(2πmft+ ψ),

where Jm(·) is the Bessel function of the first kind [32, ch. 9].
Substituting this into Eq. (10) yields

R1 ≈ 1 +G2 − 2G
∞∑

m=−∞
Jm(Ã) cos(2πmft+ ψ), (12)

where we have dropped explicit dependence of G(p0) ≡ G.
The expression in Eq. (12) has the form of demodulated and
low-pass filtered version of the respiration signal of IR-UWB
systems derived by Venkatesh et al. [21].

Using the properties of Bessel function, the expression in
Eq. (12) can be written in the form

R1 ≈ c0 +
∞∑

m=1

{
c2m−1 sin(2π(2m− 1)ft)

+ c2m cos(2π2mft)

}
,

(13)

where the coefficients are given by

cm =





1 +G2 − 2GJ0(Ã) cos(ψ), m = 0,

4GJm(Ã) sin(ψ), m is odd,
− 4GJm(Ã) cos(ψ), m is even.

(14)

7. The form of g(t) is selected for simplicity. The analysis can be
straightforwardly extended to any periodic function using their Fourier
series expansion as it is shown in [31, ch. 5].
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3.3 RSS in Logarithmic Scale

Let us define the amplitude ratio R in Eq. (5) in logarithmic
scale as

R ,10 log10(e) ln(R)

= 10 log10(e) ln
(
1 +G2

)

+ 10 log10(e) ln (1− κ cos (2πβ∆)) ,

(15)

where e is the base of the natural logarithm and we have
defined

β , 1

λ
, κ , 2

G

1 +G2
. (16)

It can easily be verified that G < 1 for Γ < 1 so that
0 < κ < 1 and the power series expansion of the second
term in Eq. (16) is given by

ln
(

1− κ cos(2πβ∆)
)

= −
∞∑

l=1

1

l

(
κ cos(2πβ∆)

)l

= b0 +
∞∑

i=1

bi cos(2πi∆β),

where the coefficients are given by

bi = −∆

1
2∆∫

− 1
2∆

∞∑

l=1

κl

l
cosl(2π∆β) cos(2πi∆β)dβ,

for all i ∈ {0, 1, 2, . . . }. In addition, the cosine powers can
be expanded as harmonics,

cosl(θ) =





2
2l

l−1
2∑
i=0

(l
i

)
cos
(
(l − 2i)θ

)
, l odd,

1
2l

( l
l
2

)
+ 2

2l

l−2
2∑
i=0

(l
i

)
cos
(
(l − 2i)θ

)
, l even,

where θ is an arbitrary argument of cos(·). Due to orthog-
onality of the sinusoidal functions, bi are polynomials of κ
which can be written as

bi =





−
∞∑
l=1

κ2l

2l22l

(2l
l

)
, i = 0,

−
∞∑

l= i+1
2

2κ2l−1

(2l−1)22l−1

( 2l−1
2l−i−1

2

)
, i odd,

−
∞∑
l= i

2

2κ2l

(2l)22l

( 2l
2l−i

2

)
, i even.

Note that bi < 0 for all i = 0, 1, 2, · · · , and for κ < 1
and i > 0 we have |bi| > |bi+1|. The partial sums of
the coefficients are convergent, and after simplification and
substituting definition of κ in Eq. (16) into this result yields

bi =

{
− ln

(
1 +G2

)
, i = 0,

−2G
i

i , i > 0.

One important consequence is that b0 is equal to the additive
inverse of the first term in Eq. (15), and they cancel out.
Therefore, the RSS measurement model in Eq. (15) can be
written as

R = −20 log10(e)
∞∑

i=1

Gi

i
cos

(
2π

i

λ
∆

)
. (17)

The series in Eq. (17) implies that the periodic sinusoidal
perturbation in Eq. (12) after logarithmic transformation
reads as

R1 ≈ −20 log10(e)
∞∑

m=−∞

∞∑

i=1

{
Jm(iÃ)

Gi

i

cos(2πmft+ iψ)

}
,

(18)

where ψ = 2π∆(p0)/λ. The series in Eq. (18) can be written
in the form of Eq. (13),

R1 ≈ c0 +
∞∑

m=1

{
c2m−1 sin(2π(2m− 1)ft)

+ c2m cos(2π2mft)

}
,

(19)

where, for this case, the coefficients are given by

cm
20 log10(e)

=





−
∞∑
i=1

J0(iÃ)G
i

i cos(iψ), m = 0

2
∞∑
i=1

Jm(iÃ)G
i

i sin(iψ), m odd

−2
∞∑
i=1

Jm(iÃ)G
i

i cos(iψ), m even

(20)

4 MODEL EVALUATION

The derivations thus far are evaluated in the following
subsections. First, they are used for making several obser-
vations about RSS-based respiration rate monitoring. Then,
an empirical validation of the RSS model in Eq. (19) is given.

4.1 Numerical Evaluation
Suppose that the periodic movement represents respiration
of a person, which is monitored by a TX-RX pair operating
at 2.4 GHz ISM band so that λ ≈ 0.125 m. Although the
respiration has a non-trivial relation between sex, age, and
posture [33], on average, it is a small quantity, for example,
A = 1 centimeter maximum displacement8. An example
deployment of such a system is expected to yield RSS
measurements shown in Fig. 2.

A closer look at the coefficients in Eq. (20) reveals that
when ∆ ≈ nλ/2 for any integer n, all odd order harmonics
c2m−1 get closer to 0 due to sin(nπ) product. Similarly, when
∆ ≈ nλ/4 for odd n, all even order harmonics c2m get closer
to 0. Therefore, for some special values of initial excess path
value ∆0, the breathing of a stationary person may exhibit
only even or odd harmonics in their measurement signal.
The same argument is true for RSS measurements in linear
scale (see Eq. (14)), and it is independent of the actual peri-
odic breathing signal function. In Fig. 2b, Eq. (15) is used for
calculating the RSS values for different ∆0 values. It can be
seen that when ∆0 = 3λ/2, the RSS has a smaller amplitude
but double perturbation frequency. At these distances, it can
be observed from Fig. 2e that the signal energy is very small.

