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Impurities embedded in electronic systems induce bound states which under certain circumstances can
hybridize and lead to impurity bands. Doping of insulators with impurities has been identified as a promising
route toward engineering electronic topological states of matter. In this paper we show how to realize
tuneable Chern insulators starting from a three-dimensional topological insulator whose surface is gapped and
intentionally doped with magnetic impurities. The main advantage of the protocol is that it is robust and in
particular not very sensitive to the impurity configuration. We explicitly demonstrate this for a square lattice of
impurities as well as a random lattice. In both cases we show that it is possible to change the Chern number of
the system by one through manipulating its topological state. We also discuss how this can be used to engineer
circuits of edge channels.

DOI: 10.1103/PhysRevB.99.165413

I. INTRODUCTION

Electronic topological states of matter have been at
the forefront of condensed-matter research for more than
30 years. The starting point was the discovery of the quantum
Hall state and the subsequent identification of the topological
origin of the associated quantization of the transverse conduc-
tivity. More recently it has become apparent that this state of
quantum matter fits into a bigger scheme of states, now called
topological insulators [1,2]. This whole development was
largely triggered by the prediction and subsequent observation
of the quantum spin Hall insulator. Since then, many more
systems have entered the picture. On a theoretical level, it
has been shown that the knowledge of only a small number
of elementary symmetries (time reversal, parity, and chirality)
and the dimensionality allows prediction of whether a system
might in principle possess a nontrivial topological invariant
[3–7]. This scheme can be extended if lattice symmetries and
statistical effects are taken into account [8–11]. A further
strategy which has been applied to generate topological states
is dissipation and/or driving. All these theoretical insights and
ideas have led to a spur of experimental activities with one
of the main questions being whether one can tailor-make a
specific kind of nontrivial insulator. This goal is pursued in
a variety of ways, ranging from cold-atom physics to more
traditional condensed-matter setups.

A variant of this engineering is intentional “pollution”: the
starting point is an insulator on whose surface adatoms are
deposited in a regular manner. These adatoms or “impurities”
bind electronic in-gap states which hybridize, leading to im-
purity bands with potentially topological characters [12–24].
A recent example is the deposition of ferromagnetic atoms
in a chain on superconductors. These magnetic impurities
individually bind a pair of Shiba bound states. Once these
bound states hybridize, one obtains artificial wires which have

been shown to potentially host topological bands. This was,
for instance, demonstrated in an experiment where iron atoms
were arranged in a chain structure on a superconductor. These
efforts have led to the observation of Majorana-like signatures
at the ends of the chain [25–28]. In a related experiment [29]
using Co atoms these modes were absent, meaning that the
protocol does not seem robust and independent of details.
Theoretically this scheme has also been extended to higher
dimensions [30], for instance, leading to two-dimensional
topological superconductors with a wide range of notably high
Chern numbers [31–33].

In this paper we follow in this spirit and show that deposit-
ing a lattice of magnetic impurities on the gapped surface of a
three-dimensional (3D) topological insulator (TI) (this can be
achieved by proximity to a ferromagnet) leads to a nontrivial
Chern insulator, see Fig. 1. The virtue of our construction is
that the Chern number can be locally tuned by impurities, and
that it is generic and independent of the precise details of the
deposition.

The paper is organized in the following way. We start
with a discussion of the effective model system and introduce
the key quantities in Sec. II. We then discuss the physics of
impurities deposited on the surface of the topological insulator
in Sec. III, where we first discuss a single impurity and then
move on to a lattice of impurities. In Sec. IV, we discuss the
impurity in-gap band and its topological properties in different
lattice configurations. In Sec. V we explain the implications of
our proposal to the fabrication of topological circuits, and we
summarize our findings in Sec. VI.

