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ABSTRACT

This paper presents a nonlinear numerical mc dei, which is based on the modified couple stress
theory (MCST), and trigonometric shear deto. mation theory coupled with isogeometric analysis.
The present approach captures the sm- L. . ale effects on the geometrically nonlinear behaviors of
functionally graded carbon nanotube =info ced composite (FG-CNTRC) micro-plate with four
patterns distribution. The equati-.ns ,f motion are established based on a Garlekin weak form
associated with von-Karman n snlinc. - .trains. The MCST utilizes only one material length scale
parameter to predict the sizc eftec” in FG-CNTRC micro-plate, for which its material properties
are derived from an extrade  rule of mixture. The solutions of nonlinear static equation are
obtained by using the Tiewto. Raphson technique and the Newmark time iteration procedure in
association with Pica. ! v cthe 1 is assigned to get responses of the nonlinear dynamic problems. In
addition, the Rayl] .igh d~mping is applied to consider the influence of damping characteristic on
the oscillation of ."3-C™ TRC micro-plates. Comparisons are performed to verify the proposed
approach. Af erwara the numerical examples are used to show the effects of the distribution of
carbon nanotube. (CNT), their volume fraction, the material length scale parameter and the

boundary ccv.itions on the nonlinear static and dynamic behaviors of FG-CNTRC micro-plates.



Keywords: Nonlinear static; Nonlinear dynamic; size-dependent; Modified cor ple stress theory;
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1. Introduction

During the last decade, many scientists focus on studying the siz~ or s.. 21l scale effects on
micro- and nano-structures, which are widely used in micro-electro: *eck anical systems (MEMS),
nano-electromechanical systems (NEMS) biosensors and atomic .oice microscopes [1-4]. In fact,
in contrast to macro-mechanical behaviors, experimental mea remr ats pointed out that the
strength and stiffness of micro and nano-scale material we ¢ b’_..>r than their bulky materials.
Through torsional experiments on Cu wires, Fleck et al. "5] s~ wed that the decrease in wire
diameter from 170 umto 12 um led to a systematic incre *se in to sion. For computing the plasticity
length scale, Stolken et al. [6] presented a flexible mic.. -bending test method with the range of
length scale from 3 pm to 5 pm to the measured mon.~nt. Chong et al. [ 7] performed experimental
investigation to determine the influences of stra. g.. *“~nt on plastic deformation through nano-
indentation and atomic force microscopy. By . voer. mental measurements, Lam et al. [8] proved
that strain gradients played a main role in the -lastic deformation of thin beams, and also in
determining the small-scale effect of MEMS .nd NEMS. However, the conventional elasticity
theories is not capable of capturing th . siz. effect of the small scale structures when the material

size lies below approximately 10 pm |

Various non-classical elasticic, * 1eor es calculate both strain and strain gradients to determine
the scale effect using materi-: '~ngth scale (MLS) parameter. Toupin [9], Mindlin and Tiersten
[10], Koiter [11] proposer . e couple stress theories that considered only gradient of rotation
vector in the strain energ, *.th two MLS parameters. Furthermore, Fleck and Hutchinson [12]
and Lam et al. [8] rer om 1ended strain gradient theory that employed three MLS parameters to
apprehend the small scal~ cffect. Owing to the difficulty of resolving more than one MLS
parameter, Yang <t al. | 3] established the modified couple stress theory (MCST) based on
amending the .ouple tress theory using the symmetric couple stress tensor in equilibrium relation
condition. Thi - theor ; contains one MLS parameter, and it is simpler and easier to apply than any

other strai. gio -t theory.