The respiration signal in Eq. (13) (and Eq. (19)), is a series
expansion of a frequency modulated signal. For frequency

8. This is an example value, and may not correspond to any specific
combination of sex, age, and posture for a chest or abdominal move-
ment associated with the respiration [33].
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Fig. 2. The RSS and signal energy variation of a link with TX node at pt = [−1, 0]> and RX node at pr = [1, 0]> operating with wavelength
λ = 0.125 m in an environment with path-loss exponent η = 2 when a circular object of radius 0.3 m and relative permittivity εr = 1.5 moves to
different positions. In (a), the variation of the RSS with the initial object’s position p0. In (b), the variation of RSS when the object perturbs the RSS
with a sinusoidal movement in direction δ = [0,−1]> and amplitude A = 0.01, and the object’s initial positions on x = 0 line with y axis yielding the
specified excess path lengths ∆0. In (c), the variation of RMS error between the model output in Eq. (15) and approximation using two harmonics
and Ith order series in coefficients in Eq. (20). In (d), the variation of the signal energy with the orientation of the perturbation direction defined as
φ = arccos([0,−1]>δ) when ∆0 = λ/4 meters and the person is on the x = 0 line. In (e), the variation of the signal energy E2 with the wavelength
normalized excess path length ∆/λ. In (f), the relative contribution of harmonics to the signal energy for the object in Fig. 2 when it is moving on
the mid-line between TX and RX (x = 0) for the specified y-axis values. In the plots of (f), the coefficients are normalized with ĉ2m = c2m

/
E3. The

shaded areas between dashed lines are the coefficient square values for 16 frequency channels separated by 5 MHz, and the solid lines are their
means.

modulated signals, the number of terms in their series
expansion can be found by Carson’s bandwidth rule [31,
ch. 5], which states that it is enough to consider only
2(Ã/2π + f) harmonics of the Fourier series in Eq. (12).
Since the maximum displacement due to respiration can be
assumed to satisfy A = 0.01 m, and its frequency can be
assumed to be less than 30 breaths per minute (0.5 Hz), as
it has been done earlier [8], [9], Carson’s rule implies that
only two harmonics are needed to represent most of the
signal. Consequently, a conservative approximation of the
amplitude ratio in linear scale R and in logarithmic scale
R is obtained by truncating the series in Eq. (13) at the
second term. For lower respiration rates, it is possible to
truncate the series after the first term and obtain a single
tone approximation which was used in the previous works,
e.g., [9].

The infinite series in Eq. (17) can be truncated at lower

orders if the total signal energy is concentrated greatly in
lower order harmonics. For this purpose, one can invoke
Parseval’s Theorem to find the signal energy of R from the
periodic series expansion in Eq. (17) as

ER ,
∞∑

i=1

G2i

i2
= Li2(G2),

where Li2(·) is the di-logarithm function [34]. Then, the total
signal power is monotonically increasing with G. Since G,
defined in Eq. (6), is a decreasing function of ∆ and an
increasing function of Γ, it attains its maximum when ∆ = 0
so that Li2(G2) ≤ Li2(Γ2). This implies that the signal
energy is concentrated at the lower order harmonics if Γ
is lower than 1, which is defined by the incidence angle
θi (cf. Fig. 1) and the object’s relative permittivity. When
the reflector object is close to the link-line, θi approaches 0
radians, making Γ very close to 1. In this case, more than
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Fig. 3. The experimental setup where a person breaths at a constant
rate of 15 BPM when a pair of nodes operate at 868 MHz

two terms are needed to reach a good approximation of the
series in Eq. (20). However, when the object is sufficiently
far away from the link-line, Γ assumes smaller values and
∆ increases, making G a small quantity. When G is smaller
than 0.7, the first two harmonics in Eq. (17) contain 96.76%
of the total signal energy ER, making a two term approxima-
tion a reasonable choice. The variation of root-mean-square
error (RMSE) with excess path length ∆ is depicted in Fig. 2c
for different truncation orders of the series in Eq. (20) while
using only the first two harmonics in Eq. (19). As shown,
even for small ∆, the two term series truncation yields small
error.

Consider the signal energy of the approximate N har-
monics signal, which is given by

EN ,
N∑

i=1

c2
i . (21)

Its variation with the direction of the perturbation and the
wavelength normalized excess path length ∆/λ are de-
picted in Fig. 2d and Fig. 2e respectively. As shown, the en-
ergy may significantly change with the object’s orientation
and position. One consequence of this result is that there are
certain positions where small changes drastically degrades
the SNR. For example, when the object in Fig. 2 is moving
on the mid-line between TX and RX nodes, at certain y-
axis values, the relative importance of the second harmonic
exceeds the first harmonic as shown in Fig. 2f. When excess
path length is close to such a value, even small wavelength
variations may change the SNR of the measurements as
can be observed from the plots in the figure. Furthermore,
any uncertainty in electrical parameters of the object or its
geometry increases the uncertainty further. Therefore, the
SNR is a statistical quantity, and it is tedious to compare the
model output with the measurement data.

4.2 Empirical Validation

The RSS model in equations (19) and (20) is derived after
making several simplifying assumptions on the respiration
movement itself. In this regard, it is implicitly assumed that
the absolute energy of the respiration signal is not of partic-
ular interest for RSS-based respiration rate monitoring, but
only its relative magnitude compared to the noise power.
Correspondingly, the proposed model can be validated by
comparing the variation of the measured energy of the first
harmonic E1 with the expected variation.

In order to demonstrate the validity of the model predic-
tions, an experiment setup visualized in Fig. 3 is used for
acquiring RSS measurements of a TX-RX pair operating at
868 MHz using the high granularity RSS acquisition system
presented earlier in [29]. The TX node emits a continuous
wave at 868 MHz while the RX node captures 100 of the
in-phase and quadrature samples, which are then used for
calculating RSS approximately every 1.6 milliseconds.

The experiment is repeated with four different people,
who have different sizes and different breathing amplitudes.
The people are three male (Person 1, 2, and 4 in Fig. 4) and
one female (Person 3 in Fig. 4) healthy adults of different
ethnicity, and between 23 and 34 years old. During the
experiment, each person is breathing at a constant rate of 15
breaths-per-minute (BPM). In order to alter the excess path
length, the receiver antenna height (distance to the ground)
is incremented by 2.49 centimeter intervals in the direction
shown in Fig. 3. The RX acquires the RSS measurements for
30 seconds, before its height is incremented. The RX height
is increased in total by δh = 0.249 meters.

The acquired RSS data is used for calculating the energy
of the first harmonic E1, which is approximated by the signal
energy within 0.25 ± 0.03 Hz band of the spectrum. The
variation of E1 with the wavelength normalized excess path
length ∆/λ corresponding to each RX height is shown in
Fig. 4. The amplitude of the energy is defined by unknown
factors, and strongly depends on the person as shown in the
figure. However, the energy has a sinusoidal variation with
∆/λ as the expression for m = 1 in Eq. (20) implies, and the
fitted sinusoids in Fig. 4 show. As expected, this variation
can be observed for all people regardless of their gender,
physical properties or age. Therefore, the SNR variation
is a common phenomenon for RF-based respiration rate
systems, and must be evaluated for a deployment to achieve
successful respiration rate monitoring.

4.3 Discussion

In this section, several implications of the model are dis-
cussed. We first elaborate on the physical parameters defin-
ing the SNR, and then, derive the impact of the linear move-
ments of a breathing person. Finally, we give a summary of
the findings.

