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R-squared for Bayesian regression models∗

Andrew Gelman† Ben Goodrich‡ Jonah Gabry‡ Aki Vehtari§
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Abstract

The usual definition of R2 (variance of the predicted values divided by the variance of the

data) has a problem for Bayesian fits, as the numerator can be larger than the denominator.

We propose an alternative definition similar to one that has appeared in the survival analysis

literature: the variance of the predicted values divided by the variance of predicted values plus

the expected variance of the errors.

1. The problem

Consider a regression model of outcomes y and predictors X with predicted values E(y|X, θ), fit

to data (X, y)n, n = 1, . . . , N . Ordinary least squares yields an estimated parameter vector θ̂ with

predicted values ŷn = E(y|Xn, θ̂) and residual variance V N
n=1 ŷn, where we are using the notation,

V N
n=1 zn =

1

N − 1

N∑
n=1

(zn − z̄)2, for any vector z.

The proportion of variance explained,

classical R2 =
V N
n=1 ŷn

V N
n=1 yn

, (1)

is a commonly used measure of model fit, and there is a long literature on interpreting it, adjusting

it for degrees of freedom used in fitting the model, and generalizing it to other settings such as

hierarchical models; see, for example, Xu (2003) and Gelman and Pardoe (2006).

Two challenges arise in defining R2 in a Bayesian context. The first is the desire to reflect

posterior uncertainty in the coefficients, which should remove or at least reduce the overfitting

problem of least squares. Second, in the presence of strong prior information and weak data, it

is possible for the fitted variance, V N
n=1 ŷn to be higher than total variance, V N

n=1 yn, so that the

classical formula (1) can yield an R2 greater than 1 (Tjur, 2009). In the present paper we propose a

generalization that has a Bayesian interpretation as a variance decomposition.
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Figure 1: Simple example showing the challenge of defining R2 for a fitted Bayesian model. Left

plot: data, least-squares regression line, and fitted Bayes line, which is a compromise between the

prior and the least-squares fit. The standard deviation of the fitted values from the Bayes model

(the blue dots on the line) is greater than the standard deviation of the data, so the usual definition

of R2 will not work. Right plot: posterior mean fitted regression line along with 20 draws of the

line from the posterior distribution. To define the posterior distribution of Bayesian R2 we compute

equation (3) for each posterior simulation draw.

2. Defining R2 based on the variance of estimated prediction errors

Our first thought for Bayesian R2 is simply to use the posterior mean estimate of θ to create

Bayesian predictions ŷn and then plug these into the classical formula (1). This has two problems:

first, it dismisses uncertainty to use a point estimate in Bayesian computation; and, second, the

ratio as thus defined can be greater than 1. When θ̂ is estimated using ordinary least squares, and

assuming the regression model includes a constant term, the numerator of (1) is less than or equal

to the denominator by definition; for general estimates, though, there is no requirement that this

be the case, and it would be awkward to say that a fitted model explains more than 100% of the

variance.

To see an example where the simple R2 would be inappropriate, consider the model y =

α + βx + error with a strong prior on (α, β) and only a few data points. Figure 1a shows data

and the least-squares regression line, with R2 of 0.77. We then do a Bayes fit with informative

priors α ∼ N(0, 0.22) and β ∼ N(1, 0.22). The standard deviation of the fitted values from the Bayes

model is 1.3, while the standard deviation of the data is only 1.08, so the square of this ratio—R2

as defined in (1)—is greater than 1. Figure 1b shows the posterior mean fitted regression line along

with 20 draws of the line y = α+ βx from the fitted posterior distribution of (α, β).

Here is our proposal. First, instead of using point predictions ŷn, we use expected values
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conditional on the unknown parameters,

ypred
n = E(ỹn|Xn, θ),

where ỹn represents a future observation from the model with predictors Xn. For a linear model,

ypred
n is simply the linear predictor, Xnβ; for a generalized linear model it is the linear predictor

transformed to the data scale. The posterior distribution of θ induces a posterior predictive

distribution for ypred.

Second, instead of working with (1) directly, we define R2 explicitly based on the distribution of

future data ỹ, using the following variance decomposition for the denominator:

alternative R2 =
Explained variance

Explained variance + Residual variance
=

varfit

varfit + varres
, (2)

where

varfit = V N
n=1E(ỹn|θ) = V N

n=1 y
pred
n is the variance of the modeled predictive means, and

varres = E(V N
n=1(ỹn − ypred

n )|θ) is the modeled residual variance.

This first of these quantites is the variance among the expectations of the new data; the second

term is the expected variance for new residuals, in both cases assuming the same predictors X as in

the observed data. We are following the usual practice in regression to model the outcomes y but

not the predictors X. As defined, varfit and varres are defined conditional on the model parameters

θ, and so our Bayesian R2, the ratio (2), depends on θ as well.