II. MODEL AND KEY QUANTITIES

We consider the top surface of a 3D strong topological
insulator [1] in the vicinity of a ferromagnetic layer breaking

2469-9950/2019/99(16)/165413(8) 165413-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.165413&domain=pdf&date_stamp=2019-04-10
https://doi.org/10.1103/PhysRevB.99.165413


EMMA L. MINARELLI et al. PHYSICAL REVIEW B 99, 165413 (2019)

FIG. 1. (a) Setting for a square lattice implementation: a three-
dimensional strong topological insulator (3D TI) serves as the base.
On its top surface, the vicinity of a ferromagnetic material (FM)
induces an energy gap. A lattice of impurities, with mixed scalar
and magnetic potential, is deposited on the surface. The engineered
setting acts as a nontrivial Chern insulator. (b) Spectrum of a mag-
netic topological insulator surface with a mass gap M. Hybridized
impurities give rise to subgap bands (grey) carrying nonzero Chern
numbers.

time-reversal symmetry, see Fig. 1. An appropriate mini-
mal model for the surface is given by the massive Dirac
Hamiltonian

ĤS (k) = vF (kxτx + kyτy) + Mτz − μ1 , (1)

with vF being the Fermi velocity, μ the chemical potential,
and τi with i = x, y, z the Pauli matrices. The energy spectrum
is given by E±(k) = ±

√
v2

F k2 + M2 − μ with a gap size
�gap = 2|M|, which is induced due to the proximity to the
ferromagnet. For the remainder of this paper we will set the
chemical potential μ = 0.

The fundamental object in our study is the retarded Green’s
function Ĝ+

0 (E ):

Ĝ+
0 (E ) = Ĝ0(E + i0+) , (2)

which in real space obeys the differential equation

[(E + i0+)1 − ĤS]Ĝ+
0 (r, r′; E ) = δ(r − r′) , (3)

where r = (x, y)T is a 2D surface vector. The solution to
Eq. (3) is translationally invariant and reads

Ĝ+
0 (ri, r j ; E ) = Ĝ+

0 (ri j ; E ) = − 1

2πv2
F

[
(E1+Mτz )K0

(|ri j |
ξ

)
− i

vF

ξ

xi jτx + yi jτy

|ri j | K1

( |ri j |
ξ

)]
, (4)

where ri j = r j − ri �= 0 is the relative coordinate, ξ is the
correlation length given by ξ = vF /

√
M2 − E2, and Kz are

the zth-order modified Bessel functions of the second kind.
A full derivation of Eq. (4) can be found in Appendix A. We
are only interested in in-gap phenomena, meaning |E | < |M|
in the remainder of the paper.

Next, we place static, structureless impurities on the sur-
face, described by the Hamiltonian

ĤI (r) =
N∑

i=1

(V01 + VMτz )δ(r − ri ) , (5)

where N is the number of impurities and ri with i = 1, . . . , N
denotes their respective positions. We assume that an impurity

is strictly local and has both a scalar (V0) and a magnetic (VM)
contribution (again, this should strictly be understood as a
minimal model).

As shown in Appendix B, the bound-state solutions of the
full Hamiltonian can be found as the solutions to the integral
equation [34]

ψ (r) =
∫

d2r′Ĝ+
0 (r − r′; E )ĤI (r′)ψ (r′) . (6)

III. IMPURITY PHYSICS

In the following we will first study a single impurity and the
associated bound states and then move to multiple impurities.

A. Single-impurity model

The bound states of the system with one impurity on the
TI surface which (without loss of generality) is located at
position r = 0 are given by the solutions of the equation

ψ (0) = Ĝ+
0 (0; E )(V01 + VMτz )ψ (0) , (7)

where

Ĝ+
0 (0; E ) = − 1

4πv2
F

(E1 + Mτ3) ln

(
1 + D2

bulk

M2 − E2

)
=

(
G0(0; E ) 0

0 −G0(0; −E )

)
(8)

is the local Green’s function, with Dbulk � |M| being the bulk
bandwidth (see again Appendix A). Note that the imaginary
part of this Green’s function is zero in the region of interest.

