

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

Nafar Dastgerdi, J.; Marquis, G.; Sankaranarayanan, S.; Gupta, M.

Fatigue crack growth behavior of amorphous particulate reinforced composites

Published in: Composite Structures

DOI: 10.1016/j.compstruct.2016.06.071

Published: 01/10/2016

Document Version Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Published under the following license: CC BY-NC-ND

Please cite the original version:

Nafar Dastgerdi, J., Marquis, G., Sankaranarayanan, S., & Gupta, M. (2016). Fatigue crack growth behavior of amorphous particulate reinforced composites. *Composite Structures*, *153*, 782-790. https://doi.org/10.1016/j.compstruct.2016.06.071

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.

Effect of particle clustering on fatigue behavior of Mg-amorphous alloy composite

J. Nafar Dastgerdi¹, P. Lehto¹, H. Remes¹,

¹ Department of Mechanical Engineering, School of Engineering, Aalto University, P.O. Box 14300, FIN-00076 Aalto, Finland

* Corresponding author (Jairan.nafardastgerdi@aalto.fi)

1 Introduction

New lightweight composites are needed to improve the energy efficiency of engineering structural materials, in different industries. Further development of the new advanced composite structures requires the utilization of new materials advanced production and technology. In this development work, microstructural characterization of composite materials is a necessity for understanding the relationships between microstructural quantities and mechanical properties. Mechanical properties of particulate reinforced composites are highly dependent on the real microstructure of the composite, particle distribution and volume fraction [1-5]. In this respect, methods capable of measuring the local volume fraction and particle distribution in particulate reinforced composites are most desirable. These measures can be used e.g. for quality control of a composite material, and tuning of processing parameters.

Amorphous alloys/bulk metallic glasses (BMG) are novel metallic materials which are different from conventional crystalline metals/alloys. They exhibit superior properties such as extremely high strength (1 to 2 GPa), large elastic strain limit of $\sim 2\%$ and superior corrosion resistance, etc. [6-7]. Recently, there have been some attempts to use the metallic glass particles as reinforcement in metal matrix composites [8-11]. In this study, Ni₆₀Nb₄₀ mechanically alloyed amorphous powders were used to reinforce pure Mg metal, to produce Mg-amorphous alloy composite. In automotive and aerospace industries, composites should sustain mechanical loading. Thus, special distribution of reinforcements as one of the fundamental microstructural quantities is investigated on fatigue strength of amorphous particulate reinforced composites as a new class of lightweight composite materials prior to their application in industries.

2 Experimental details

2.1. Material

The material sample preparation has been explained in Ref. [12]. Since the composites are fabricated by a powder metallurgy and extrusion process, it is often difficult to obtain a uniform and homogeneous distribution of reinforcement particles practically. The results of tensile testing and microstructural characterization clearly reveal that the distribution of reinforcement particles controls the extrusion load [12]. Fig. 1ab show the microstructures of 3 vol. % Ni₆₀Nb₄₀/Mg composites chosen from different billets extruded at 650 and 550 psi, respectively. Fig. 1c-d shows the microstructure of 5 vol. % Ni₆₀Nb₄₀/Mg composites chosen from various billets extruded at 750 and 600 psi, respectively.

Figure 1. Microstructure of composites: (a) 650 psi, (b) 550 psi, and (c) 750 psi, (d) 600 psi.

2.2. Specimens

For high cycle fatigue testing, hour-glass shaped round specimens were used; the dimensions of the specimens are shown in Fig. 2.

Figure 2. Configuration of fatigue specimen. 3 Results and discussion

Fatigue testing is done for 3 vol. % and 5 vol. % composite with different extrusion load at stress amplitude 70 MPa and 90 MPa, respectively. Figure 3a-6a shows fracture surface observations of the specimens with different particles distribution for 3 and 5 vol. % composite, respectively. The results of fatigue failure are listed in Table 1. It is evident that specimens with more uniform particle distribution possesses a superior fatigue strength.

Those is ites and of the fact to still p	Table	1.]	Results	of t	fatigue	testing
--	-------	------	---------	------	---------	---------

Material		N_f	
3 Vol. %	650 psi	2.12×10^4	
	550 psi	1.01×10^4	
5 Vol. %	750 psi	1.17×10^{4}	
	600 psi	2.01×10^{2}	

In this study, the local volume fraction of particles have been measured using the pointsampled intercept length method [13]. The method has previously been used for the characterization of grain size distribution in welded structural steel [14-15]. In this investigation, the method is extended for the characterization of particle local volume fraction variation by including measurement directionbased averaging. The heterogeneity of the particle spatial distribution is characterized by using measurement direction-based averaging over the fractured surface of the specimens. Moreover, the local volume fraction variation and clustering of particles have been investigated by defining the local area-based averaging. Figures 3b-4b show the variation of particle volume fraction over the fractured surfaces of 3 vol. % Ni₆₀Nb₄₀/Mg composites chosen from different billets extruded at 550 and 650 psi using horizontal and vertical line probes. The width of the rectangular probe moved across the images is 300 μ m. In these figures, the local volume fraction variation and clustering of particles have depicted simultaneously using the local areabased averaging, with the area probe size $300 \times 300 \mu$ m rectangle.

Figure 3. 3 vol. % composite extruded at 550 psi: (a) fracture surface observations (b) The variation of volume fraction and local clustering of particles over the fractured surface.

