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a b s t r a c t 

The inversion of reflectance models is a generalizable tool to obtain estimates on forest biophysical pa- 

rameters, such as leaf area index, with theoretically little information need from a study area, instead 

relying on the knowledge about physical processes in the forest radiation regime. The use of prior infor- 

mation can greatly improve the reflectance model inversion, however, the literature does not yet provide 

much information on the selection of priors and their influence on the inversion results. In this study, we 

used a Bayesian approach to invert the PARAS forest reflectance model and retrieve leaf area index from 

Sentinel-2 MSI and Landsat 8 OLI multispectral satellite images. The PARAS model is based on the the- 

ory of spectral invariants, which describes the influence of wavelength-independent parameters on forest 

radiative transfer. The Bayesian inversion approach is highly flexible, provides uncertainty quantification, 

and enables the explicit incorporation of prior knowledge into the inversion process. We found that the 

choice of prior information is crucial in inverting a forest reflectance model to predict leaf area index. 

Regularizing and informative priors for leaf area index strongly improved the predictions, relative to an 

uninformative prior, in that they counteracted the saturation effect of the optical signal occuring at high 

values for leaf area index. The predictions of leaf area index were more accurate for Landsat 8 than for 

Sentinel-2, due to potential inconsistencies in the visible bands of Sentinel-2 in our data, and the higher 

spectral resolution. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Forest reflectance models aim at providing a generalized tool 

to researchers to both understand and simulate the reflectance 

of a forest stand, given a set of forest biophysical parameters, 

for example the leaf area index (LAI), that influence the forest 

radiation regime. These models are typically ill-posed, which 

makes their inversion, i.e., the retrieval of forest biophysical 

variables, a non-trivial problem. A number of inversion methods 

have been suggested in the literature [e.g. 19 ], and most methods 

produce point estimates as output of the forest reflectance model 

inversion. These point estimates are obtained by applying one 

of several radiative transfer inversion methods, that are, look-up 

tables, optimization methods, and neural networks, among others. 

These inversion methods have been proven to provide reasonable 

retrieval accuracy of forest biophysical variables, given that the 
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construction of the look-up table, or the training data for a neural 

network, cover the ecologically reasonable parameter range of 

radiative transfer model inputs [19] . However, the accuracy with 

which many inversion methods predict forest biophysical parame- 

ters strongly depends on the way they are parameterized, or what 

initial guess one chooses. Optimization algorithms in particular 

may be challenging due to their need for an initial value guess, 

which can lead to a significant error [45] . Recent advances in com- 

putations and algorithms related to Bayesian inference have made 

this inversion approach more accessible. The Bayesian inversion 

approach leverages the theoretical foundation of Bayes’ theorem 

and usually Markov Chain Monte Carlo (MCMC) algorithms to 

estimate the probability distribution of unknown parameters in 

a reflectance model. In the case of reflectance model inversion, 

those unknowns are the forest structural and spectral parameters, 

conditional on observed bottom-of-atmosphere (BoA) reflectance. 

The Bayesian framework features, among others, two properties 

that make it particularly suitable for reflectance model inversions, 

(1) the inversion result being a probability distribution rather than 

https://doi.org/10.1016/j.jqsrt.2019.05.013 
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a point estimate, which provides inherent uncertainty quantifi- 

cation, and (2) the possibility to explicitly incorporate existing 

knowledge on parameters into the model itself. A few studies have 

applied a Bayesian inversion approach to forest reflectance models 

[45,46,51] or the leaf optical model PROSPECT [37] with promising 

results, particularly in terms of uncertainty quantification. Varvia 

et al. [45] has laid out the ground work for a Bayesian inversion 

approach using the PARAS forest reflectance model [34] . 

The PARAS model is based on the theory of spectral invari- 

ants, which describes the influence of canopy structure on the for- 

est radiation regime. The model parameterizes the forest radiation 

regime using only few spectral and structural parameters, which 

makes it particularly suitable for a Bayesian inversion. Further- 

more, PARAS has already shown promising results in the inversion 

of hyperspectral data to retrieve leaf area index, and leaf and un- 

derstory optical properties [45,46] . 

Physically-based reflectance model inversion usually sets out 

to retrieve forest biophysical parameters, such as leaf area index 

or other canopy structural or biochemical parameters, from ob- 

served airborne or spaceborne imagery. This biophysical retrieval 

approach is only in part competing with empirical, or statistical, 

retrieval approaches because their relative advantages are rather 

different. The physical approach is more suitable for large area, 

multi-sensor and low field data scenarios, whereas the empiri- 

cal approach is more suitable for regional applications with high 

prediction accuracy requirements [38] . A key property of physical 

models is their attempt to be sensor independent, which is becom- 

ing more important with every new satellite mission to be able 

to maintain a consistent theoretical foundation for combining data 

from different sensors. 

In optical remote sensing of vegetation, two recent satellite 

missions have attracted a lot of attention in science and indus- 

try communities; the high resolution optical satellite sensors on- 

board Sentinel-2a and -2b (Multi Spectral Instrument, MSI), and 

onboard Landsat 8 (Operational Land Imager, OLI). Hereafter, we 

use the names of the satellite platforms and their respective sen- 

sors synonymously, abbreviated as S2 and L8. These two multi- 

spectral sensors share bands of similar spectral sensitivity, which 

appear to generally agree well [e.g. [4,22,25] ], despite some stud- 

ies reporting differences particularly in the red band, where S2 ap- 

pears to exhibit lower reflectance in some cases [20,44,47] . S2 fur- 

ther features three bands in the red edge spectral region, which 

has been shown to slightly improve retrievals of forest biophysi- 

cal parameters [20] . Besides the novelty of the additional red edge 

bands of S2, both sensors have an unprecedented spatial resolution 

for freely available satellite imagery; 10/20m resolution for vege- 

tation bands of S2, and 30m resolution for L8. From a Bayesian 

reflectance model inversion perspective, these two sensors are in- 

teresting because previous studies used PARAS model only on hy- 

perspectral data [46] . The effect of spectral resolution was previ- 

ously studied by Shiklomanov et al. [37] at leaf level, where they 

pointed out that inversion uncertainty increases with decreasing 

spectral resolution. They also noted that L8 in particular has, de- 

spite only subtle differences in spectral response, performed better 

in the model inversion than its predecessors Landsat 5 and Landsat 

7, potentially hinting that the multispectral resolution of L8 to be 

in a particularly interesting range. 

Despite many effort s f or sensor-intercomparison in f orest appli- 

cations in general [e.g. 1,12 ], studies that analyze the relative po- 

tential of S2 and L8 for forest biophysical parameter retrieval re- 

main few, and are limited to empirical modeling approaches [e.g. 