Nontrivial bound-state solutions of Eq. (7) exist for the
energies which solve

det[1 − Ĝ+
0 (0; E )(V01 + VMτz )] = 0. (9)

The local Green’s function is diagonal and the diagonal el-
ements are both related to the same function G0(0; E ). This
function has the property that its real part approaches zero
as E → −M and it diverges logarithmically as E → M. This
implies that one can graphically construct the nontrivial solu-
tions to Eq. (9) by intersecting the diagonal element G11 =
G0(0; E ) with the line defined by 1/(V0 + VM ) and G22 =
−G0(0; −E ) with the line defined by 1/(V0 − VM ). Let us first
consider M > 0, see Fig. 2. Since G11 is now strictly negative,
1/(V0 + VM ) must be negative as well and 1/(V0 − VM ) must
be positive to intersect with G22. Consequently, we can have
zero to two bound states, depending on the potential scatterer:
(i) For VM > 0 we have either zero (|V0| < VM) or one bound
state (V0 > VM or V0 < −VM). (ii) For VM < 0 we have either
one bound state (V0 < VM or V0 > |VM |) or two bound states
(|V0| < |VM |). Since we are interested in the formation of two
in-gap bound states, for the remainder we take V0 = 0 and
VM < 0. Under the assumption that VM is chosen such that
|EBS| � |M|, it follows that the energy of the two in-gap
bound states is given by

EBS = ∓M ∓ 4πv2
F

VM
ln−1

(
1 + D2

bulk

M2 − E2
BS

)
≈ ∓M ∓ 2πv2

F

VM
ln−1

(
Dbulk

|M|
)

. (10)
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FIG. 2. The single-impurity Green’s function matrix elements
are diverging and finite at opposite gap boundaries |M| (thick line).
At the intersection among these curves and the impurity potential
(dashed), we find the energy of the corresponding bound state. For
reference we have taken M > 0 in the above figure.

Going through the same process for M < 0 gives the exact
same bound-state energies, but requires VM > 0 instead. The
above expression is therefore valid for any M �= 0 and V0 = 0,
as long as the sign of VM is opposite to the sign of M.

B. Multiple impurities

We consider a number of impurities on the TI surface. In
isolation, each of them possesses two nondegenerate energy
levels for V0 = 0 and VM < 0 or VM > 0, depending on the
sign of M. Bringing these impurities closer together leads
to overlap between neighboring bound-state wave functions,
causing the bound states to disperse. Equation (6) for multiple
impurities reads

ψ (ri ) = VM Ĝ+
0 (0; E )τzψ (ri )

+
∑
r j �=ri

VM Ĝ+
0 (ri j ; E )τzψ (r j ) , (11)

where we have explicitly split into the local bound-
state contribution and the overlap with adjacent impurities.
Equation (11) is exact and in the following we map it onto
a tight-binding model. The first term on the right-hand side
corresponds to the isolated impurity and the corresponding
bound states whereas the second term describes the coupling
to the other bound states in the system. This overlap is set
by the Green’s function, whose range is controlled by the
correlation length ξ . For |r| � ξ it asymptotically behaves
as Ĝ+

0 (r; E ) ∝ e−|r|/ξ /
√|r|/ξ . In the limit where the mean

distance between impurities ā is equal or larger than the corre-
lation length, i.e., ā � ξ we are in the dilute limit. In this dilute
limit the overlap is exponentially suppressed, implying that
the impurity bound-state energies are only weakly dispersed.
The bandwidth of the impurity bands is therefore expected to
be much smaller than the gap size 2|M|, and all of the bound-
state energies remain of the order of EBS. Below we use this
to approximate the dilute limit of Eq. (11) as a tight-binding
problem of hybridized bound states hopping on a lattice. Our
starting point is the atomic limit in which the local energy is
given by the isolated impurity bound states and we assume
that the overlap between adjacent bound states is small, i.e.,
E ∼ EBS � 0. This results in the following effective integral

equation:

[1 − VM Ĝ+
0 (0; E )τz]ψ (ri ) ≈ VM

∑
r j �=ri

Ĝ+
0 (ri j ; 0)τzψ (r j ). (12)

Expanding the left-hand side to linear order in E , Eq. (12) is
equivalent to a tight-binding model. The effective Hamilto-
nian that satisfies the eigenvalue equation is given by

Eψ (ri ) = EBSτzψ (ri ) + 2πv2
F gτz

∑
r j �=ri

Ĝ+
0 (ri j ; 0)τzψ (r j )