Based in non-classical theories, many numerical and analytical models have been

established to predict the responses of micro- and sub-micro structures. An early nonlocal plate
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solution was presented by Lu et al. [14] for the bending and buckling analysis f isotropic nano-
plates. The variable transformation technique was applied by Duan and War g | . <1 to obtain the
exact nonlocal solution that predicted the axisymmetric bending responses ¢ . ci, sular micro-/nano-
plate subjected general loading. Reddy [16] proposed a nonlocal solutinn to <olve the nonlinear
problems of isotropic nano-plates. By using refined plate theory anc . »nloc.! elasticity theory,
Nguyen et al. [17] studied the size-dependent effect on bending, “re. vibration and buckling
phenomenon of functionally graded (FG) nano-plates. Thai ‘¢ al. "1§| proposed an MCST
Timoshenko beam to predict the static, dynamic and buckling bc™avie s of FG sandwich micro-
beam. Wang et al. [19] derived a nonlinear MCST soluticn tr su dy the small scale effect on
nonlinear free vibration of circular micro-plate under cla.. ned ..d simply supported boundary
condition. Wang et al. [20] also extended the researc.. to inv' stigate the nonlinear bending of
circular micro-plate under uniformly distributed transvers. 'oad. The MCST was first coupled with
third order shear deformation theory (TSDT) by Gau -t al. [21] to depict the influence of small
size-dependent on static bending and free vit -ati . of micro-plate under simply supported
boundary condition. Based on von-Kérmén . .. ~linc 't strains and MCST, Reddy and Kim [22]
achieved a small size-dependent model for ~~nlincar responses of functionally graded micro-plate.
Nguyen et al. [23] also obtained a MCST retu.>d plate quasi-3D isogeometric solution for FG
micro-plate. More recently, Thanh et al. |21 established a numerical model for thermal bending
and buckling analysis of composite lam.. at- d micro-plate based on the new MCST. The nonlocal
and strain gradient elasticity thec 'v v as 2 so utilized to establish a Navier closed form solution by
Karami et al. [25] for resonar ~e vibradon of functionally graded polymer composite reinforced
with grapheme nanoplatelete Baseu nonlocal strain gradient theory, Karami et al [26] developed
a size-dependent analyt’ 'al ~olution to capture the small-scale effect on wave dispersion in
anisotropic doubly-cur sed 1anoshells. Furthermore, Karami and Janghorban [27] presented a three
dimensional elasticity w. -orv ror small-scale effect analysis of anisotropic solid sphere. They also
studied the size ef iects 0. dynamic behavior of porous nanotubes using Timoshenko beam theory
[28], and obtair~d a 2™ c¢lastic theory for anisotropic spherical nanoparticle [29]. Furthermore, a
number size- 'epend¢ 1t models have been formed according to modified strain gradient theory

coupled w - heam and plate theories [30-33].

Thanks to he extraordinary properties of CNTRC material [34-39], research on behaviors of

CNTRC micro-/nano-beam and plate subjected thermal and mechanical load has gained increasing
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attention. In particular, Shahrisri et al. [40] presented an analytical Mindlin’s strz in gradient TSDT
solution to predict the natural frequencies of simply supported nano-plate By “1sing nonlocal
theory and Navier’s method, Ghorbanpour Arani et al. [41] obtained a c’ose 1 form solution to
analyze the surface stress effect on buckling nano-composite plate 1. ~forced by CNTs.
Mohammadimehr et al. [42] presented a modified strain gradient TSI moa.! for FG-SWCNTs
nano-composite plate. A closed form solution for bending and buck..~¢ »f simply supported plate
were also derived. In addition, Mohammadimehr et al. [43] inves*.gated the buckling and vibration
behaviors of double-bonded piezoelectric nano-composite plate on Pusternak foundation. The
small size-dependent effect on the behaviors of nano-plate “vas .ct.ved from the MCST. Karami
et al. [44] generated a nonlocal SSDT model for FG-CNT..” pl..c on Winkler—Pasternak elastic
foundation. The analytical solutions for static bendin, free vibration and buckling were also

obtained for FG-CNTRC plates.

In order to fill the gap between CAD and FEA, . "TRBS based isogeometric analysis was
introduced in 2005 [45]. In engineering design, 1. © aon-uniform rational B-splines (NURBS) is
the most widely utilized. NURBS is used as sh.oue fuuction to approximate both geometric model
and analysis model (unknown field). Aac ' y, NURBS provides a flexible way to make
refinement, de-refinement, and degree elevation [46], and makes it easy to obtain C*'-continuity
for p-order. Therefore, the accurary of th analysis of complex structures with the geometry
domain like spheres, cylinder, ci cle. ew. is obtained. IGA has been widely implemented in
developing the numerical solutio. ~ for nechanical problems [47-53]. Moreover, IGA [45] has
been assigned to achieve sev...! size-dependent numerical solutions for micro- and nano-plates

[54-60].