20 ]. To our knowledge, this is the first study to apply a physically- 

based forest biophysical parameter retrieval using S2 and L8 data. 

Besides the attempt to compare S2 and L8 in their potential for for- 

est reflectance model inversion, we further set out (1) to determine 

whether this inversion approach is feasible at this level of spectral 

resolution, (2) to estimate the inversion quality through the accu- 

racy of leaf area index retrievals, and (3) to analyze the influence 

of the choice of prior distribution on the inversion accuracy. 

2. Material and methods 

2.1. Study area, field and lidar plots 

The study area in Suonenjoki, Central Finland (45 ◦18’N, 
123 ◦21’W) is dominated by the typical Finnish boreal forest tree 

species Norway spruce ( Picea abies (L.) Karst.), Scots pine ( Pinus 

sylvestris L.), and Silver and Downy birch ( Betula pendula Roth and 

Betula pubescens Ehrh.). The area is characterized by diverse for- 

est structure and density, with average stand size of about 2 ha. 

Our reference data consisted of 746 lidar plots for which the leaf 

area index ( L ) was predicted using airborne lidar data. The LiDAR 

data were collected on 4 September, 2014 using a Leica ALS70-HA 

laser scanning system. It has a wavelength of 1064 nm and a beam 

divergence of 0.22 mrad. The flight altitude was 20 0 0 m above 

ground level, and the scan angle was constrained to ± 15 degrees. 

The nominal pulse density of the lidar data was 0.75 pulses per 

square meter, with a footprint size of about 44 cm. There were 19 

plots with field-measured L within the scanned area which were 

used to train regression models for predicting L for the lidar plots. 

L was retrieved from the fraction of all echos over 1.3 m above 

ground, and canopy cover from the fraction of all first and single 

echos over 1.3 m above ground, based on Korhonen et al. [21] . The 

lidar plots had a square shape with edge length of 60 m, and were 

placed over a set of nine (S2) or four (L8) pixels. Due to geoloca- 

tion differences of the images, the plot center points were located 

around 16 m away from each other. More details are available in 

Korhonen et al. [20] , where the dataset was first described and is 

available from their supplemental materials. 

2.2. Satellite images 

We used multispectral satellite images from Sentinel-2a MSI 

(S2) and Landsat 8 OLI (L8) as provided in the dataset of Korhonen 

et al. [20] . The S2 and L8 images were acquired on 17 August 2015 

09:50am UTC (absolute orbit number 0 0 0791, tile number 35VNK, 

solar zenith angle 49.3 ◦), and on 22 August 2015 09:22am UTC 

(path 187, row16, solar zenith angle 51.7 ◦), respectively, temporally 

close to the field campaign. 

The S2 image was obtained from Sentinel Scientific Data 

Hub [10] as Level-1C product (geometrically corrected top-of- 

atmosphere reflectance). An atmospheric correction was done us- 

ing the Sen2cor module version 2.2.1 within the Sentinel 2 Toolbox 

(S2TBX), Sentinel Application Platform (SNAP) version 4.0.2. In this 

study, spectral bands with 10 m and 20 m resolution were used. 

S2’s band 8 was omitted from the analysis due to potential in- 

consistencies with L8, as recommended by Li et al. [22] . Geomet- 

rically corrected Landsat 8 Surface (bottom-of-atmosphere, BoA) 

Reflectance Climate Data Records [27] were downloaded from the 

United States Geological Survey [43] . The square-shaped lidar plots 

contained the average of nine (S2) and four (L8) pixels. 

2.3. PARAS model and parameterization 

The forest reflectance model PARAS [34] is based on the concept 

of spectral invariants, specifically the photon recollision probability, 

and relies only on a handful of forest structural and spectral pa- 

rameters. The model simplicity makes PARAS suitable for inversion 

with Markov Chain Monte Carlo, as the ill-posedness of a radiative 

transfer model is expected to increase with the number of param- 

eters, as parameter identification becomes more problematic [e.g. 

32 ]. PARAS models forest reflectance as 

r(θi , θv , λ) = r G (θi , θv , λ) + r C (θi , θv , λ) , (1) 
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or in other words, the forest stand bidirectional reflectance factor 

( r ) consists of a reflectance contribution from the ground or un- 

derstory ( r G ) and the tree canopy ( r C ). Both contributions depend 

on the illumination and viewing zenith angles ( θ i and θ v , respec- 

tively), and the wavelength ( λ). 
The understory contribution describes the proportion of sunlit 

ground area that is visible to the sensor: 

r G (θi , θv , λ) = T (θi ) T (θv ) ρG (λ) , (2) 

with T , canopy transmission (also called canopy gap fraction), 

forming the bidirectional gap probability T ( θ i ) T ( θ v ) in illumina- 

tion and viewing direction, and the understory hemispherical- 

directional reflectance factor ( ρG ). 

The tree canopy contribution to the reflected signal is modeled 

as the fraction of intercepted sunlight that is scattered into the 

viewing direction: 

r C (θi , θv , λ) = i 0 (θi ) ω C (λ) Q(λ) , (3) 

with the canopy interceptance i 0 (θi ) = 1 − T (θi ) , the canopy 

albedo ω C and the ratio of backscattered radiation Q . The 

canopy albedo is based on the photon recollision probability p , 

or the probability that a photon, upon an interaction with a 

canopy element, will interact with another element within the 

canopy. Expressing this assumption mathematically, and using 

ω L to denote the canopy element albedo, one gets the geo- 

metric series ω C = ω L (1 − p) + ω 
2 
L p(1 − p) + . . . + ω 

n +1 
L 

p n (1 − p) = ∑ ∞ 

k =1 ω 
k +1 
L 

p k (1 − p) , where k denotes the scattering order (i.e. k = 

1 is first-order scattering, or photons that escape the canopy after 

one interaction). This geometric series converges to 

ω C (λ) = ω L (λ)(1 − p) 
1 

1 − pω L (λ) 
(4) 

with the common ratio ω L p , as the photon has additional interac- 

tions with canopy elements and is scattered, and the first term of 

the series is ω L (1 − p) , which, from a causal perspective, are actu- 

ally the first and last parts of the sequence. That is, the photon is 

scattered from its initial interaction within the canopy ( ω L ) and is 

ultimately escaping the canopy ( 1 − p). 

Q is the directional parameter describing the fraction of canopy- 

scattered radiation that escapes in an upward direction, i.e. to- 

wards the sensor. This backscatter fraction was parameterised as 

proposed by Mõttus and Stenberg [28] : 

Q = 

1 

2 

(
1 + q 

1 − pω L (λ) 

1 − pqω L (λ) 

)
. (5) 

This parameterisation of Q incorporates an additional spectral in- 

variant parameter, q , which was empirically determined by Mõttus 

and Stenberg [28] as q = exp (−0 . 1684 L e ) . The effective leaf area 

index L e in this context is related to the (true) leaf area index as 

L e = βL via the clumping index β . We use the term effective leaf 

area index as defined in Black et al. [3] . 