=
∑

r j

Ĥi jψ (r j ) , (13)

where g = 2 ln−1 (1 + D2
bulk

M2 ) ≈ ln−1 ( Dbulk
|M| ) � 1. We see from

Eq. (13) that the bandwidth of the impurity bands is controlled
by g thus indeed small. This is consistent with the assump-
tion that E ∼ EBS, therefore justifying the approximations.
In explicit terms, the matrix elements of the tight-binding
Hamiltonian read

Ĥi j =
(

hri j �ri j

��
−ri j

−hri j

)
, (14)

where

hri j =
⎧⎨⎩

EBS, ri = r j

−gMK0

(
|ri j |
ξ0

)
, ri �= r j,

�ri j =
⎧⎨⎩

0, ri = r j

−igvF
ξ0

xi j−iyi j

|ri j | K1

(
|ri j |
ξ0

)
, ri �= r j,

and ξ0 = vF /|M|.

IV. LATTICE IMPLEMENTATION IN 2D

In the following we first discuss an arrangement of the
impurities on a square lattice and then move to a random
lattice. We explicitly show that the result of our study does
not depend on any details of the arrangement of impurities.

A. Square lattice

We consider a 2D system with time-reversal symmetry
breaking, thus the in-gap band structure can be classified by
the first Chern number, i.e., the topological invariant C [7,45].
A convenient way to evaluate C for our system is to rewrite
Eq. (14) as a Bloch Hamiltonian

Ĥk =
∑

r

eik·rĤ (r) , (15)

where the summation runs over all lattice sites. It is straight-
forward to decompose the Bloch Hamiltonian into the basis of
Pauli matrices τ:

Ĥk = (�k )︸ ︷︷ ︸
dx (k)

·τx −�(�k )︸ ︷︷ ︸
dy (k)

·τy + hk︸︷︷︸
dz (k)

·τz = d(k) · τ . (16)

The normalized d(k) vector d̂(k) = d(k)
|d(k)| defines the map-

ping between the 2D Brillouin zone and the surface enclosed
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FIG. 3. (a) Topological phase diagram of a square impurity lat-
tice. In the considered regime the system is dominated by the Chern
number C = 1 state. (b) The energy gap diagram corresponding to
the phase diagram in (a). While the C = 1 phase may exhibit a robust
gap, the narrow C = −1 strip is nearly gapless and thus has little
practical relevance. Calculated using g = 0.15.

by the d̂(k) vector on a unit Bloch sphere. Setting the impu-
rity lattice constant to unity, we calculate the integer-valued
topological invariant C with the formula

C = ± 1

4π

∫ π

−π

dkx

∫ π

−π

dkyd̂(k) ·
(

∂

∂kx
d̂(k) × ∂

∂ky
d̂(k)

)
,

(17)

counting the number of times the d̂(k) vector wraps around
the unit Bloch sphere.

In the case of a square lattice, the outcome is that either
C = 0 (corresponding to the trivial phase) or |C| = 1, indi-
cating a topological phase. The topological phase diagram
as a function of relevant system parameters is shown in
Fig. 3. In the deep-dilute regime captured by our model, the
nontrivial parameter regime of the phase diagram is domi-
nated by the C = 1 phase. Note that flipping the sign of the
magnetization would invert the sign of the Chern number. As a
consequence of the nontrivial topology, systems with
boundaries exhibit topologically protected edge states at sub-
gap energies. We have diagonalized the model (14) on a
finite lattice and plotted the local density of states (LDOS)

FIG. 4. (a) Subgap zero-energy LDOS for a square lattice with
open boundaries for E = 0 reveals the existence of topological edge
modes. Calculated for a 40 × 40 square lattice with g = 0.15, a/ξ =
2 and EBS = 0.05, using a Lorentzian broadening of the Dirac delta
function. (b) Subgap LDOS for E = 0 for a random lattice with open
boundaries. Calculated for a system of 1600 particles with g = 0.15,
ā/ξ = 1.4, and EBS = 0.05.