Both variance terms can be computed using posterior quantities from the fitted model: varfit

is determined based on ypred which is a function of model parameters (for example, ypred
n = Xnβ

for linear regression and ypred
n = logit−1(Xnβ) for logistic regression), and varres depends on

the modeled probability distribution; for example, varres = σ2 for simple linear regression and

varres = 1
N

∑N
n=1(πn(1− πn)) for logistic regression.

By construction, the ratio (2) is always between 0 and 1, no matter what procedure is used

to construct the estimate ypred. Versions of (2) have appeared in the survival analysis literature

(Kent and O’Quigley, 1988; Choodari-Oskoo et al., 2010), where it makes sense to use expected

rather than observed data variance in the denominator, as this allows one to compute a measure of

explained variance that is completely independent of the censoring distribution in time-to-event

models. Our motivation is slightly different but the same mathematical principles apply, and our

measure could also be extended to nonlinear models.

In Bayesian inference, instead of a point estimate θ̂, we have a set of posterior simulation draws,

θs, s = 1, . . . , S. For each θs, we can compute the vector of predicted values ypred s
n = E(ỹ|Xn, θ

s)

and the expected residual variance varsres, and thus the proportion of variance explained is,

Bayesian R2
s =

V N
n=1 y

pred s
n

V N
n=1 y

pred s
n + varsres

, (3)
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Figure 2: The posterior distribution of Bayesian R2 for the simple example shown in Figure 1

computed using equation (3) for each posterior simulation draw.

where varsres = (σ2)s for a linear regression model with equal variances.

For linear regression and generalized linear models, expression (3) can be computed using the

posterior_linpred function in the rstanarm package and a few additional lines of code, as we

demonstrate in the appendix, or see Gelman et al. (2018) for further development. For the example

in Figure 1, we display the posterior distribution of R2 in Figure 2; this distribution has median

0.75, mean 0.70, and standard deviation 0.17.

3. Discussion

R2 has well-known problems as a measure of model fit, but it can be a handy quick summary for

linear regressions and generalized linear models (see, for example, Hu et al., 2006), and we would

like to produce it by default when fitting Bayesian regressions. Our preferred solution is to use (3):

predicted variance divided by predicted variance plus error variance. This measure is model based:

all variance terms come from the model, and not directly from the data.

A new issue then arises, though, when fitting a set of a models to a single dataset. Now that the

denominator of R2 is no longer fixed, we can no longer interpret an increase in R2 as a improved

fit to a fixed target. We think this particular loss of interpretation is necessary: from a Bayesian

perspective, a concept such as “explained variance” can ultimately only be interpreted in the context

of a model. The denominator of (3) can be interpreted as an estimate of the expected variance of

predicted future data from the model under the assumption that the predictors X are held fixed;

alternatively the predictors can be taken as random, as suggested by Helland (1987) and Tjur

(2009). In either case, we can consider our Bayesian R2 as a data-based estimate of the proportion

of variance explained for new data. If the goal is to see continual progress of the fit to existing data,

one can simply track the decline in the expected error variance, σ2.
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Another issue that arises when using R2 to evaluate and compare models is overfitting. As with

other measures of predictive model fit, overfitting should be less of an issue with Bayesian inference

because averaging over the posterior distribution is more conservative than taking a least-squares

or maximum likelihood fit, but predictive accuracy for new data will still on average be lower, in

expectation, than for the data used to fit the model (Gelman et al., 2014). One could construct an

overfitting-corrected R2 in the same way that is done for log-score measures via cross-validation

(Vehtari et al., 2017). In the present paper we are trying to stay close to the sprit of the original R2

in quantifying the model’s fit to the data at hand.
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Appendix

This simple version of the bayes_R2 function works with Bayesian linear regressions fit using the

stan_glm function in the rstanarm package.

# Compute Bayesian R-squared for linear models.

#

# @param fit A fitted linear or logistic regression object in rstanarm

# @return A vector of R-squared values with length equal to

# the number of posterior draws.

#

bayes_R2 <- function(fit) {

y_pred <- rstanarm::posterior_linpred(fit)

var_fit <- apply(y_pred, 1, var)

var_res <- as.matrix(fit, pars = c("sigma"))^2

var_fit / (var_fit + var_res)

}

## Example from Figure 1 of the paper

x <- 1:5 - 3

y <- c(1.7, 2.6, 2.5, 4.4, 3.8) - 3

xy <- data.frame(x,y)

## Bayes fit with strong priors

library("rstanarm")

fit_bayes <- stan_glm(y ~ x, data = xy,

prior_intercept = normal(0, 0.2, autoscale = FALSE),

prior = normal(1, 0.2, autoscale = FALSE),

prior_aux = NULL)

## Compute Bayesian R2

rsq_bayes <- bayes_R2(fit_bayes)

hist(rsq_bayes)

print(c(median(rsq_bayes), mean(rsq_bayes), sd(rsq_bayes)))

Expanding the code to work for other generalized linear models requires some additional steps,

including setting transform=TRUE in the call to posterior_linpred (to apply the inverse-link

function to the linear predictor), the specification of the formula for varres for each distribution

class, and code to accomodate multilevel models fit using stan_glmer.
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