The photon recollision probability p contains the most informa- 

tion on forest structure in PARAS model, and it depends on both 

clumping and the angular dependency of canopy gaps over the en- 

tire hemisphere. We parameterized p following Stenberg [40] : 

p = 1 − i D β

L e 
, (6) 

with the diffuse interceptance i D , the clumping index β and the 

effective leaf area index L e . The diffuse interceptance in PARAS is 

described as 

i D = 1 − 2 

∫ π/ 2 

0 

T (θ ) sin θ cos θ dθ . (7) 

The angular relationship between L e and T was modeled using 

the modified Beer’s law with a constant clumping index: 

T (θ ) = exp 

(
−G (θ ) L e 

cos θ

)
, (8) 

with the projection of unit leaf area into a zenith angle G ( θ ). Pa- 
rameterizing G requires estimates of the leaf angle distribution, 

which we incorporated in our inversion model. G depends on leaf 

angle ( θ L ) as [49] 

G (θ ) = 

∫ π/ 2 

0 

A (θ, θL ) f (θL ) dθL . (9) 

A in this equation describes the projection area ratio of leaves with 

zenith angle θ L into the direction θ , and incorporates assump- 

tions on the shape of leaves, and f is the frequency distribution 

of leaf angles. We modeled A separately for deciduous and conifer 

trees. For deciduous leaves, we used the projection function for flat 

leaves [48] 

A (θ, θL ) = 

{
cos θ cos θL , | cot θ cot θL | > 1 

cos θ cos θL 
(
1 + 

2 
π ( tan � − �) 

)
, otherwise, 

(10) 

with � = cos −1 ( cot θ cot θL ) . For conifer leaves, we used the func- 

tion for non-flat leaves proposed by Stenberg [39] : 

A (θ, θL )= 

2 

π2 

∫ π

0 

√ 

1 − ( sin θ sin θL + cos θ cos θL cos τ ) 2 d τ. (11) 

We modeled f also separately for deciduous and conifer leaves. De- 

ciduous trees in Finland are predominantly birch species, for which 

data was available from Pisek et al. [31] , who also clearly recom- 

mended the use of planophile leaf angle distributions for boreal 

broadleaved tree species. Therefore, we used a two-parameter Beta 

distribution [13] to model the leaf angle distribution of deciduous 

leaves from the existing data as: 

f (θL ) = 

1 

B (μ, ν) 

(
1 − θL 

90 

)μ−1 (
θL 
90 

)ν−1 

, (12) 

with the Beta function B , and two parameters μ and ν , which de- 

pend on the mean and standard deviation of θ L . This distribution 

was recommended by Wang et al. [48] for cases where data on 

mean and standard deviation is available. There was a lack of data 

for boreal conifer tree species leaf angle distributions, hence we 

assumed a spherical leaf angle distribution, following De Wit [6] 

f (θL ) = sin (θL ) . (13) 

We approximated the integrals in Eqs. (9) –(11) by quadrature using 

10 evenly spaced locations, and Eqs. (7) and (8) at five discrete 

angles with associated weights, corresponding to the method used 

for the LAI-20 0 0 instrument [23] . 

In a nutshell, the PARAS model has the unknown parameters 

ρG , ω L , T ( θ i ), T ( θ v ), q, p . The latter two parameters, q and p , re- 

quire further parameterization, and in particular p requires a com- 

plete parameterization of forest structure, namely through the ef- 

fective leaf area index, the clumping index, and the leaf angle dis- 

tribution. We assumed a planophile leaf angle distribution for de- 

ciduous trees [31] , and a spherical distribution for conifer trees. 

The PARAS model does not inherently model tree species, however, 

it is possible to model tree species through a mixture parameter 

for leaf optical properties and clumping index. We distinguished 

only deciduous and conifer tree species to avoid parameter identi- 

fication problems between the two conifer species, Norway spruce 

and Scots pine, and refer to the species parameter as conifer share, 

which is defined as the share of conifer species in the leaf area 

index. Parameters that are modeled by species are denoted by a 

subscript “c” for conifer, and “d” for deciduous. 

2.4. Bayesian reflectance model inversion 

The forward problem of PARAS, which simulates forest stand re- 

flectance from given forest structural and spectral parameters, can 
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be stated as r = h (x ) + ε. In this context, r ∈ R 
m ×n is the observa- 

tion matrix, it contains the satellite pixel measurements for the 

number of plots m = 746 and the number of sensor bands n , i.e. 

n = 6 for L8, and n = 9 for S2. 

The vector of unknown parameters x = [ ρT 
G,λ

, ω 
T 
L,c,λ

, ω 
T 
L,d,λ

, L e,i , 

βc,i , βd,i , p c,i ] 
T ∈ R 

4 m +3 n contains all input parameters of the PARAS 

model in a hierachical modeling approach. The optical properties 

ρG , ω L,c , and ω L,d were modeled for each spectral band λ of the 

respective sensor, at the level of the entire study area. The forest 

structural properties L e , βc , βd , p c were modeled for each plot i in 

the study area. We chose this hierarchical modeling approach to 

leverage assumed similarities between plots. 

The following elaboration on the Bayesian inversion of PARAS 

closely follows Varvia et al. [45] . In the Bayesian approach, both 

observed and unknown parameters are modeled as random vari- 

ables. We therefore denote the prior probability density by P ( x ), 

which contains available information on x before any measure- 

ments were done. We relied on readily available information from 

peer-reviewed literature in combination with some practical con- 

straints to select suitable prior distributions for each parameter 

in x . More details on prior selection are given in Section 2.5 . In 

Bayesian inference, the prior density is updated by the information 

gained from satellite measurements using Bayes theorem 

P (x | r) = 

P (r| x ) P (x ) 
P (r) 

∝ P (r| x ) P (x ) , (14) 

where P ( x | r ) is the posterior probability density, P ( r | x ) is the likeli- 

hood function, and P ( r ) is the posterior marginal density. The lat- 

ter term serves to normalize the posterior, and can be neglected 

in the further analysis. The posterior density is the full solution to 

the Bayesian inverse problems, i.e. it is a joint probability density 

of all forest structural and spectral parameters in PARAS. The like- 

lihood function contains the information from the measurement, 

i.e. the satellite bands’ observed BoA reflectance factor for the li- 

dar plots. The likelihood is coincident with the forward problem, 

i.e. r = h (x ) + ε, where ε ∈ R 
n is an additive error term, containing 

both model error and measurement noise. In the case of additive 

error, the likelihood function becomes 

P (r| x ) = P ε (r − h (x )) , (15) 

with the error density P ε modeled as a multivariate normal distri- 

bution with zero mean, and an uncorrelated covariance with stan- 

dard deviation of 20% of the observations in each band. 