ρ(E , r) ∝ ∑
E ′ |ψ ′

E (r)|2δ(E − E ′) at E = 0 in Fig. 4(a). This
clearly confirms the appearance of edge states in the topolog-
ical regime.

B. Random lattice

Recently, it was understood that robust topological states
may persist even in systems with little or no spatial order
[35–37]. As opposed to disordered systems that still possess
residual lattice symmetries, spatial order does not play a role
in amorphous systems with randomly distributed lattice sites.
The fact that amorphous systems can support topologically
nontrivial states is truly a manifestation of the independence
of spatial symmetries and topology. Here we show that
essentially the same topological state engineering that was
described in the square lattice with magnetic impurities can
be generalized to randomly localized impurities.

The Chern number in translationally noninvariant systems
can be defined by studying the response of the ground state to
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FIG. 5. (a) Topological phase diagram of a single realization of
a finite random lattice with periodic boundary conditions. (b) The
energy gap diagram corresponding to the system in (a). Calculated
for 400 impurities, with g = 0.15.

the boundary conditions [38]. Practical tools to calculate topo-
logical numbers is provided by real-space formulas [39,40].
By employing the method of Ref. [39], we have evaluated
the topological phase diagram in terms of the characteristic
distance between impurities defined as ā = 1/

√
ρ, where ρ

is the number of impurities per unit area. As shown in Fig. 5,
finite random systems exhibit basically similar topological be-
havior as the square lattice. Also, topological phase diagrams
for finite random systems are self-averaging in the sense
that differences between different lattice realizations become
small already for moderate system sizes. The topological
edge modes depicted in Fig. 4(b) are more irregular compared
to the square lattice. Nevertheless, the random edge modes
support the same quantized transport properties as their coun-
terparts in regular lattices.

V. DISCUSSION

A goal of this work was to introduce a simple and ex-
perimentally motivated model for designer Chern insulators
allowing flexible topological state engineering. We adopted a
model of a magnetically gapped topological insulator surface
decorated by local impurities. We showed that it is possible
to change the topological state of the system by employing
magnetic impurities that locally reduce the magnetization

FIG. 6. On impurity-doped areas (red) the Chern number jump
by unity compared to the underlying substrate. The difference in the
topological state is accompanied by a chiral edge mode circulating
the impurity-rich areas. Inset: By patterning the substrate with impu-
rities it is possible to create edge state circuits that connect different
terminals (yellow) on a chip.

of the uniform background. In fact, the impurities can be
regarded as a spatially modulated reduction of the uniform
magnetic background. This interpretation suggests another
method to realize the studied topological manipulation. While
the experimental realization of our model remains challenging
at the moment, the remarkable recent progress in magnetically
doped topological insulators [41–43] suggests that patterned
magnetization could be accessible in the near future [44].

The underlying homogeneously magnetized topological
insulator surface without impurities is itself topologically
nontrivial, exhibiting a quantum anomalous Hall effect [45]
with half-quantized Hall conductance ±e2/(2h). However,
the impurity-based topological state manipulation offers key
advantages in fabricating novel functional structures. When
crossing the interface between a clean area and an impurity
lattice, the value of the Chern number jumps by unity. The
impurity lattice thus boosts the magnitude of the Chern num-
ber from 1/2 to 3/2 per surface. Taking into account that the
sign of the perpendicular magnetization could be changed,
the studied system possesses four nontrivial topological states
with Chern numbers ±1/2 and ±3/2 per surface. Further-
more, the crucial advantage of the impurity lattice is that it
allows the tuning of a topological state by electrical means
without the need to flip the magnetization. The impurity
patterning gives rise to two subgap bands Ek depicted in
Fig. 1(b). By tuning the electron density of the system by
a gate voltage, it is possible to tune the Fermi level with
respect to the two subgap bands. The Chern number jumps
by unity if the Fermi level is moved outside the band gap of
a topologically nontrivial impurity band. Local gates would
allow spatially resolved modulation of the Fermi level and
thus, in principle, a local tuning of a topological state.