4.3.1 Impact of physical parameters

The observed breathing signal amplitude, and the SNR, de-
pends on the effective amplitude of the breathing displace-
ment Ã defined in Eq. (11), effective reflection coefficient G
defined in Eq. (6), the excess path length when the person
is in the initial position p0, and the wavelength λ. The
relative importance of these parameters can be investigated
by considering the series coefficients in equations (14) and
(20). If we have ∆ � d, and for perpendicularly polarized
propagation scenario, the SNR is a function of ψ and Ã,
which are defined by the initial position p0, perturbation
direction with respect to the link-line δ∆, the respiration
amplitude A, and the wavelength λ. Therefore, for fixed λ
and A, the position and orientation of the person are the
most important parameters dictating successful respiration
rate estimation.
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Fig. 4. The variation of energy of the first harmonic (at 0.25 Hz) for each person as the excess path length ∆ changes due to lifting up the RX
antenna in 10 (for people 1 and 2) and 9 (for people 3 and 4) equal steps of 2.49 centimeters.

Let us now suppose that A and λ are fixed, and we have
∆ � d. Then, the variation of the two harmonic signal
energy E2, defined in Eq. (21), with the orientation of the
perturbation direction are as shown in Fig. 2d. As the figure
implies, when the perturbation direction gets tangential to
the ellipses having the nodes at their foci, the SNR gets close
to zero. In other words, the perturbation direction δ must
have a significant component normal to the ellipses in order
to favor successful breathing rate estimation. Similarly, the
evaluation in Fig. 2e implies that when the person’s position
is close to an integer multiple of λ/2, a low SNR is observed.
For such ∆ values, the first harmonic is very close to zero,
and the second harmonic is expected to be significant. In
this case, if the noise power is small, the second harmonic
may be the strongest tone in the power spectral density
of the measurements. Therefore, in high SNR conditions,
estimators assuming presence of more than one harmonics
are expected to perform better.

In order to investigate the position dependence of G
defined in Eq. (6), it is enough to consider the variation of
incidence angle θi with the position p. It can be seen by
inspecting its definition shown in Fig. 1 that we have

θi =
π

2
− 1

2
arccos(p(p)),

p(p) ,
(
p− pr
‖p− pr‖

)> ( p− pt
‖p− pt‖

)
.

(22)

Then, it follows from the definition of the Fresnel reflection
coefficient that its first order Taylor series expansion reads
as

Γ ≈ Γ0 − Γ0
p(p)− p(p0)√

(p2(p0)− 1) + 2(p(p0) + 1)εr
, (23)

where Γ0 is the coefficient at initial position p0, and εr is the
relative permittivity. When the object is between the nodes,
and as it gets closer to the link-line p(p) gets closer to −1,
the rate of change of Γ increases so that small amplitude
perturbations may significantly alter Γ. Therefore, when the
person is very close the link-line, the respiration signal is

also amplitude modulated due to variation of Γ, which
alters the observed SNR.

Thus far, we have assumed that the reflection model
is valid for the considered propagation scenario shown in
Fig. 1, where the reflector object and the antennas are stand-
ing in +z direction of the reference frame in the figure. Since
the electric field generated by the transmitter antennas is
perpendicular to the plane-of-incidence9, only horizontally
polarized reflection can take place. For this scenario, the
distance of the person to the link-line is taken into account
through the excess path length ∆. On the other hand, for
the cases when the person is lying below the antennas, and
antennas are not oriented for horizontal polarization, the re-
flected wave has both horizontally and vertically polarized
components. Such a reflected signal experience additional
losses due to polarization mismatch at the receiver antenna.
Conversely, when the antennas are aligned to maximize
the polarization match, the height of the antennas from the
person’s body only contributes to ∆, and the derived model
is valid. Therefore, the SNR of the measurements are also
functions of the polarization, and any mismatch degrades
the achievable respiration rate estimation performance.

4.3.2 Effects of linear movement

In order to investigate the impact of linear movements on
the breathing induced RSS variation, let us suppose that the
object shown in Fig. 1 makes small periodic movements
(g(t)) in addition to a constant velocity movement in an-
other direction. In other words, at time instant t, the initial
point p0 moves to p(t) = p0 + g(t)δ + vt, where v is the
constant velocity with amplitude v = ‖v‖. If g(t) has a
small amplitude and t is close enough to the time epoch,
the Taylor series expansion of the excess path length ∆ is

9. The plane containing both the direction of propagation vector and
the surface normal is defined as the plane-of-incidence. The interested
reader is referred to [13, ch. 3] for a condensed summary of the
propagation concepts.
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valid, and for this case Eq. (8) can be written as

∆(p)−∆0 ≈
[
p0 − pr
‖p0 − pr‖

+
p0 − pt
‖p0 − pt‖

]>
[g(t)δ + vt] .

Similar to the definition in Eq. (9), let us denote the second
inner product as

δv =

[
p0 − pr
‖p0 − pr‖

+
p0 − pt
‖p0 − pt‖

]>
v,

so that ∆(p)−∆(p0) ≈ g(t)δ∆ + δvt. Then, Eq. (5) becomes

R(p) ≈1 +G2(p)−

2G(p) cos

(
2π

1

λ
(δ∆g(t) + δvt) + ψ(p)

)
,

(24)

where the position dependence of R and phase ψ defined in
Eq. (11), which cannot be ignored for this case, are explicitly
written.

In case g(t) is of the form g(t) = A sin(2πft), then
Eq. (24) can be written as

R2 ≈ 1 +G2(t)−

2G(t)
∞∑

m=−∞
Jm(Ã) cos

(
2π

(
δv
λ

+mf

)
t+ ψ

)
,

(25)

and in logarithmic scale it reads as

R2 ≈ −20 log10(e)
∞∑

m=−∞

∞∑

i=1

{
Jm(iÃ)

Gi(t)

i

cos

(
2π

(
i
δv
λ

+mf

)
t+ iψ

)}
.

(26)

Similar to Eq. (25), Eq. (26) can also be written in the form
in Eq. (19) with the same coefficients in Eq. (20).

The derivations given above show that the linear move-
ments shift the frequency of the periodic movement and
make the effective reflection coefficient G defined in Eq. (6)
a time varying quantity since δvt/d term in ∆(p) cannot
be neglected. If this variation has a bandwidth higher than
the respiration frequencies, the spectrum around integer
multiples of δv/λ Hz are spread. Therefore, if there is a time
variation in either direction or amplitude of the movement,
RSS-based respiration rate monitoring is a prohibitively
demanding task.