2.5. Prior choices 

To study the effect of prior choices on the inversion result, we 

chose three different prior distributions for the effective leaf area 

index: 

P (L e ) = 

{
1 / 10 , 0 ≤ L e ≤ 10 
0 , otherwise 

, (16) 

P (L e ) = 

{
N (2 , 1) , 0 ≤ L e ≤ 10 
0 , otherwise 

, and (17) 

P (L e ) = 

{
N (0 , 2) , 0 ≤ L e ≤ 10 
0 , otherwise 

, (18) 

where N denotes a normal distribution, with their respective 

means and standard deviations. 

These three priors resemble different modeling approaches. The 

first approach is uninformative ( Eq. (16) ), it makes no assumption 

about L e other than imposing a range of possible values. The sec- 

ond prior is informative ( Eq. (17) ), it assumes that the probability 

distribution for L e in any plot follows the distribution of L e in the 

geographical region. We approximated this assumption by a nor- 

mal distribution, based the results of Härkönen et al. [14] , who es- 

timated L e from the Finnish National Forest Inventory data 2004–

2008. The third prior is regularizing ( Eq. (17) ), it formulates the 

probability distribution of L e particularly to regularize the inversion 

in a way that counteracts a saturation effect of the optical signal at 

high values of L e . This saturation effect causes the relationship be- 

tween L e and forest stand reflectance to flatten out in dense forest 

stands, leading to high uncertainty and potential overestimation of 

L e in the inversion ( Fig. 3 ). Hence, the third prior was chosen in 

anticipation and to counteract such a saturation effect. 

The prior for conifer clumping index ( β) is based on the as- 

sumption that shoot clumping is the main cause for non-random 

distribution of canopy elements. Following Stenberg et al. [41] , a 

shoot clumping index can be expressed as four times the silhouette 

to total area ratio (STAR) of a shoot. The observed range for shoot 

STAR ranges from about 0.1 to 0.22 [41] , resulting in a clumping 

index of 0.4 to 0.88. For the prior of β , we chose a mean of 0.6 

and a standard deviation of 0.2 to assign the highest probability 

to the observed range of shoot STAR, but simultaneously allow the 

clumping index to take values beyond this range, which reflects on 

the little known influence of higher level clumping. In deciduous 

trees, shoot clumping is non-existent, and the common assump- 

tion is that the random leaf distribution holds. To be able to quan- 

tify a potential influence on higher level clumping, e.g. at crown or 

stand level, we modeled a separate clumping index for deciduous 

trees centered at 1, with a standard deviation of 0.2. The clump- 

ing index for both species were constrained within the range 0.05 

and 1.1. The dominant tree species was assumed to be coniferous, 

expressed through the prior for the conifer share p c with mean of 

0.8 and standard deviation of 0.5. 

Priors for leaf and understory optical properties were obtained 

from published measurement data. We used the spectrometer 

measurements from Hovi et al. [17] for pine, spruce, and birch leaf 

optical properties. This database contains seasonal measurements 

of 25 boreal tree species, with reflectance and transmittance mea- 

surements reported for several samples and stratified by shoot age, 

leaf side, and crown position. We selected the measurements for 

birch on 25 August 2016, and for pine and spruce on 12 Septem- 

ber 2016, which were the closest dates to the day of year of the 

satellite image acquisitions. We added reflectance and transmit- 

tance measurements to get leaf albedo, and averaged over shoot 

age, leaf side, and crown position as well as over individual sam- 

ples. Finally, the spectra for pine and spruce were averaged to form 

a single conifer leaf albedo. Understory hemispherical-directional 

reflectance factor (HDRF) data came from Hovi et al. [16] , where 

we used the measurements from June 2010, and averaged over the 

sub-xeric, mesic, and herb rich site types. The spectral data was 

available in the wavelength region between 400 and 2400 nm. We 

converted the spectra to the respective sensor bands of S2 and L8 

using the sensor-specific spectral response functions. These were 

obtained from the Sentinel 2 Document Library [9] and Barsi et al. 

[2] . The resulting mean spectra for leaf and understory were used 

as the prior means for the deciduous, conifer, and understory opti- 

cal properties. 

Spectral properties were modeled as multivariate normal dis- 

tributions, centered at their measured values. The covariance be- 

tween the individual bands was crucial for forest reflectance model 

inversion to avoid parameter identification problems. In creating a 

covariance matrix, we followed the correlation concept laid out by 

Varvia et al. [45] . The correlation matrix R between bands comes 

from three weighted components: 

R = 1 κall + R part κpart + I κind , (19) 

where the unitary matrix means the correlation between all bands, 

R part means the correlation between selected groups of bands that 
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are assumed similar, and the identity matrix means a random com- 

ponent for each individual band. The above matrices have dimen- 

sions n bands ×n bands , i.e. 6 ×6 for L8 and 9 ×9 for S2. The factors 

κ are the weighting coefficients, and we used κall = 0 . 1 , κpart = 

0 . 2 , κind. = 0 . 7 . To obtain R part , the sensor bands were grouped, 

with the visible bands, and the red edge 1 band of S2 forming the 

first group, the near infrared (NIR) band being its own group, to- 

gether with red edge 2 and 3 bands of S2, and the shortwave in- 

frared (SWIR) bands 1 and 2 forming the third group. Therefore, 

R part = 

⎡ 

⎢ ⎣ 

1 
4 ×4 

0 0 

0 1 
3 ×3 

0 

0 0 1 
2 ×2 

⎤ 

⎥ ⎦ (20) 

for S2, and, for L8, analogously the three partial matrices have di- 

mension 3 ×3, 1, and 2 ×2. The covariance matrix is obtained by 

 = SRS T , where R is the correlation matrix ( Eq. (19) ), and S is the 

diagonal matrix of standard deviations of individual bands, which 

we parameterized with 10% of the measured spectral data of each 

band. 

2.6. Computations and accuracy assessment 

For each of the three models, i.e. the different priors for L e , and 

per sensor, we sampled 50 0 0 samples in each of 16 parallel chains, 

with a burn-in phase of 50 0 0 samples. The computations were car- 

ried out in Python using the PyMC3 package [36] . 

We used a set of different accuracy metrics to assess the accu- 

racy of parameter retrievals from the inversion. The full solution 

to the inverse problem is the posterior distribution, approximated 

by MCMC sampling. To describe the posterior, we employed two 

types of metrics, based on credible intervals or point estimates. 