As dictated by the bulk-boundary correspondence and dis-
cussed above, a jump in the Chern number is accompanied by
the appearance of a topologically protected chiral edge mode
separating the impurity lattice from clean regions. This is il-
lustrated in Fig. 6 where red regions on the blue bulk substrate
represent impurity-doped areas. Chiral edge modes act as
ideal 1D electric channels where backscattering of electrons
is completely suppressed. Each channel supports a quantized
conductance e2/h when electron-phonon processes can be
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neglected. These properties are highly desirable in electronic
applications and their successful implementation would be a
step toward a dramatic reduction of power loss in electronic
devices. A controlled on-chip patterning of topological re-
gions on a substrate would open a door for harnessing the
lossless edge mode transport. As illustrated in Fig. 6, by
controlled impurity doping it is possible to imprint multiple
topological domains with accompanying edge modes.

In Fig. 6 (inset), we envision an integrated topological
circuit which can be flexibly imprinted on a substrate and
where edge modes connect different terminals. As mentioned
above, the topological areas could also be defined by locally
tuning the filling by electrical means. The edge modes would
allow lossless flow of currents between terminals and combine
into larger functional units. Edge state circuits could also serve
as thermal guides capable of removing parasitic heat from
chosen terminals.

VI. CONCLUSION

In this work we studied the possibility of engineering
designer Chern insulators through impurity doping. Our work
established a method of boosting the functionality of the quan-
tum anomalous Hall effect in magnetic topological insulators.
The magnetic patterning can, regardless of magnet configu-
ration, lead to robust topological domains where the Chern
number is increased by one compared to the half-quantized
background value. More generally, our work paves the way for
on-chip fabrication of tunable Chern insulators and harnessing
the unique properties of topological matter in applications.
We note that an alternative scheme for engineering a Chern
insulator starting from a thin-film strong topological insulator
has already been realized in an experiment [42]. The mech-

anism used is not based on bound states but on the surface
properties alone.

An interesting question for future research is how to fab-
ricate Chern insulators by impurities on topologically trivial
platforms. In addition, realizing robust states with higher
Chern numbers as in superconductors and achieving topolog-
ical states by potential impurities would further advance the
field of designer topological systems.
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APPENDIX A: EXPRESSIONS FOR THE GREEN’S
FUNCTIONS

We will prove Eqs. (4) and (8) from the main text by
solving the integrals

Ĝ+
0 (r; E ) =

∫
d2k

(2π )2
[(E + i0+)1 − ĤS (k)]−1e−ik·r , (A1)

Ĝ+
0 (0; E ) =

∫
d2k

(2π )2
[(E + i0+)1 − ĤS (k)]−1 (A2)

in terms of the bulk Hamiltonian

ĤS (k) = vF (kxτx + kyτy) + Mτz , (A3)

where, as described in the main text, we have set μ to 0.
The Green’s function for position r �= 0 is, if we transform

to radial k-space coordinates, given by

Ĝ+
0 (r; E ) =

∫
d2k

(2π )2

E1 + vF k(cos θkτx + sin θkτy) + Mτz

E2 − v2
F k2 − M2

e−ikr cos(θk−θr ) , (A4)

where θk (θr) is the angle between k (r) and the x axis. By
looking at the matrix structure, we see that the result will take
the form

Ĝ+
0 (r; E ) =

(
(E + M )I1(r) I−

2 (r)
I+
2 (r) (E − M )I1(r)

)
, (A5)

where

I1(r; E ) =
∫

d2k
(2π )2

1

E2 − v2
F k2 − M2

e−ikr cos(θk−θr ) , (A6)

I±
2 (r; E ) =

∫
d2k

(2π )2

vF k(cos θk ± i sin θk )

E2 − v2
F k2 − M2

e−ikr cos(θk−θr ) .