From the above lite~atuic there are few approaches including the size parameters for analysis
of the small size-der *nd .nt ¢ fects on FG-CNTRC plates at the order of micro and submicron
sizes. Furthermore, we daw.ping characteristic of CNTRC structures was not considered due to
reinforced CNT [¢'-63]. (he experimental work showed that a 200% increase in damping ability
was observed oy CI' T reinforcement [62], and therefore the CNT reinforced composite structure
can significant.,” ¥i-1pate the energy during oscillation. To the best of our awareness, there is no
publication ‘hr ¢ analyzes the small scale effect on nonlinear static and nonlinear dynamic taking
into account a.mping property of FG-CNTRC micro-plates. By using Hamilton’s principle, a

nonlinear size-dependent Garlekin weak form is established based on a proposed trigonometric
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shear deformation theory and von-Karman assumption. Moreover, nonlinear dv 1amic analysis of
FG-CNTRC micro-plate accounts for the effect of structural damping the. 1s ~alculated with
Rayleigh damping. Newton-Raphson technique and the Newmark’s int .gre ion coupled with
Picard method are assigned to explore the nonlinear static and dynamic resp. *ses of FG-CNTRC
micro-plate, respectively. This study also clearly investigates the inf'..nces . f MLS parameter,
CNT volume fraction, patterns of CNT distribution and bounc.-v conditions on nonlinear

deflection of micro-plates.

2. Theoretical formulations

2.1. FG-CNTRC definition

—

FG-O FG-X
Fig. 1. Configuration of T G-CN11.C micro-plate with four patterns distribution of CNT: UD;
FG-V; FG-O; FG-X.

Suppose that a FG-C} 'k ~ micro-plates are procedure from the isotropic matrix reinforced
single-wall carbon nanctube. (SWCNTSs) that vary across the thickness direction as shown in Fig.
1, the effective mater’ 1l p- ope' iies of CNTs reinforced composite micro-plates are predicted based
on the Mori-Tanal . schen.. [64, 65] or the extend rule of mixtures [66, 67]. According to Shen
[67], the effective mater al properties of mixture CNTs and isotropic matrix are calculated as

follows:



E11 = 771VCNTE1C1NT + VmEm

M _Venr Vi
~ CNT +

E22 E22 Em

Yo Vi (1)
~ ~CNT +

G12 G12 Gm

U, = VgNT”lczNT +V,0,

P = PentVenr + PV
in which, E"", E5" and G, denote the Young’s modul.'s and hear modulus of CNTs,

respectively. 77,, 17, and 77, denote the CNTs efficiency par ime*_.. that are given in Table 1. E

and G, are the Young’s modulus and shear modulus of isou “nic natrix, respectively. v5"" and

v, are the Poisson’s ratio of the CNTs and isotropic mau.~ r_spectively. p., and p, are the

density of the CNTs and isotropic matrix. It is not I u.av we efficiency parameters were derived

from the molecular dynamic simulation based or *he rule of mixture [68].

Table 1

The CNT efficiency parameters . r « “ferent volume fraction
Vewr U 7, 7,
0.11 0.149 0.934 0.934
0.14 5150 0.941 0.941
0.17 D149 1.381 1.381

Additionally, V,,, and V, , .esp _ctively, are the volume fraction of CNTs and matrix that
observe the equation such as:
Vonr +V,, =1 (2)
As shown in Fig. 1, the 7 NTs are uniformly distributed through the plate’s thickness and three

others patterns of dis*.ibv 1on of CNTs are FG-V, FG-O, FG-X are presented. Consequently, the

volume faction depr-_d on ; «tern of CNTs distribution can be calculated as follows:



Ve (UD)

(1 + %) Vewr (FG-V)

Venr = 2 3
o 2( —%}VC"M (FG-0) ®
4.
TVCNT (FG-X)
in which,
VgNT = Hor (4)

Wenr + (pCNT ! P ) - (pCNT ! Fa ,\WCNZ
where, the w,,,, oy and p, are the mass fraction 0. “'NTs, lensities of the CNTs and matrix,

respectively.