We used the credible interval of the posterior marginal distribu- 

tion that contains 95% of the probability mass for a given parame- 

ter. The posterior marginal distribution is approximated by the set 

of samples only for a single parameter, ignoring the joint probabil- 

ity distribution with other parameters. There is a potentially infi- 

nite number of intervals that contain 95% of the probability mass, 

hence we use the common approach to select the narrowest in- 

terval, called the highest posterior density (HPD) interval. The HPD 

has a straight-forward interpretation, it describes the interval that 

contains the true value with a probability of 95%. The accuracy 

metric associated with the HPD is the percentage of plots whose 

observed values lay within the HPD interval. 

To allow comparison with conventional, non-Bayesian accuracy 

metrics based on point estimates, we used the posterior mode, 

i.e. the most likely value of the posterior. The conventional accu- 

racy metrics we report are the root-mean square error (RMSE), the 

mean bias, and the bias corrected RMSE (cRMSE), calculated as fol- 

lows: 

RMSE = 

√ 

n ∑ 

i =0 

(y i − ˆ y i ) 2 

n 
(21) 

Bias = 

n ∑ 

i =0 

y i − ˆ y i 
n 

(22) 

cRMSE = 

√ 

(y i − ( ̂  y i + bias )) 2 

n 
, (23) 

where y and ˆ y are the observed and predicted variable, and n is the 

number of plots. The Python code used for this study is available 

from the supplementary file (S1). 

3. Results and discussion 

We present our findings in two parts. The first is a descriptive 

analysis of the available data, which is essential in the interpreta- 

tion of the latter part, which presents the results of our inversion 

and a discussion on the influence of prior information on the inver- 

sion results. Following the presentation and discussion of concrete 

results is a general discussion on the potential and limitations of 

our inversion approach. 

3.1. Descriptive satellite and plot data analysis 

The satellite observations for the respective lidar plots of S2 

and L8 were mostly in agreement ( Fig. 1 ). However, the BoA re- 

flectance values in the visible bands differ strongly between the 

sensors. The blue and green bands of S2 show their strongest dif- 

ferences in the darker plots, with the difference decreasing with 

increasing reflectance. In the red band, the reflectance values of 

S2 are overall shifted by about 0.01 units, the regression line indi- 

cates closer agreement at a reflectance of about 0.1, which is well 

beyond the highest reflectance observation in the study area. Ko- 

rhonen et al. [20] already pointed out these reflectance differences 

between sensors, and noted that the differences likely do not stem 

from the atmospheric correction procedure. Furthermore, Korho- 

nen et al. [20] pointed out that two other studies [44,47] found 

similar reflectance differences and speculating at sensor differences 

as the main reason. Later studies [e.g. 22,50 ] found the differences 

between the sensors to be much smaller. The ESA Sentinel-2 Team 

has identified a few product anomalies during the commissioning 

period from June to December 2015, and the data products were 

reprocessed twice. The first reprocessing was done using process- 

ing baseline 02.01, and, after some product anomalies were found, 

a second reprocessing was done using baseline 02.04, as docu- 

mented in the Sentinel-2 Mission Status Report 44, July 2016, avail- 

able from European Space Agency [11] . We compared the S2 L1C 

products produced by both processing baselines, and found no dif- 

ference in the images. Since the sensor differences in visible bands 

were only found in studies using early Sentinel-2a images (until 

May 2016), but not in later studies, where the agreement between 

S2 and L8 seems much better, we suspect that pre-processing of S2 

images may have been different during its commissioning phase, 

or other technical reasons may have been involved. The Bayesian 

reflectance model inversion approach was able to compensate for 

the sensor differences in the visible bands to some extent. In 

the posterior distribution, the leaf albedo was significantly lower 

for coniferous trees in the visible bands of S2 ( Fig. 2 ). Conifer- 

ous stands typically constitute the darkest pixels due to increased 

clumping [34] , lower reflectance observations may lead to an over- 

estimated conifer share in the inversion, and to a lower leaf albedo 

of conifers as the dominant species. 

The relationship between the leaf area index, and reflectance 

shows a typical decreasing reflectance with increasing LAI, with a 

saturation effect at LAI greater than about 3 to 4 ( Fig. 3 ). Similar 

to the above discussion, the reflectance differs between the sensors 

in the visible bands. The forest reflectance of stands with small LAI 

consists mostly of the reflected signal from the bright understory 

[8,33] . Hence, in accordance with the above discussion on sensor 

differences, there is little difference in the blue and green band for 

sparse stands, i.e. plots with LAI close to zero. As the LAI increases, 

the reflectance of the visible bands decreases and levels out at 

higher levels for L8 than S2, a difference which is not present in 

NIR and SWIR bands. 

3.2. Reflectance model inversion results 

The use of prior information in reflectance model inversion in 

general has been widely accepted [e.g. 19 ]. However, the use of 
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Fig. 1. Bottom-of-atmosphere reflectance of the common bands of Sentinel-2a MSI and Landsat 8 OLI. The solid line has unit inclination, and the dashed line shows the 

fitted linear regression line, whose formula and coefficient of determination are annotated in the respective subfigures. 

Fig. 2. Leaf and understory optical properties resulting from the reflectance model inversion using the regularizing prior. S2 is in blue, L8 in red. Pale color shows the prior 

for optical properties, and the darker colors show the posterior marginal distributions. 

prior information is usually limited to defining the range of re- 

flectance model parameters that is ecologically meaningful, or us- 

ing random draws from a field dataset. In terms of Bayesian infer- 

ence, setting a range is equivalent to assigning a uniform distribu- 

tion to reflectance model parameters. We suspect that this may not 

be the best choice, particularly for estimating parameters which 

exhibit a saturation effect with the remotely sensed signal, such 

as LAI, because such nonlinearities in the model affect the proper 

choice of an objective, uninformative prior [e.g. 18 ]. We hypoth- 

esized that using non-uniform priors improves predictions of op- 

tically saturating parameters, that are, parameters which at some 

range cannot be reliably predicted from the optical signal, or which 

can only be predicted with immense uncertainty. To test this hy- 

pothesis, we employed three reflectance model inversion strategies 

that rely on different prior parameterizations for LAI. The three 

strategies, or prior models, were (i) a uniform prior as per common 

assumption, (ii) a realistic (informative) prior which approximated 

the LAI of Finnish forests [based on National Forest Inventory Data, 
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Fig. 3. The relationship between bottom-of-atmosphere reflectance of S2 (blue circles) and L8 (red diagonal crosses) with leaf area index in different spectral bands of the 

satellite sensors. 

14 ], and (iii) a regularizing prior which was aimed at counteracting 

the saturation effect of the optical signal at high LAI by favoring 

small values for LAI. 