Figure 4. 3 vol. % composite extruded at 650 psi: (a) fracture surface observations (b) The variation of volume fraction and local clustering of particles over the fractured surface.

In Fig 3b, the clustering of particles on the top and right side of the fractured surface is visible from the moving averages, while in Fig 4b, the variance around the mean particle volume fraction is quite small. The same analyses have been done over the fractured surfaces of 5 vol. % Ni₆₀Nb₄₀/Mg composites chosen from different billets extruded at 600 and 7500 psi, respectively, as shown in Figures 5-6. From the visualizations of local area-based averaging over the fractured surface, it can be seen that some local regions have a higher concentration of particles than the average volume fraction in the material. It is evident that differences between local and mean volume fractions are higher in the case of non-uniform particle distribution. Based on fracture surface analyses, it seems that the crack initiation happens at the location where there is a large particle gradient: highly clustered areas or the surrounding material near a clustered area.

Figure 5. 5 vol. % composite extruded at 600 psi: (a) fracture surface observations (b) The variation of volume fraction and local clustering of particles over the fractured surface.

Figure 6. 5 vol. % composite extruded at 750 psi: (a) fracture surface observations (b) The variation of volume fraction and local clustering of particles over the fractured surface.

Conclusion

The results of this study shows the spatial distribution of reinforcements is one of the fundamental microstructural quantities and correlates with mechanical properties of particulate reinforced composites, such as fatigue properties. The distribution of reinforcement particles controls the extrusion load. In the case of non-uniform particles distribution, there are several fracture origins and these conditions influenced fatigue life of the material. The specimens extruded at higher load have higher fatigue life.

This kind of information enables one to discriminate quantitatively the difference of the same kind of materials manufactured by different methods. Thus, this information will be useful for the quality control of materials and the improvement of manufacturing process.

References

[1] J. Lorca. Fatigue of particle and whiskerreinforced metal matrix composite. Prog. Mater. Sci. 47 (2002) 283-353.

[2] H. Singh, Y. Mao, A. Sreeranganathan, A.M. Gokhale, Application of digital image processing for implementation of complex realistic particle shapes/morphologies in computer simulated heterogeneous microstructures. Model. Simul. Mater. Sci. Eng. 14 (2006) 351–363.

[3] J. Segurado, J. Llorca, A new threedimensional interface finite element to simulate fracture in composites. Int. J. Solids. Struct. 41 (2004) 2977–2993.

[4] X. Deng, N. Chawla, Modeling the effect of particle clustering on the mechanical behavior of SiC particle reinforced Al matrix composites. J. Mater. Sci. 41 (2006) 5731–5734.

[5] J. Nafar Dastgerdi, G. Marquis, S. Sankaranarayanan, M. Gupta, Fatigue crack growth of amorphous particulate reinforced composites, Compos. Struct. 153 (2016), 782-790.

[6] A. Inoue, Bulk amorphous alloys–practical characteristics and applications. Materials science foundation (monograph series). Trans Tech Publication Inc, 1999.

[7] M.H. Lee, D.H. Bae, W.T. Kim, D.H. Kim. Ni-based refractory bulk amorphous alloys with high thermal stability. Mater. Trans. 44 (2003) 2084–7.

[8] J.Y. Kim, S. Scudino, Kühn U, Kim BS, Lee MH, Eckert J. Production and characterization of brass-matrix composites reinforced with Ni59Zr20Ti16Si2Sn3 glassy particles. Metals 2 (2012) 79–84.

[9] S. Jayalakshmi, S. Gupta, S. Sankaranarayanan, S. Sahu, M. Gupta. Structural and mechanical properties of Ni60Nb40 amorphous alloy particle reinforced Al-based composites produced by microwave–assisted rapid sintering. Mater. Sci. Eng. A 581 (2013) 119–127.

[10] S. Jayalakshmi, S. Sahu, S. Sankaranarayanan, S. Gupta, M. Gupta. Development of novel Mg–Ni60Nb40 amorphous particle reinforced composites with enhanced hardness and compressive response. Mater. Des. 53 (2014) 849–855.

[11] S. Sankaranarayanan, V. Hemanth Shankar, S. Jayalakshmi, N.Q. Bau, M. Gupta. Development of high performance magnesium composites using Ni50Ti50 metallic glass reinforcement and microwave sintering approach. J. Alloys. Compd. 627 (2015) 192– 199.

[12] J. Nafar Dastgerdi, G. Marquis, B. Anbarlooie, S. Sankaranarayanan, M. Gupta, Microstructure-sensitive investigation on the plastic deformation and damage initiation of amorphous particles reinforced composites, Compos. Struct. 142 (2016), 130-139.

[13] ASTM E1382 - 97 (2004) Standard test methods for determining average grain size using semiautomatic and automatic image analysis. ASTM International, West Conshohocken.

[14] P. Lehto, H. Remes, T. Saukkonen, H. Hänninen, J. Romanoff, Influence of grain size distribution on the Hall–Petch relationship of welded structural steel. Mater Sci Eng A 592 (2014) 28–39.

[15] P. Lehto, J. Romanoff, H. Remes, T. Sarikka, Characterisation of local grain size variation of welded structural steel, Weld World 60 (2016) 673-688.