2.2. A size-dependent model for FG-CNTRC mic . ['~te

Conforming to the generalized shear def. .. ~atic1 plate theory as [69-71], the displacement

field of any points in the FG-CNTRC platc ~"tuu.. a domain 7 = Qx (—%,%} can be expressed

as:

ow.(
w(x, y,2) =y (%, ) - .l”’g#+f(z)ﬂx(x,y)
v(x,y,z)=v0(x,‘, —Z%ij)—i_f(z)ﬂy(xﬂy) ; (%hﬁzﬁgj (5)

w(x,y,z)=w x, )
in which, (u,, v,) are ‘he 1. nlane displacements along the x and y coordinates and w, is the
transverse displacemct alor g the z coordinate. S and [ denote the rotation components

around the y-axis ind x-a <is of cross-sections in x-z and y-z planes, respectively. A trigonometric

function f(7)= ﬁ‘qksin(nz/h) + \/(sin(nz/h))2 - lj is chosen as the shape function that is
r

utilized te *=fine wne transverse shear strains and stresses. From Fig. 2, it is clearly seen that the
first derivati. : of shape function has a zero value at the top and bottom surfaces of plate. Hence,

the free shear stress condition at z=+h/2is also satisfied. Additionally, three others shape



functions and their derivative proposed by Reddy [72], Soldatos [73] and Nguye 1-Xuan et al. [74]

are illustrated in Fig. 2.

os o~ 0.5
//’ ...............
“f’ -o Reddy[72] o
\“ —o-Present
« ol | Soldatos [73] v
| Nguyen-Xuan [74]
o o4 ‘
o SR 05—« 4 - ‘
02 0 02 04 06 08 1 -0.4 - 0 o2 o
f(z) -

Fig. 2. Shape function f (Z)and its first derivative f( Z) acr ss the plate’s thickness.

The nonlinear von-Kérman strain-displacement relatio..~ with the small strain and moderately
large rotation assumption are defined based on the disp'~cement field in Eq. (5) and are presented

in a compact form as:

T
g :{Q €, ny} =<, 7K, + f(2)k,

e~ (6)
Y = {yxz yyz} = (Z)Ss
in which,
" uO,x Wg,x
80 = 8(1; + 8(])VL 4 vO,y +— W(iy
{uO ¥ vO X 2W0 xWO y
(7)
[WO,XX ﬂx,x
T
K|:_|W0.; ;KZZ ﬂy,y 9Ss:{ﬂ¥ ﬁy}
LA R W IBx,y+IBy,x
It is noted that g)" is u.~ " .onli.1ear components of in-plane, which can be rewritten in the following
form:
w,, O
NL 1 ’ WO,x
g =-AM0= 0w, (3)
2 " Mo
wO,y WO,x

The comp. nents of rotation vector 6, associated with Eq. (5) are given by:



1{ow ov 1 '

6. E[_ﬁy e ] E(zWOV_f(Z)ﬂ))
1(ou ow) 1

=355 )3t rem) v
1({ov ou 1

92 :5[—6)6 ——ayJ :5((V0,.x _uo,)/«)-{- f (Z)(ﬂy.x _ﬂx,y))

And the components of curvature vector y, are written in compact for.. as follows:

=l o2 x 2 =a ()

s r s s ” (10)
=1 2. =S+ ),
where
2w0’xy -2 py :
b 1 2W0,xy b 1
X == X2 =7 R
2 (WO,yy _WO,)CX) 4 . _pyy
11
. ()
xs . 1 {VO,xx _uo,xy}. XS . ] I, } Xa I“x xy XS N
0 4 s A1 7 -
4 Yoy ~ o,y _ﬂx 2y 4 IBx
It is noted that, the subscripts ‘,x’ ‘. rep =sent the derivative of arbitrary function for x and y

directions, respectively.

According to the MCST with ¢. - MI 5 parameter proposed by Yang et al. [ 13], the constitutive
equation for the stress and str.u. tensor, respectively, are defined as:
o,=C.&, (12)

g g

m; =2G€2)(ij (13)
where C,,, is the el tic «y constant; G and / are the shear module and the MLS parameter,
respectively.