Overall, both the informative and regularizing prior models per- 

formed satisfactory, while the uniform prior was heavily biased 

( Fig. 4 ). For L8, the regularizing prior resulted in the best LAI re- 

trievals (bias = 0.03, RMSE = 0.65), compared to the informative 

prior (bias = −0.19, RMSE = 0.67). While both priors appear very 

similar in their prediction accuracy of stands with LAI larger than 

about 2, there is a notable difference in sparse stands with small 

LAI between 0 and 2. In these sparse stands, the informative prior 

introduced a visible bias, causing overestimated LAIs especially in 

the range of LAI values between 0 and 2. The regularizing prior as- 

signs the highest probability to low LAI values, hence the predic- 

tion accuracy is higher for low LAI values, while not compromising 

predictions of stands with large LAI. 

For S2, the informative prior performed slightly better 

(bias = −0.76, RMSE = 1.13) than the regularizing prior 

(bias = −0.94, RMSE = 1.34). Here, there is no visible difference 

for the two priors for LAI values between 0 and 2, as was observed 

in L8 retrievals. This may be due to the lower reflectance values of 

S2 in the visible bands, which in turn cause overestimation of LAI 

in the inversion and have more influence on the results than the 

difference in LAI priors. The confidence interval metric, the ratio of 

plots with observed LAI within the HPD, exhibits the same rank- 

ing of priors as the point estimate-based metrics in both sensors. 
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Fig. 4. Observed and retrieved leaf area index. The point estimates of LAI retrievals are shown together with their 95% credible interval. Black lines (intervals) and diagonal 

crosses (point estimates) mean the credible interval overlaps with the observed value, red lines (intervals) and circles (point estimates) indicate no overlap. 

In S2, the informative and regularizing priors respectively captured 

66% and 63% of the plots correctly. 87% and 85% were the corre- 

sponding figures for the regularizing and informative priors for L8, 

respectively. When considering uncertainty, as the share of plots 

within the HPDs showed, the difference between the regularizing 

and informative priors appears less pronounced than with point 

estimate metrics. 

For both sensors, the uninformative priors resulted in signif- 

icantly worse LAI retrievals (L8 bias = −2.67, RMSE = 2.98; S2 

bias = −3.89, RMSE = 4.39). The uninformative case showed a 

strong influence of the optical signal saturation effect, as the bias 

increases linearly with increasing LAI (see Fig. 4 ). Both the regular- 

izing and informative priors outperformed the uninformative prior 

by one or two orders of magnitude in bias. The confidence inter- 

vals for LAI in the uniform prior model are relatively wide, how- 

ever, only a small proportion of plots’ LAI values was within the 

HPDs, i.e. 43% for L8, and only 11% for S2. 

The LAI retrieval accuracy for the regularizing and informa- 

tive priors are satisfactory. The dataset we used in this study was 

originally used by Korhonen et al. [20] to empirically predict LAI, 

among other variables, using a plethora of vegetation indices and 

single and multiple band predictors. They found single bands for 

both S2 and L8 to produce the best predictions, with the red edge 

1 band of S2 predicting LAI with RMSE = 0.589 and the green 

band of L8 producing an RMSE = 0.608, in both cases with a 

bias of -0.001. We found that our Bayesian inversion of PARAS re- 

sulted in LAI retrievals of slightly larger RMSE for L8. Our best re- 

sult, the regularizing prior for L8, had an RMSE of 0.649, which 

is 0.041 units or 6.5% larger than Korhonen et al. [20] . In ad- 

dition, our results exhibit significantly larger biases than Korho- 

nen et al. [20] , which originate from the fact that physically-based 

models attempt to generalize across sensors and viewing geome- 

tries, but are not able to account for all influences on the op- 

tical signal (e.g. atmospheric correction errors) and further need 

to simplify the forest radiative transfer process to facilitate com- 

putations. The comparison of our results to the empirical study 

of Korhonen et al. [20] may indicate the potential of reflectance 

model inversion for L8 images in boreal forest. On the other hand, 

our results for S2 were significantly less accurate than the re- 

sults of Korhonen et al. [20] , both in terms of bias and RMSE. 

Besides the fundamental model difference between our study and 

Korhonen et al. [20] , who used empirical regression models to re- 

trieve LAI for the lidar plots, they also carried out a band selec- 

tion with a penalty term for multiple band predictor models. We 

did not aim at selecting individual bands to test their potential for 

LAI retrieval accuracy, as this practice seemed to contradict the 

physical approach, which aims at utilising the entire optical sig- 

nal in an attempt to generalize the radiative transfer process in 

forests. 

In all prior models, Landsat 8 clearly outperformed Sentinel-2 

in retrieving LAI, with the bias comprising the major difference in 

accuracy. We attribute S2’s tendency towards a higher bias in LAI 

retrievals to two characteristics; (i) the differences between the 

sensors in the visible bands, and (ii) the increased spectral reso- 

lution. The former, as discussed in detail above, is due to S2 visi- 

ble reflectance being lower than L8 in our data. PARAS model has 

shown to have a tendency to overestimate reflectance of a given 

stand in boreal forests, which in turn lead to an overestimation of 
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leaf area index [15,46] . Hence, a lower reflectance in the visible 

bands of S2 lead to an increased absolute bias in the LAI retrievals. 

In the Bayesian inversion approach, all model parameters are re- 

trieved simultaneously. Our results indicate that the inversion ap- 

proach was able to partly compensate for the lower reflectance in 

S2 by reducing the leaf albedo in the respective bands of conifers, 

which were the dominant species. However, as the spectral bands 

were modeled as partly correlated, the reduction in the visible 

bands also affected the other bands, which may have inhibited the 

compensation for the difference in visible bands of S2. 

Modeling the spectral bands as partly correlated was necessary, 

as exploratory analysis of modeling the spectral bands as indepen- 

dent indicated an alternative solution which mistook deciduous fo- 

liage with higher albedo for understory vegetation, thus leading to 

substantial errors in the LAI retrievals. The second potential reason 

for the increased bias is the higher spectral resolution of S2. While 

a higher spectral resolution would be expected to yield higher ac- 

curacy of inversion results [37] , we observed the opposite to be 

the case. This issue may be unique to our dataset and modeling 

approach. The increased spectral resolution of S2 is exclusively in 

the red edge region. This spectral region is characterized by a steep 

rise in leaf albedo, from levels of about 0.1 to about 0.8 on a wave- 

length range of about 50 to 80 nm, constituting the steepest slope 

in leaf spectra in the optical region. Due to this steepness, any er- 

ror, potentially originating from the input spectral data, or the sen- 

sor spectral response functions, may have had an exceedingly large 

influence on the results relative to other bands which are located 

in relatively flat spectral regions. 