4.3.3 Summary
The analysis in the previous sections and the discussions
above imply that:
i. ) The RSS measurements in linear scale Eq. (13) and
logarithmic scale Eq. (19) have similar forms.
ii. ) The signal energy can be estimated using Eq. (21) for
N = 2 as the higher order terms introduce small modeling
error.
iii. ) The breathing signal’s energy has a non-trivial relation
with the breathing direction with respect to the link-line,
the breathing amplitude, the initial position of the person,
person’s body geometry, and the electrical properties of
the person’s clothes and body. Therefore, the SNR of the
breathing signal is statistical, and some diversity mecha-
nism is needed to improve breathing estimation quality.
For example in [8] frequency diversity and in [9] spatial

(a)

(b)

Fig. 5. In (a), relations between various parameters introduced in Sec. 3,
and in (b), preprocessing of the RSS measurements

diversity are used. In works using CSI output of multiple
input multiple output WiFi devices, the channel gains are
estimated for large number of subcarriers and multiples of
transmitter and receiver antennas, which yield improved
breathing rate estimation quality.
iv. ) The position of the person p0 and the breathing direc-
tion δ are the most important parameters defining the SNR.
Therefore, successful respiration rate monitoring requires
that the person does not stay in the orientation or location
yielding very low SNR, or the monitoring system should
provide a diversity mechanism that enable simultaneous
measurement acquisition from different locations and/or
orientations.
v. ) The polarization of the antennas, and the orientation
of the person’s surface with respect to the link-line are
important, and may create polarization mismatch. When de-
ploying a system, the antenna polarization and the expected
alignment of the person must be taken into account.
vi. ) When the object moves even with a constant velocity,
the perturbation spectrum shifts depending on the speed
and direction of the movement. In this case, the perturbation
frequency estimate has a different nature and it is required
to first estimate the center frequency δv/λ (see Eq. (26)).
The other option is to stop estimating breathing rate when
a movement is detected, as it has been done in [8].

5 BREATHING RATE ESTIMATION

The analysis in the previous section conclude that the effect
of respiration on RSS can be modeled in terms of the
amplitude ratio in linear scale R defined in Eq. (5) and
in logarithmic scale R defined in Eq. (15) along with the
additive noise ν as shown in Fig. 5a.

In this section, we discuss three approaches to estimate
the respiration rate f . The estimators given in this section do
not use the RSS measurement r[k] directly, but its bandpass
filtered version y[k] or low-pass filtered P[k], denoted as
z[k]. These processing steps are visualized in Fig. 5b. The
breathing rate estimation problem can be casted as single
tone parameter estimation of a deterministic sinusoid us-
ing discrete observations as has been done in the related
works [8]–[10]. The problem has been extensively studied
due to its importance in various application areas [35,
ch. 13]. In the first subsection, we give an overview of
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the batch-based frequency estimation technique. Then, we
discuss a Bayesian formulation of the same approach, and
summarize its recursive solution from the work by Qi et
al. [36]. Finally, we review a recently introduced model-
based approach [16].

5.1 Batch Spectral Analysis
The most straight forward and standard approach in the
literature for estimating the frequency of a single tone
sinusoid is to perform spectral analysis using a batch of
measurement data. For this purpose, the maximum and
minimum breathing rates (perturbation frequencies) can be
used for bandpass filtering the measurements r[k] as shown
in Fig. 5b. Then, the output signal y[k] is split into M
windows of length Nw with overlap No such that the data
for the mth window (for m = 1, . . . ,M ) is given by

ym =
[
y[n+ 1] y[n+ 2] . . . y[n+Nw]

]>
, (27)

where the offset is n = (m − 1)(Nw − No). Then, from
Eq. (27), the power spectral density (PSD) is estimated as

Sm[l] = |Y m[l]|2, (28)

where Y m[l] is the Discrete Fourier Transform (DFT) of ym.
The lth frequency is given by

fl =
lfs
Nw

, (29)

where fs is the sampling frequency and l = 0, . . . , Nw − 1.
Eq. (28) naturally yields the whole spectrum for all

frequencies fl. In order to obtain a point estimate f̂ , the
frequency corresponding to the maximum of the PSD is
chosen, that is

l̂ = argmax
l

Sm[l], f̂DFT =
l̂fs
Nw

, (30)

excluding the DC component.

5.2 Recursive Bayesian Spectral Analysis
An alternative approach to the batch estimator given above
is to use equivalent Bayesian formulation for spectral anal-
ysis. Since this method can cope with the DC term, we
use the low-pass filtered data z[k]. The Bayesian recursive
method starts with writing z[k] in terms of its Fourier series
expansion as

z[k] = a0[k] +
NKF∑

n=1

{
an[k] sin(2πfntk)

+ bn[k] cos(2πfntk)

}
+ ν̃[k]

(31)

where NKF is the number of frequency bins, a0[k], an[k],
and bn[k] are the time-varying Fourier coefficients with
slight abuse of notation, fn are the frequency bins, and
ν̃[k] ∼ N (0, σ2

ν) is the measurement noise which is a filtered
version of ν[k], but still assumed to be white.

Let x[k] =
[
a0[k] . . . aN [k] b1[k] . . . bN [k]

]> be
the vector of the Fourier coefficients, which are assumed to
evolve as a Gaussian random walk according to

x[k] = x[k − 1] +w[k] (32)

where w[k] ∼ N (0,Cw) is the process noise with covari-
ance matrix Cw. Furthermore, assume that the initial state
x[k] is distributed according to x[0] ∼ N (m0,P 0).

Combining Eq. (31) and Eq. (32), the following linear
state space model is obtained

x[k] = Fx[k − 1] +w[k], (33a)
z[k] = Gx[k] + ν[k], (33b)

where F = I2N+1 is the (2N+1)×(2N+1) identity matrix
andG is the 1×2N+1 dimensional observation matrix with
the ith component gi defined as

gi =





1, i = 1,

sin(2πfi−1tk), 1 < i ≤ NKF + 1,

cos(2πfi−NKF−1tk), NKF + 1 < i ≤ 2NKF + 1.

The linear model in Eq. (33) can then be used in a
Kalman filter [37] to obtain recursive estimates of the Fourier
coefficients x[k] at each time tk. Finally, a point estimate
of the breathing frequency is obtained in the same way as
for the spectrum based method, that is, by selecting the
frequency with highest magnitude such that

f̂KF = argmax
n

√
a2
n + b2n, n > 0. (34)

5.3 Model-based Estimation

The non-parametric statistical models can be used for cap-
turing the effects of all the uncertainty sources affecting the
SNR of the signal. One approach that has been recently
introduced in [16] is to model the low-pass filtered RSS z[k]
(see Fig. 5b) as a quasi-periodic Gaussian process [38], [39],
such that

z[k] = g[k] + ν[k], (35a)
g(t) ∼ GP(0,K(τ)), (35b)

where g[k] , g(tk) is the kth sample acquired at time tk, and
GP(m(t),K(t, t′)) denotes a Gaussian process prior with
mean function m(t) and covariance kernel K(t, t′) = K(t−
t′), and τ = t−t′ [38]. For a temporal Gaussian process with
the canonical periodic covariance function given by

K(τ) = σ2
K exp


−

2 sin2
(

2πfτ
2

)