Furtherme ¢, the CNTRC material behavior is similar to the orthotropic material. Nevertheless,
in this work, i e she’ r modulus of FG-CNTRC micro-plate in three directions are assumed to be

equal, i.e. v—C, =G; =G,; . Therefore, the MCST can be applied to predict the small size-

dependent effe 't of FG-CNTRC micro-plate.



Accordingly, the stress and couple stress-curvature constitutive relatior 5 associated with

the MCST, respectively, are written as:

O 0, 0, 0 0 0 [|%
Ol @y O 0 0 015
Txy = Q()() O 7/ Xy (14)
T 00 0 Qs 0|y,
Lo 0o 00 o]y,
m, 1000 0 0If7
m, 01000 "lx
m,, 001 00 Offx,
oG \ 4‘ ! (15)
m, 0001 0 'y
mxz 0 0 0 0 ] ’ ‘ lxz
m, _0 0 0 v 9 lJ Xy
where
E v,E L.
Oy=—"—,0,=0,=—*2-, 0, =— =, O =Gy, 05, =Gy3, Q4 =Gy (16)
1_‘/12‘/21 1_V12V21 - MV

in which, £, and E,,are the Young’s mr _"* of the CNTRC plates in the principal material coordinates,
G,, G; and G,; are the effective su.~r mc fuli in the 1-2, 1-3 and 2-3 planes, respectively and
v, =(Ey/E, )v,, is Poisson’s ratic.

Next, the in-plane forces, * .. ments, higher order forces and shear forces are expressed as:

-

Ly hi2 1
v, r= I 0,4% ij:=xy
—h/2
{P/ /(@) (17)

hi2

0. = [ 7./ (2)¥z a:=xy

—h/2

From Eq. (), (14}, (17), the stress resultant can be expressed in matrix form as:

N“ AY BY E“ 0 g,

R MH Bu Du Fu 0 K A

6= . (= (=D (18)
P [ B P B 0 ||k,
Q] [0 0o o p°le
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in which

hi2 Qll Q12 O 4
u u u u u u 2 2 !
(A ’B 9D ,E 7F 7H ): I (I,Z,Z ,f(Z),Zf(Z),[f(Z)] ) Qzl Q22 £
—h/2 0 0 N
L,
(19)
Dus — hj.z [f!(z)]z |:Q44 0 :|dZ
—h/2 0 Q55
Similarly, from Eq. (10) and Eq. (15), the couple stress mome at resv.'tant is:
¢ - »)
N A B 0 0 0 1 X. |
M (B E 0 0 0 |[n
m=<Q° =0 0 X Y T jx[) l= Dj( (20)
R°¢ 0 0 Y Z V | V3
oo o ovow
in which
2G1? r [ 0
e 0 2Gt g 0
AL"BL’,EL‘ — 1’ ! , ! 2 dZ
( ) _hj/2( /1@ [f (Z)] ) 0 u oGP 0
0 0 0 2Gr* (1)

hi2 3 ) 2G€2 0
(XYZ2T VW) = [ (L7@ QT @ G G)] ){ . Zng}dz

As a result, the virtual stic'n ene’gy of FG-CNTRC micro-plate using MCST is now
established as follows
SU = | (68 + md})dQ (22)
By using the principl. »f virtual displacement, the discrete Galerkin weak form for nonlinear

responses of FG-CNT'.C raicro-plate subjected to uniform loading ¢ can be established such as:
J
in which, diag(l"l\ =diag 1, 1,2,1,1,1) is the diagonal matrix.

jﬂs&Tf‘ueds; 33D, diag(T, )34 + jQSﬁTmﬁdﬂz I98wqu (23)

Besides, the | st term in left hand side of Eq. (23) is computed by:

11



[ st miid=[ ["° p(udii+ 8y -+ 1idiv)drdydz
hl2 . .
=[ [0 o[ (g = i, + £(2)B, ) (811, = 2000, , + ()08, ) +
(% — 200, + £(2)B, ) (89, — 283, , + ()88, ) + v, v, J drdydz