In addition, we transformed the spectral data to the sensor- 

specific bands before applying the PARAS model, which may have 

had a strong influence due to its nonlinearity. This a priori trans- 

formation was unavoidable for technical reasons, and was expected 

to not result in significant errors. However, a shift in the red edge 

infliction point by a few nanometers may already cause significant 

changes in the spectra, which were impossible to model in our ap- 

proach. We carried out an exploratory analysis, where we adapted 

the visible bands of S2 to the levels of L8 using the linear regres- 

sion equations in Fig. 1 as well as chose a subset of the bands of 

S2 that correspond to L8. We found that adapting the visible bands 

of S2 lead to a large bias reduction, and excluding the red edge 

bands further slightly reduced the bias, however, at best the bias 

of S2 got close to that of L8, but never less. 

Based on our results, it appears that the saturation effect in re- 

lation to LAI is a dominant factor that is to be taken into account 

when inverting a forest reflectance model. Our recommendation 

is to regularize LAI when inverting a forest reflectance model, as 

our results show. The regularizing prior retrieved LAI best for L8, 

and only slightly worse in S2. Compared to using a realistic prior, 

which resulted in very similar accuracy for LAI retrieval, the reg- 

ularizing prior seems to be favorable from a theoretical point of 

view. When using a regularizing prior, it is not necessary to ob- 

tain information on a realistic LAI distribution in the study area, 

but rather it is possible to define a suitable prior distribution by 

examining the forest radiation regime on a more general level, 

that is, based on radiative transfer and its characteristics in for- 

est reflectance models. This physical foundation offers theoretically 

higher potential for generalization because it is only necessary to 

understand when the optical signal saturates, rather than having 

to make assumptions specific to a study site. However, previous 

work with a Bayesian reflectance model inversion by Varvia et al. 

[46] retrieved LAI using a uniform prior using EO1-Hyperion hyper- 

spectral data. Hyperion data has been found to produce less biased 

estimates of leaf biochemical traits than Landsat 8 in a Bayesian in- 

version approach using PROSPECT model at leaf level [37] . Shiklo- 

manov et al. [37] further reported a generally increasing bias with 

decreasing spectral resolution. This may indicate that when using 

Fig. 5. Posterior point estimates for conifer share and clumping index. 

data with low spectral resolution, the choice of priors becomes in- 

creasingly important. 

The reported values for LAI retrievals follow the definition for 

the true LAI, i.e. the unit hemisurface area of all leaves per unit 

ground area. In more recent publications, the LAI has been termed 

plant area index, which includes the contribution of other plant 

elements such as woody parts. We acknowledge the importance 

of accounting for the contribution of non-leaf plant elements to 

the forest radiation regime, but used the terms LAI and plant area 

index interchangeably. The true LAI is the product of the effec- 

tive LAI [3] and a clumping index. The effective LAI can be in- 

terpreted as the LAI of a stand with equivalent angular gap frac- 

tions but purely randomly distributed foliage, which is necessary 

for utilizing the modified Beer’s law [35] in the forest radiation 

regime. The clumping index is the single factor describing the spa- 

tial aggregation, or non-randomness of the leaf distribution in a 

canopy. Hence, a retrieval of true LAI is necessarily a joint pre- 

diction of effective LAI and clumping index. The three prior mod- 

els we used were for the effective LAI, as the clumping index was 

modeled separately, and the true LAI was derived from those two 

factors as L = L e / CI . Therefore, our results for LAI retrieval can only 

be interpreted in combination with the estimates for clumping 

index. 

The posterior modes for both sensors show a similar rela- 

tionship between the conifer share and clumping index of plots 

( Fig. 5 ). The range of the clumping index stretches further in both 

directions for S2, which also exhibits a slightly wider range of 

conifer share values. Based on the prior formulation, the relation- 

ship between conifer share and clumping should be a linear mix- 

ture, with a clumping index of around 1 in pure deciduous stands, 

and 0.6 in pure conifer stands. However, our results show that the 

clumping index decreases stronger than the prior formulation, i.e. 

at a conifer share between 0.7 and 0.8, there is a drop in clump- 

ing index down to a posterior mode of slightly below 0.5, with 

the highest conifer shares in the posterior at around 0.83. Com- 

monly, clumping correction is done only for conifer shoots, fol- 

lowing Oker-Blom and Smolander [29] , while effort s to understand 

clumping of plant elements at higher hierarchical levels have been 

few [42] . While considering the overall modeling uncertainty of 

this study, the posterior marginal distribution of the clumping in- 

dex of results data hints at increased clumping that ranges be- 

yond shoot level, i.e. at clumping indices below 0.4, which is the 

lower end of observed shoot clumping [29,30] . While these find- 

ings must be interpreted with caution due to a lack of validation, 

the retrievals of true LAI can be indirectly used to validate the 
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possibility of clumping beyond shoot level having a stronger in- 

fluence on the forest radiation regime as described by the PARAS 

model than previously thought. Furthermore, these results are only 

reasonably obtainable by using a Bayesian inversion approach, or 

any other inversion approach that has inherent capabilities for un- 

certainty quantification. 

These speculative findings, however, can only be interpreted 

while keeping the assumptions and potential limitations of the 

data, the Bayesian inversion approach, the prior model, and the 

PARAS reflectance model in mind. The hierarchical modeling ap- 

proach, i.e. the spectral properties of leaves and understory be- 

ing modeled across all stands, did not allow for variation in op- 

tical properties between stands. This modeling decision was made 

due to both computational and modeling reasons. Modeling opti- 

cal properties at stand level would have, due to the large num- 

ber of plots, required enormous amounts of computer memory 

that were not available. Furthermore, modeling optical properties 

at stand level would have potentially lead to parameter identifi- 

cation issues, which we encountered during an exploratory test 

where we modeled all parameters at stand level. The parameter 

identification problems were particularly prominent in the distinc- 

tion between tree species, leading to confusion between coniferous 

and deciduous dominated stands, and subsequently to problems in 

clumping index and LAI retrievals. As we were particularly inter- 

ested in species distinction in relation to clumping, we chose to 

model optical properties over the whole study area. The understory 

optical properties were modeled accordingly, leading to the inver- 

sion model being unable to distinguish differences in understory 

types. This, similarly, was necessary to avoid parameter identifica- 

tion problems as a consequence of the low spectral resolution of 

the sensors. However, this modeling choice was practical for our 

study, and we point out the need for further investigation on a ro- 

bust hierarchical modeling framework for reflectance model inver- 

sion that utilizes synergies between individual stands and while 

efficiently accounting for and enabling the analysis of variability 

between stands. 