`2


 , (36)

it can be shown that the following equivalent discrete-time
state-space formulation

u0[k] = u0[k − 1] + w0[k], (37a)
un[k] = F nun[k − 1] +wn[k − 1], (37b)

g[k] = u0[k] +
∞∑

n=1

Hnun[k] (37c)

can be obtained [16], [39]. In Eq. (36) σ2
K (variance), ` (length

scale), and f (perturbation frequency) are hyperparameters.
In Eq. (37), u0[k] is the DC component, un[k] (for n > 0)
is a 2 × 1 vector containing the instantaneous value of the
nth harmonic and its derivative, w0[k] ∼ N (0, Cw0

) and
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wn[k] ∼ N (0,Cwn
) are the corresponding process noises,

and

F n =

[
cos(2πfnδt) − sin(2πfnδt)
sin(2πfnδt) cos(2πfnδt)

]
, (38a)

Hn =
[
1 0

]
, (38b)

Cwn = 4δtσ
2
K exp(−`−2)In(`−2)I2, (38c)

Cw0
= 2δtσ

2
K exp(−`−2)In(`−2), (38d)

where In(·) is the nth order modified Bessel function of the
first kind, and δt = tk − tk−1. The initial states are given by
γ0[0] ∼ N (0, P0,γ0

) and un[0] ∼ N (0,P 0,un
).

Additionally, the logarithm of the breathing frequency
s[k] = log(f [k]) is modeled as a geometric Brownian motion
which yields [40]

s[k] = s[k − 1]− 1

2
S2
fδt + ws[k], (39)

where Sf is the spectral density of the underlying white
noise process and ws[k] ∼ N (0, Sfδt).

Finally, combining Equations (35), (37), and (39), and
truncating the series in Eq. (37c) at some upper bound NGP,
the following nonlinear state-space model is obtained



s[k]
u0[k]
u1[k]

...
uNGP [k]




=




s[k − 1]− 1
2S

2
fδt

u0[k − 1]
F 1u1[k − 1]

...
FNGPuNGP [k − 1]




+




ws[k]
w0[k]
w1[k]

...
wNGP [k]



, (40a)

z[k] = u0[k] +
NGP∑

n=1

Hnun[k] + ν[k], (40b)

where the dependence of the matrices F n on s[k] is implicit.
The model Eq. (40) can now readily be used in a (non-
linear) Kalman filter such as the unscented Kalman filter
or extended Kalman filter [37]. In this paper, we use Rao–
Blackwellized unscented Kalman Filter presented earlier
in [16]. Finally, the frequency estimate is given by

f̂GP = exp(ŝ), (41)

where ŝ is the first component of the latest state estimate.

5.4 Discussion
In this section, three different methods for estimating the
frequency of periodic signals are summarized. All the meth-
ods are available in the literature, and they have been suc-
cessfully applied for respiration rate monitoring. Here, we
compare the advantages and shortcomings of the methods
in order to aid the practitioners to select appropriate method
for a deployment.

It is well established that the maximum likelihood es-
timate of the frequency of an unknown sinusoid is the
bin of the peak of the periodogram [11]. The peak of the
periodogram can be calculated using fast Fourier trans-
form (FFT) algorithm. However, this method is subject
to thresholding affect, and requires high SNR for a good
performance. In high SNR regime, a course FFT of the
measurements can be calculated and the estimate can be
improved using three of Fourier coefficients [41] or using
three samples directly in the DFT domain [42]. However,

this method can only be applied if the data are evenly
sampled, and it requires significant memory and processing
power to calculate the complete spectrum.

Rather than processing entire overlapping windows at
a time, the spectrum can also be estimated by using a
recursive Bayesian spectrum estimation approach [36]. This
method can cope with the DC term since it is possible
to choose the resolution and sampling rate. Once these
parameters are selected, the dimension of the state space
can be controlled by shrinking the spectrum by low-pass
filtering the measurements. This method has all the ad-
vantages of recursive implementations including decreased
computational and memory requirements. In addition to
these, an important advantage of this method compared to
the batched DFT-based approach is its capability of working
with unevenly sampled data. Therefore, this method is a
better option for estimating the peak of the PSD.

Both of the DFT-based methods require to estimate the
complete spectrum of the measurements. These methods
operate on individual time series, and require an additional
step to combine measurements from different sources, e.g.,
measurements from different antennas or communication
channels. These problems can be addressed by using a
model based estimator. In principle, the model of the RSS
measurements in Eq. (13) and Eq. (19) could be exploited
to improve the perturbation frequency estimation or to
relax the requirements of the DFT-based (both batch or
recursive) estimators. However, since the small perturba-
tions depend on many different parameters such as the
breathing direction with respect to link-line, breathing am-
plitude, initial position of the person, their geometry, and
electrical properties of their clothes this option is non-
trivial. Instead, non-parametric statistical models can be
used for capturing these effects while providing the benefits
of model based estimators. This approach has recently been
presented in [16] by modeling the underlying signal as a
quasi-periodic Gaussian process. The model summarized
in the previous subsection can handle unevenly sampled
data due to missing or dropped packets, include more than
one harmonics into the model, and can readily combine
measurements from different sources to obtain optimal es-
timates without explicit spectrum estimation. However, as
with other recursive methods, it requires a good initial
estimate in order to guarantee convergence in acceptable
number of iterations.

In summary, the DFT-based methods require one to
define the resolution of the spectrum estimates, and may
need an additional step to improve the estimate accuracy.
Although the recursive solution can handle missing pack-
ets, both of the DFT-based methods require an additional
procedure to combine measurements from different sources.
These methods can provide an estimate regardless of the
SNR, although the performance can quickly degrade below
a threshold. All the problems of DFT-based methods are ad-
dressed by non-parametric statistical model based estimator,
which also enable inclusion of more than one harmonics into
formulation in high SNR conditions. However, a good initial
solution must be provided in order to guarantee conver-
gence in reasonable number of iterations. Therefore, when
SNR is low, a DFT-based estimator, in particular recursive
Bayesian estimator, is a better option; on the contrary, when
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TABLE 1
Evaluation Parameters

Symbol Value Appearance Explanation
f Varying Sec. 6.1 Breathing frequency in

bpm
fs Varying Sec. 6.1 Sampling frequency in

Hz
NDFT 2048 Eq. (28) Number of FFT points
Nw 30 s data Eq. (27) FFT window length
No Nw − 1 Eq. (27) FFT window overlap
NKF 75 Eq. (31) Number of frequency

bins in KF
Cw 0.01I2N+1 Eq. (33) Process noise covari-

ance

m0,KF




z[0]
0
...
0


 Eq. (33) Initial estimate of KF

P 0,KF I2N+1 Eq. (33) Covariance of the initial
estimate

NGP 2 Eq. (31) GP Truncation Order
σ2
K 0.01 Eq. (36) Covariance kernel vari-

ance
` 0.9 Eq. (36) Covariance kernel

length scale
Sf 10−4 Eq. (39) White noise process

PSD
δt 1/fs Eq. (38) Time difference

between samples in
seconds

P0,u0

√
0.1I2 Eq. (38) Covariance of the ini-

tial state estimate com-
ponents corresponding
to DC terms

P 0,un
1

2nn!
I2 Eq. (38) Covariance of the ini-

tial state estimate com-
ponents corresponding
to non-DC terms

m0,GP




ln (15/60)
z[0]
0
...
0




Eq. (40) Initial estimate of GP

σ2
ν 1 Various Measurement noise

variance for KF and GP
models

SNR is high, model based estimator is a much better option
as we demonstrate using empirical data in the next section.