(A7)

To solve these integrals, we will need to use the following
integral equations for, respectively, the Bessel function of the
first kind Jn(x) and the modified Bessel function of the second

kind Kn(x): ∫ 2π

0
dθ ei(x cos θ+nθ ) = 2π inJn(x) , (A8)∫ ∞

0
dk

kJ0(kx)

k2 + b2
= K0(bx) , (A9)

where x ∈ R+, n ∈ Z, and Re[b] > 0. By straightforward
application of the above identities together with the following
identities concerning the derivative of the Bessel function with
respect to its argument:

∂

∂x
J0(x) = −J1(x),

∂

∂x
K0(x) = −K1(x) , (A10)

we find

I1(r; E ) = − 1

2πv2
F

K0

(
r

ξ

)
, (A11)
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where we introduced the correlation length ξ ≡
vF /

√
M2 − E2. The result is only valid for energies

|E | < |M|, but as we are focusing on subgap bands, this
is true by definition and does not present a problem. For the
second integral, we get

I±
2 (r) = e±iθr

(2π )2

∫ ∞

0
dk

vF k2

E2 − v2
F k2 − M2

∫ 2π

0
dφ e−ikr cos φ±iφ,

(A12)

with φ ≡ θk − θr . Applying the previously mentioned Bessel
identities, this yields

I±
2 (r) = ie±iθr

2πv2
F

√
M2 − E2K1

(
r

ξ

)
. (A13)

Noting that e±iθr = cos θr ± i sin θr = x±iy
r , and combining

our results into Eq. (A5), we find that the Green’s function
at nonvanishing r = |r| is

Ĝ+
0 (r; E ) = − 1

2πv2
F

(
(E + M )K0(r/ξ ) −i vF

ξ

x−iy
r K1(r/ξ )

−i vF
ξ

x+iy
r K1(r/ξ ) (E − M )K0(r/ξ )

)
,

(A14)

which, when written in terms of Pauli matrices, is Eq. (4) in
the main text.

For r = 0 the above expression diverges, so it is necessary
to consider this case separately:

Ĝ+
0 (0; E ) =

∫
dkx dky

(2π )2

E1 + vF (kxτx + kyτy) + Mτz

E2 − v2
F k2 − M2

.

(A15)

The terms linear in kx, ky are odd and will therefore vanish, so
with the substitution u = v2

F k2, we get

Ĝ+
0 (0; E ) = E1 + Mτz

4πv2
F

∫ ∞

0

du

E2 − u − M2
. (A16)

The integral diverges as written. We assume instead that it is
only well defined up to some bulk bandwidth Dbulk = vF kmax,

such that

Ĝ+
0 (0; E ) ≈ E1 + Mτz

4πv2
F

∫ D2
bulk

0

du

E2 − u − M2

= −E1 + Mτz

4πv2
F

ln

(
1 + D2

bulk

M2 − E2

)
, (A17)

which corresponds to Eq. (8). If Dbulk � M and M � E , this
reduces to

Ĝ+
0 (0; E ) ≈ −E1 + Mτz

2πv2
F

ln

(
Dbulk

|M|
)

. (A18)

APPENDIX B: DERIVATION OF THE
TIGHT-BINDING MODEL

The full Hamiltonian of the system is of the form

Ĥ = Ĥ0 + δĤ (r) , (B1)
where Ĥ0 = ĤS is translationally invariant, and the spatially
dependent part can be described by

δĤ (r) = ĤI (r) =
∑

j

V̂ (r)δ(r − r j )

=
∑

j

(V01 + VMτz )δ(r − r j ) (B2)

for a collection of pointlike impurities at sites {r j}. From
the Schrödinger equation Ĥψ = Eψ we get, by grouping the
translationally symmetric terms to one side,(

E − Ĥ0
)
ψ (r) =

∑
j

V̂ (r)δ(r − r j )ψ (r) . (B3)

A Fourier transform yields[
E − Ĥ0(k)

]
ψ (k) =

∑
j

V̂ (r j )ψ (r j )e
ik·r j . (B4)

We can then multiply by e−ik·ri for some ri ∈ {r j} and inte-
grate to get

ψ (ri ) =
∑

j

(∫
dk

(2π )2
Ĝ0(k; E )eik·(r j−ri )

)
V̂ (r j )ψ (r j ) ,

(B5)

where Ĝ0(k; E ) is the Green’s function corresponding to the
bulk Hamiltonian Ĥ0. This can be regrouped into Eq. (11) of
the main text by separating the terms at ri.
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