Building on the work of Varvia et al. [45,46] , we applied the 

Bayesian inversion approach to multispectral data. However, adapt- 

ing the approach developed for hyperspectral data required us to 

change their prior model. Compared to Varvia et al. [45] , we de- 

fined priors for optical properties that were less correlated, which 

is reasonable given the further distance in wavelength between 

multispectral and hyperspectral data. We further enhanced the 

model to take into account tree species shares at stand level, to 

allow a more in-depth analysis of which combinations of forest 

stand parameters likely constitute the remotely sensed signal. On 

some parameters such as the clumping index, we imposed less 

constraints on the prior, i.e. by truncating the distribution at values 

0.1 and 1.1. Due to the lower spectral resolution, we modeled the 

uncertainty around the observed bottom-of-atmosphere reflectance 

values with an interval of 20% to account for uncertainty intro- 

duced by noise and errors from the imaging process, preprocessing 

of the raw sensor data, the atmospheric correction, and the PARAS 

reflectance model itself. We tested uncertainty parameterizations 

for the BoA reflectance between 5% and 25% in steps of 5%, with 

20% showing the best results in terms of both numerical stability 

and accuracy of LAI retrievals. 

A current limitation of the Bayesian approach, particularly the 

MCMC method we used, the no-U-turn sampler, concerns the sam- 

pling of multimodal distributions. There are MCMC methods that 

are able to better sample from multimodal distributions, such as 

inter-chain adaptation [5] or sequential Monte Carlo [7] , however, 

they were not implemented in the software in a way usable for 

our study at the time we carried out the computations. The fo- 

cus of this study was, in terms of software, to build a Bayesian 

reflectance model inversion approach that relies on readily avail- 

able software to illustrate the potential for practical applications in 

remote sensing of vegetation. We thus refrained from implement- 

ing custom methods other than implementing the PARAS model 

in the Bayesian framework. The problem of sampling from multi- 

modal distributions with MCMC was avoided in this study by using 

initially loose boundaries of prior distributions, and empirically an- 

alyzing the occuring multiple modes, and applying domain knowl- 

edge to identify illogical solutions to the reflectance model inver- 

sion by setting boundaries to the priors, i.e., truncating prior dis- 

tributions at values that exceed an ecologically meaningful range. 

We expect that, with the rapid development in Bayesian computa- 

tional methods and their increasing availability to scientific com- 

munities beyond mathematics and computer science, the prob- 

lem of multimodality will hopefully become less prominent in the 

future. 

Finally, there are limitations to the results presented here that 

originate from the PARAS model itself. The LAI retrieval bias to- 

wards overestimation as well as the mostly lower leaf and un- 

derstory reflectance factors indicate that PARAS has a tendency 

to overestimate reflectance of a given stand. There are a number 

of reasons why PARAS may overestimate forest reflectance, which 

come from the still poor understanding of some parameters in the 

model, and the model formulation itself. PARAS employs a param- 

eter for scattering uncertainty; Q ( Eq. (5) ), which is based on a 

semi-physical relationship between scattering in forward and back- 

ward direction of a complex medium parameterized by empirical 

ray tracing model in a Scots pine stand [28] . While parameteriz- 

ing the canopy bidirectional scattering phase function using Q is 

currently the most reasonable assumption, this parameter would 

greatly benefit from further study. Next, it is common to correct 

coniferous forest LAI for clumping at shoot level, however, clump- 

ing at higher levels may play an important role, but is so far poorly 

studied [42] . Few studies [e.g. 24,52 ] were looking into clumping 

based on terrestrial laser scanning, we hope that these effort s will 

continue and become more extensive. Clumping, in PARAS model 

and, more generally, in forest radiation regime models, plays a cru- 

cial role as it governs the relationship between the true LAI and 

angular gap fractions, which would be the single parameter, de- 

spite the leaf angle distribution, that is able to compensate for 

the inconsistent estimation accuracy between LAI and canopy gaps 

we found in this study. Finally, though to a lesser extent, PARAS 

does not account for multiple interactions of photons between the 

canopy and understory. Multiple interactions have been studied 

in PARAS and found to contribute significantly to stand albedo in 

conditions where the understory is covered in snow, but other- 

wise multiple interactions may not play a strong role in forest re- 

flectance [26] . 

Besides these issues with the PARAS model, we expect, though 

to a lesser extent, that the assumptions around using Beer’s law 

and the G-function for angular leaf projection area ratio may have 

contributed to the inconsistencies in the angular gap estimates. 

Beer’s law, together with the G-function, which incorporates the 

leaf angle distributions, was used to estimate angular gap frac- 

tions based on LAI. Here again, clumping plays a significant role, 

as it increases or decreases the gap fraction at a given LAI and leaf 

angle distribution. The G-function we used for conifer trees were 

based on Stenberg [39] , who derived a version of the G-function 

for non-flat leaves. While using these shapes for conifer needles 

seems to be more reasonable, the application of this G-function 

strongly affects the common assumptions of a spherical leaf angle 

distribution, i.e. that G is not constant for any angle. Furthermore, 

the conifer G-function of Stenberg [39] has, to our knowledge, not 

been applied in reflectance model inversion studies. Lastly, the leaf 

angle distributions we used were planophile for deciduous trees, 

and spherical for conifers. While the planophile distribution was 

clearly recommended by Pisek et al. [31] for broadleaved trees in 
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boreal forests, we did not find similarly detailed studies for conif- 

erous trees in boreal forest. 

The above limitations are mostly pointing at inconsistencies be- 

tween the often necessary assumptions in forest reflectance mod- 

eling and the observations in the field. However, despite all these 

limitations we have shown in this study that inverting the PARAS 

reflectance model using multispectral satellite data is not only pos- 

sible, but leads to a reasonable accuracy in the retrieval of leaf 

area index while simultaneously quantifying the uncertainty re- 

lated to the retrieval. The latter quality, the uncertainty quantifica- 

tion, is in our opinion crucial, particularly in the presence of model 

bias and the optical saturation effect, as inversion methods that 

do not provide information on uncertainty may lead to false intu- 

itions about the underlying retrieval accuracy, which further leads 

to false expectations of potential users of inversion methods, and 

subsequently may lead to a biased interpretation of the utility of 

forest reflectance model inversion in forest biophysical parameter 

retrieval. 

4. Conclusion 

In this study, we have developed a Bayesian reflectance model 

inversion approach for multispectral satellite images and applied 

it to two medium resolution satellite images from Sentinel-2 and 

Landsat 8. We found that, in multispectral images, the inversion 

of a reflectance model greatly benefits from regularization in the 

prior model, and that the inversion approach was able to produce 

reasonable estimates of leaf area index without relying on any fur- 

ther information from the study site other than the satellite im- 

ages. We further discussed the limitations of reflectance model- 

ing with the example of PARAS model, the Bayesian inversion ap- 

proach and their respective limitations, and pointed out existing 

gaps in our understanding of the forest radiation regime as ex- 

pressed through common modeling assumptions. 
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