6 EXPERIMENTAL RESULTS

In this section, the developments of the paper are evaluated
using experimental data. In the following, we present the
experimental setup and overview of the experiments before
introducing the evaluation metrics. Then, the results are
given.

6.1 Experimental Setup and Experiments
The experiments are conducted using the nodes with the
hardware and software platform described in [43]. A TX
node is programmed to transmit packets over 16 frequency
channels at the 2.4 GHz ISM band10. After each transmis-

10. The developments presented thus far consider a stream of RSS
measurements with constant wavelength. In this section, the acquired
measurements from different frequency channels are considered as
different measurements with different wavelengths.

RX TX

Fig. 6. The test setup of the bed experiment. A TX-RX pair of nodes are
placed 2 meters apart from each other when a person is laying on their
back and breathing at a specific rate set by a metronome.

sion, the frequency channel of communication is changed
sequentially to cover the 80 MHz spectrum. The RX nodes
are programmed to listen for ongoing transmissions. Upon
reception, the packets are timestamped at the start of frame
delimiter with a resolution of 1/32 microseconds, and the
received frames are stored to a non-volatile memory.

The first experiment aims at evaluating the accuracy of
the estimators and the experimental procedure is the same
as the experiment no. 1 in [8]. The RSS measurements are
acquired by a single RX node, which is 2 m away form
the TX node, and 20 centimeters above the chest height
of the person as shown in Fig. 6. The setup is deployed
in a bedroom of an apartment, which is furnished with
a wardrobe, nightstands, and other furnitures. The exper-
iment is conducted in a typical apartment, where more
than ten WiFi networks are identified to co-exist with the
system. The transmission interval is set to 2 milliseconds so
that fs = 31.25 Hz for each frequency channel. During the
experiments the person is lying on a bed while breathing at
a constant rate set by a metronome for two minutes. The per-
son breaths at 5 different rates: 12, 14, 16, 18 and 20 breaths-
per-minute (bpm). In total 80 time series are recorded and
used for the evaluation. We refer to this experiment as the
bed experiment.

The second experiment aims at evaluating how the SNR
impacts estimation performance. The TX node emits frames
every 1.92 milliseconds, and 11 RX nodes acquire the RSS
variation when the person is standing in four different
positions as shown in Fig. 8a. The setup is deployed in a
large empty room of an office building, where several WiFi
networks co-exist with the system. The nodes are placed
on tripod stands approximately 85 cm above the ground.
The positions of the person are selected such that different
RX nodes observe different excess path length and direction
of the breathing. This way a rich set of measurements are
acquired to make conclusive statements about the model
implications. At each position, the person is standing still
while breathing at a constant rate of 12 bpm by following
the breathing pace set by a metronome for one minute. The
setup is also used for acquiring RSS measurements when the
environment is empty. In total 176 time series are recorded
for each position so that the evaluation is based on 704 data
series. We refer to this experiment as room experiment.
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In both of the experiments, the breathing person is a
35 years old healthy adult male. He is trained to follow
the breathing pace set by the metronome before the ex-
periments. Both of the experiments are conducted in pub-
lic buildings, where presence, motion, or actions of other
people in other rooms are not controlled. Furthermore, the
operations of other wireless networks (in particular WiFi)
operating in the same frequency band are not constrained.
Although these WiFi networks create interference to the
IEEE 802.15.4 devices, the measurements are acquired only
when a complete frame can be decoded by the receiver. This
approach guarantees that when bursty WiFi traffic interferes
with the network operation, the frame is lost and no highly
interfered measurement is acquired.

The acquired RSS data is preprocessed for each fre-
quency channel measurement streams independently as
shown in Fig. 5b. The bandpass filtered data y[k] is obtained
as output of two processing stages: first the mean is calcu-
lated and removed from measurement P[k], and then the
result is low-pass filtered. The low-pass filtered data z[k] is
obtained by just low-pass filtering P[k]. The used low pass
filter is a 5th order elliptic filter that has passband frequency
of 2 Hz and stop frequency of 3 Hz, 0.05 dB maximum
ripple in the pass band, and 40 dB stop band attenuation.

6.2 Evaluation Methodology

During the evaluation, we refer to the output of the batch
estimator summarized in Sec. 5.1 as DFT estimate, the
recursive Bayesian estimator presented in Sec. 5.2 as Kalman
Filter (KF) estimate, and finally, the model-based estimator
presented in Sec. 5.3 output is referred to as Gaussian Pro-
cess (GP) estimate. These methods are implemented using
the parameters tabulated in Table 1. All the methods are
operated in single stream mode so that the number of esti-
mates are equal and a sophisticated estimation combination
procedure is not required.

The evaluation in this section is based on mean abso-
lute error (MAE) calculations. For the breathing frequency
estimation, the MAE in bpm is defined as

εf , 60

K

K∑

k=1

|f̂ [k]− f |, (42)

where f is the true rate, and f̂ [k] is the kth frequency esti-
mate out of K total estimates. This metric fails to provide a
measure of the dispersion in the estimates. For this purpose,
we use the ratio of estimates within 1 bpm neighborhood of
the true frequency f

ε% , # of f̂ in 1 bpm neighborhood of f
# of estimates

· 100. (43)

In order to quantify the convergence speed of the methods,
we calculate εf for the data in the first 30 seconds and for
the data afterwards separately. We refer to the former as
εf (t ≤ 30 s) and the latter as εf (t > 30 s). When the esti-
mates have some outliers, e.g. they converge to the second
harmonic frequency, we also calculate εf by excluding those
outliers, and refer the result with εf w/o outliers.

In high SNR conditions, the εf performance of all the
estimators are similar. In this case, the MAE of the estimated

signal and the estimator input can be used for evaluation,
since the estimator outputs also imply a signal in a specific
form. Let us denote the model output of any estimator11 as
R̂. Then, we define the modeling MAE as

εz =
1

K

K∑

k=1

|z[k]− R̂[k]|, (44)

where for DFT-based method we add the mean value sub-
tracted in the preprocessing stage.

The room experiment is used for evaluating the perfor-
mance of the estimators under varying SNR conditions. The
SNR of the signal is estimated using the PSD estimate in
Eq. (28), using the actual breathing frequency. Let set L(f)
contain the indices of the bins that are in a neighborhood
of the harmonics of the true breathing frequency, excluding
the DC term, and S denote the bins within interval 0.1 and
3 Hz, which define the frequency range we are interested in.
Then, an SNR estimate is given by

%̂ , 10 log10




∑

l∈L(f)

S[l]

/ ∑

l∈S/L(f)

S[l]



 , (45)

where the sets are disjoint. In the following, we use only
the first two harmonics when forming the set L(f), and all
other spectral bins contribute to the noise power.

6.3 Results

6.3.1 Bed experiment
In Fig. 7, breathing estimation is illustrated on two differ-
ent frequency channels when the person is breathing at a
constant rate of 0.2 Hz, that is, 12 bpm. The signal shown
in Fig. 7a contains a strong first harmonic at the breathing
frequency and all methods are capable of estimating the true
frequency correctly as illustrated in Fig. 7d. The recursive
GP and KF methods converge to the true frequency in
approximately 15 s, whereas the DFT method requires 30 s
because of the time window used to calculate the DFT. The
breathing induced changes are not as evident for the signal
shown in Fig. 7e since it contains higher order harmonics as
proposed by the model and as illustrated in Fig. 7g. The KF
and DFT methods estimate the breathing frequency using
the peak of the spectrum, resulting in an incorrect estimate
of f ≈ 24 bpm which corresponds to the second harmonic.
The higher order harmonics are taken into account in the
GP-based estimator when truncation order is NGP > 1. As a
result, the method can correctly estimate the true breathing
frequency as illustrated in Fig. 7h. The state estimates of the
GP are illustrated in Fig. 7f and clearly, the method is able
to track the DC-component and the harmonics accurately
resulting in an improvement with respect to the spectral
estimation techniques. For clarity, the second component of
uj is omitted from Figs. 7b and 7f.

The measurement setup of the bed experiment is a
realization of the measurement setup evaluated in Fig. 2f.
Thus, small displacements of the person, as can be observed
in Fig. 2f, causes drastic changes in the SNR. Furthermore,

11. Although the state space models in Sec. 5 are different, all of these
yield the same output form as in Eq. (19) only with different number of
harmonics.
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(a) RSS on channel 3 (b) GP state estimates (c) Spectrograms (d) Breathing rate estimates

(e) RSS on channel 10 (f) GP state estimates (g) Spectrograms (h) Breathing rate estimates

Fig. 7. Bed experiment: breathing monitoring on two different frequency channels using the presented methods. In (a) and (e), the breathing affected
RSS signal. In (b) and (f), state estimates of the GP method (NGP = 2). Spectrograms of the spectral estimation techniques illustrated in (c) and
(g). The breathing rate estimates on the two channels are shown in (d) and (h).

TABLE 2
Results of the bed experiment

GP KF DFT
ε% [%] 97.50 88.75 87.50
εf (t ≤ 30 s) [bpm] 1.06 5.10 -
εf (t > 30 s) [bpm] 0.25 1.44 1.41
εf w/o outliers [bpm] 0.15 0.25 0.26
εz [dB] 0.16 0.32 0.28

different frequency channel measurements may have dif-
ferent behavior as the spread of the shaded areas in the
figure imply. For the acquired 80 signals, there are 8 signals
having higher energy in the second harmonic. According to
the evaluation in Fig. 2f, a particular y value (between 0.24
and 0.26 m) can yield such measurements. Therefore, the
model correctly resembles this important scenario.

Performance of the estimators is summarized in Table 2
and on average, the spectral estimation techniques yield
comparative accuracy while the GP-based estimator out-
performs them. The ratio of valid estimates is summarized
by ε% and the 10% difference in favor of the GP method
originates from the fact that the second harmonic has the
highest amplitude in 8 out of 80 signals resulting incorrect
estimates with the spectral techniques. The recursive GP and
KF methods typically converge in the first 30 s and 75%
of the estimates converge to within 1 bpm of the true rate
in 15.8 s with GP and in 17.6 s with KF. However, the GP

attains a significantly lower εf (t ≤ 30 s) compared to KF,
since the KF errors are typically very large due to the jumpy
behavior as observed in Fig. 7d. After the transient period
(0 − 30 s), the GP achieves a lower MAE than the spectral
estimation techniques as given by εf (t > 30 s). However,
these results are severely affected by the experiments that
resulted in incorrect estimates due to measurements not
showing the first harmonic, but the second one. Neglect-
ing these outliers, one can observe that all methods yield
comparative accuracy as given in the fifth row of Table 2.
The steady-state accuracy of the spectral methods is mainly
affected by the frequency bin size, whereas the GP accuracy
could be improved by selecting the spectral density Sf
smaller. However, this would also decrease responsiveness
of the filter to possible breathing rate changes. Lastly, εz
is given in the last row of Table 2. Clearly, the GP model
estimates correspond more closely to the measured RSS
since the higher order harmonics are taken into account.

The development in Sec. 3 concludes that the RSS is
composed of more than one harmonics. However, the rel-
ative importance of the higher order harmonics depend
on several factors, which include actual breathing function
(in this regard it is evident that natural breathing is not a
sinusoid) and effect of quantization in typical RSS measure-
ment systems [27]. In order to quantify the importance of
higher order harmonics, one may investigate the estimated
energy in harmonics for all 80 time series. Since the model
in Eq. (37c) is composed of Fourier series coefficients (and
their derivatives), the relative energy in the mth harmonic
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TABLE 3
Truncation order

Truncation order NGP 1 2 3 4
ε% [%] 97.50 97.50 97.50 97.50
εf (t > 30 s) [bpm] 0.28 0.29 0.25 0.25
εz [dB] 0.19 0.17 0.16 0.16

TABLE 4
ε% [%] with DFT method in room experiment

Receiver number
pos. 1 2 3 4 5 6 7 8 9 10 11

1 6 0 13 0 6 19 19 19 25 19 6
2 0 6 75 44 13 31 6 6 38 6 13
3 0 0 6 6 25 13 6 25 6 6 25
4 0 0 0 6 19 0 13 0 6 0 31

can be defined as

E(m) = u2
m,1

/ 4∑

n=1

u2
k,1,

where um,1 denotes the first component of um.
Averaging E(m) across the 80 experiments results to

E(1) = 86.62%, E(2) = 11.00%, E(3) = 2.13% and E(4) =
0.25%, thus the first two harmonics contain approximately
98% of the energy. This value is very close to the value pre-
dicted by the Carson’s rule of thumb, and implies that the
actual breathing signal is a smooth function, not containing
any jumps. Typically E(1) ≈ 93%, but it can be as low as
36% validating the importance of having an estimator that
takes into account the higher harmonics. The accuracy of the
GP with different truncation orders is given in Table 3. In
terms of estimation accuracy, higher truncation order yields
slightly better performance as indicated by εf (t > 30 s). In
addition, εz is reduced with higher truncation order.

6.3.2 Room experiment
CDFs of the link SNRs for the room experiment are illus-
trated in Fig. 8b. The maximum SNR value for the empty
room measurements is −12.42 dB and 7.4 − 25.0% of the
link SNRs exceeds this value when a breathing person
is present. Thus, all positions clearly contain information
regarding respiration rate of the person. However, SNR in
the room experiments is typically much lower than in the
bed experiment as shown in Fig. 8b.

The SNR of a link is defined by the signal energy
E1 given in Eq. (21) for which the coefficients cm can be
calculated using Eq. (20). The coefficients cm are functions
of the effective reflection coefficientG defined in Eq. (6), and
the effective amplitude of the periodic movement Ã given
in Eq. (11). The signal energy E1 increases as G increases,
and G has its maximum when Γ is at its maximum on the
link-line. In the room experiment, when the person is on
position 1, G is in the interval [0.02, 0.09] for the nodes 1
to 5, whereas for the nodes 7 to 11, G ∈ [0.11, 0.23]. As
a result, the calculated signal energy E1 = [0.02, 0.16] for
the nodes 1 to 5 and E1 ∈ [0.19, 0.23] for the nodes 7 to
11. With the nodes 1 to 5, the average SNR is −18.22 dB
and ε% = 5.0% whereas with the nodes 7 to 11, the average

SNR is −16.24 dB and ε% = 17.5%. Thus, in position 1,
it is expected that successful breathing monitoring is more
likely with the nodes 7 to 11. The estimation results given
in Table 4 are in accordance with this statement.

The effective reflection coefficient G is not the only
parameter that affects the signal energy. In position 2, G
is in [0.21, 0.33] for the nodes 3 and 4, whereas for the
nodes 7 and 8, G ∈ [0.70, 0.94]. Respectively, the effective
perturbation amplitude Ã ∈ [0.30, 0.54] for the nodes 3 and
4, it is in [0.02, 0.12] for the nodes 7 and 8. Position 2 does
not favor breathing monitoring for the nodes 7 and 8 despite
that G is three times larger than it is for the nodes 3 and 4.
The reason for this short coming is that breathing causes
very small changes in the RSS of the nodes 7 and 8 and
E1 ∈ [0.00, 0.11], whereas for the nodes 3 and 4 the signal
energy is E1 ∈ [0.30, 0.86] due to the orientation of the
person. Correspondingly, the average SNR of the nodes 3
and 4 is −10.53 dB and ε% = 59.4%, whereas for the nodes
7 and 8 the average SNR is −15.88 dB and ε% = 6.3%.
These experimental results support the implications of the
model.

It is important to keep in mind that a slight change in
position or orientation can have a significant impact on the
signal energy of the links and therefore, spatial diversity
or frequency channel diversity must be used to increase
the likelihood of successful breathing monitoring. Results
for the different receivers and positions are summarized in
Table 4. From the given results, it can be concluded that
successful breathing monitoring is very likely across a large
area as long as the position and orientation of the person
yield SNR higher than −5 dB as in the bed experiment.

In Fig. 8c, the variation of ε% of different estimators
with the SNR is depicted. As shown, estimation accuracy
of all three estimators improve when the SNR increases
and ε% = 100% when SNR ≥ −4 dB. Although for the
bed experiment GP outperforms the other estimators, its
performance is lower when the SNR is low. In this region,
the second and higher order harmonics have a lower power
than the noise so that they are not as important as they are
under the high SNR conditions. Correspondingly, the batch
DFT method and recursive spectral estimators outperform
the GP. This result suggests that for the low SNR operating
region the batch DFT estimator is better whereas for the
high SNR conditions the GP is better in terms of accuracy.
It is also to be noted that GP has other advantages, the
most notably it relaxes data acquisition requirements by
not requiring uniform sampling, operating with occasional
packet losses, and better fusing the measurements from
different communication channels [16]. Therefore, it has an
utmost importance to investigate the expected performance
and to select an appropriate estimator for developing a
robust and reliable RSS-based respiration rate monitoring
system.

7 CONCLUSIONS

Breathing rate is an important vital sign of which continuous
monitoring may help to identify serious problems before
they actually occur. In this paper, a signal model for received
signal strength based non-contact respiration rate monitor-
ing systems using commodity wireless devices is presented.
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(a) (b) (c)

Fig. 8. In (a), layout of the room experiment, where© is the position number of the person while facing to the direction shown with an arrow,
e

is
the receiver node identifier between 1 and 11, and finally

`
is the transmitter node. CDF of link SNRs in different positions, including empty room

(None) and bed experiment (Bed), are shown in (b). In (c), the variation of ε% with SNR for the different estimators is shown.

It is shown that the signal model for low-end communica-
tion devices has the same form as the one in high-end radar
based solutions. The effect of linear movement has also been
derived, and significance of physical parameters are shown
and discussed. Real world measurements are used for eval-
uating the performances of three previously presented esti-
mators, and the result is compared with the implications of
the model. The model implications are in coherence with the
findings, and show that respiration rate monitoring systems
must be evaluated before deployment. The estimator must
be selected according to the expected signal-to-noise ratio
of the measurements and the constraints imposed by the
hardware and software implementations of the wireless
nodes.

REFERENCES

[1] M. A. Cretikos, R. Bellomo, K. Hillman, J. Chen, S. Finfer, and
A. Flabouris, “Respiratory rate: the neglected vital sign,” Medical
Journal of Australia, vol. 188, no. 11, p. 657, 2008.

[2] J. F. Fieselmann and C. M. Helms, “Respiratory rate predicts
cardiopulmonary arrest for internal medicine inpatients,” Journal
of general internal medicine, vol. 8, no. 7, pp. 354–360, 1993.

[3] F. Q. AL-Khalidi, R. Saatchi, D. Burke, H. Elphick, and S. Tan,
“Respiration rate monitoring methods: A review,” Pediatric Pul-
monology, vol. 46, no. 6, pp. 523–529, 2011.

[4] E. F. Greneker, “Radar sensing of heartbeat and respiration at a
distance with security applications,” in Proceedings of Radar Sensor
Technology II (SPIE 3066), vol. 3066. SPIE, 1997, pp. 22 – 27.

[5] E. M. Staderini, “UWB radars in medicine,” IEEE Aerospace and
Electronic Systems Magazine, vol. 17, no. 1, pp. 13–18, Jan 2002.

[6] F. Adib, H. Mao, Z. Kabelac, D. Katabi, and R. C. Miller, “Smart
homes that monitor breathing and heart rate,” in Proceedings of
the 33rd Annual ACM Conference on Human Factors in Computing
Systems, ser. CHI ’15. New York, NY, USA: ACM, 2015, pp. 837–
846.

[7] X. Liu, J. Cao, S. Tang, and J. Wen, “Wi-Sleep: Contactless sleep
monitoring via WiFi signals,” in IEEE Real-Time Systems Symposium
2014, Dec 2014, pp. 346–355.
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