= [ ((80,) " 1y, + (81, )" T, + (3, )" Ty, a2

(24)

. . ~ T T T T
in which a={u, uw, wu}, ulz{u0 -w, ﬂx} , uzz{v0 -w, p,, uy={w, 0 0}, p are

the mass density per unit volume; m is the mass matrix that is e -presse ' as follows

I, 0 0 LoL oI,
Wl )
m=|0 I, 0;L=|L L L (oL lIL)=[ o2z f@. (/) ) @s)
0 0 I, L I,

3. FG-CNTRC micro-plate based on NURBS basis 1. ~ction
3.1. Brief of isogeometric analysis

In 1D, the B-spline basis function is a piecew ‘<2 polynomial of degree p that is recursively

constructed by Cox-De Boor algorithm as follo v:

) (it g<e 4,
p=0, N,-,o(é)—{o otheruise (26)
é:_ < §i+p+1 _é:
Z 1, N[- p i — Ni.p 1 —]\/v[Jrl,p*l
d ’ (é) gzl ) _fi (§)+ §i+p+| _§i+l (5)

where & € R is called knot ard, « -1,7,...,n+ p+1 is knot index, p is the order of polynomial
function and # is the numb_r o1 < ~sic function; The value of knot is taken from the knot vector

= {fl 1 EaensC s pﬂ} .If tso e .d knots are repeated p +1 times the knot vector is open. As seen in

Fig. 3, the one-dimens one' (1L,) quadratic B-spline basic functions for an open knot are plotted.

12



&(/K

Ez{O, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1} H={ )4, 0.6, 0.8, 1, 1, 1

Fig. 3. Quadratic B-spline basic f.u.ctions.

The non-uniform rational basis spline (NURBS) basis “ .ctic 1s is constructed based on a

tensor product of two 1D B-splines with polynomial degrees ¢ » and ¢ such as:
N7 (&) M (i) w
22N (&) ),

i=l j=1

X(&m)= 27)

in which w; is the control weight.

3.2. NURBS-based formulation of FG-CN. <C

Based on isogeometric analysis, thic <tudy establishes a suitable numerical model that easily
fulfill higher-order derivative requit 'ment i discrete Galerkin weak form. Herein, the NURBS
basis function is employed to buil . a f'nite approximation of displacement field in following form

[54,75, 76]:

U, [N, 0 0 0 0 ]fu,
Vo . 0O N, 0 0 0 ]|vy, .
u' =w, =;‘| 0 0 N, 0 0 |iw,t=YyNd, (28)
A L N, 0 ||B,] "
= {0 0 0 0 N, ||B,

T
where d, ={u Ve W By ﬂ),,} , N,, respectively, are the vector of degree of freedoms
associated wit.. the control point 7 and the shape function.

Replacu = 2q. (28) into Eq. (7), the strain components is now expressed in matrix form as:

13



ie z(sf Loy }1 (29)

N, 0 00 0 N, 00 00 , >, 0
B/=| 0 N, 00 0f;B'= N, 0 0;B?=/0 0 2 0 N, |

N, N, 000 0 2N,, 00 10 00 N, N,
., [0o00 N 0 (30)
““lo o 0o 0 N,

Substituting Eq. (28) into Eq. (11), the couple stress « “rvature components are rewritten in
matrix form as:

L mxn T oo (N (N T
%= Bid, WhereB}‘{(xf) ) ) (x) (Xz):| 3D
i=1
in which
00 2N, 00 000 0 -2V,
g1 00 2N, v 0 g 1[0 0 0 2N, 0
" 7210 0 (N,-N,) 0" 4000 N, -N,
10 0 0 a0 0 0 0 -2N,, 2N, (32)
goo L -N,, N,. v 2 0] goi L 000 -N,,, N,
" "4/-N,, N, 00O ' 74000 -N,, N,
BXSZ_l'o 00 ~ -N,
4000 N 0

Substituting F ;. (29) «nd Eq. (31) into Eq. (23), the virtual displacement vector &d is
eliminated and th. globr( equation of motion of FG-CNTRC micro-plate is established in the

matrix form ¢ ; follo s:

(K, +K,,)d+Md=F (33)
where K, =.<] + Ki and K, , respectively, are the linear and nonlinear global stiffness matrix

and M is the global mass matrix. These matrices are expressed in a clear form as:
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K; =] (B*) B,B'dQ

K¢ =] (B) D,BdO

(34)
_1 L\ A pNL MY A pl 1 MY A 1
KNL—EIQ(B ) b,B"d0+[ (B") D,B dQ+§jQ(B ) DB 0
M =] R'mRdQ
Q
where
R, N, O 0 0 0
R={R,;; R=[0 0 -N,, 0 0
R
\ 0 0 0 N, O (35)
ON 0 0 0 00 . 00
R,=[0 0 -N,, 0 0| R,=[0 2 0 00
0 0 0 0 N, 0" 0 00
In the following equation, the external force vector is .*ven by:
F=[ g()[0 0 N, " 0]dO (36)

In addition, the structural damping of FG-UN.RC micro-plate is derived through Rayleigh
damping. Thus, the nonlinear equation of n..*ion in Eq. (33) is now rewritten in the following

matrix form:

Kd+27+Md=F 37)
where K=K, +K,, and the str. -t al d mping matrix C is defined based on a linear association

between K and M such as:

C=y,M+gK (38)
in which the Rayleigh dampin, coefficients ( Vo gR)are obtained from the experimental work.

However, in this stndy, . and ¢, are defined as in Ref. [77], where a damping ratio of FG-

CNTRC plate wa: assum d to be 0.3.
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4. Nonlinear solution procedure

4.1 Nonlinear static bending solution

In this study, the nonlinear static equation (K Ky, )d =F is obtaineu v aeglecting the mass

matrix effect in Eq. (33) that is solved by using Newton-Raphson te~“niqu. At a specific load

level m™, the residual force R(d’) at i iteration is computed as foll. *vs-

R(d')=(K,+K, (d'))-F" (39)

By iterations, the residual force tends to zero. When the r.sidi- ' force is still large enough, the
displacement at (i+1)™ iteration, is then calculated as:

d* =d'+Ad™ (40)
The increment displacement Ad™"' is computed by to:'~wing equation:
Ad™ =-R(d') /K, (a,) (41)
where the tangent stiffness matrix K, at i iteratic - is defined as:

OR (4"
i - 42
KT(d):%i——nNLJrKg (42)
in which the stiffness matrix K w. cor.ains ‘e variables d, given by:

_ L NP : NL Y P R 43
K, =] (B"+B") P, (b +B" )dQ+| (B*) D B*Q (43)
And K, is the geometric stiffp >ss .. atri ., that related to the in-plane forces and is defined such as
r| N° N?
v _ X Xy
= (B) [NO I :I(Bg)dQ (44)
xy y
The iteration is rer zated unul the convergence condition of displacement is obtained. In other

words, the displaceme.. er or between two uninterrupted iterations must be smaller than an

allowable error, 1. 3.

|di+1 _di”

o

<0.01 (45)
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4.2 Nonlinear dynamic solution

In this section, the Newmark’s integration procedure with the average accelc. ~tion method
[77] is utilized to obtain the solution of the equation of dynamic system ir Eq (33) and Eq. (37).
Additionally, the nonlinear responses of plate are obtained by us.*c t.. Picard method.
Specifically, at the initial time step ¢ = 0, the displacement, velocity #.d « c~eleration are assumed
to be zeros. As the displacement d is found at time ¢ = (n + 1)A¢, the v ~city and acceleration are

calculated as follows:

N . .
dn+l :;z(dn-#l _dn)_ 1 2 dn _(_1 _1 dn (46)
BAt BAt 2B
d, =d, +At(1-y)d, +)Ad,, (47)

in which, the Newmark £ =1/4 is known as the cons..t average acceleration method with the
factor y =1/2 . Substituting Eq. (46) and Eq. (47) w. *0 Eq. (37), the equation of motion is now

rewritten as:

A

Kn+ldn+l = n+l (48)
where KM is the effective stiffness matrix at u.me (n + 1)At
A 1 y
K, =x M+—C (49)

wo T
- PAt PAt

and the effective force vector

F =F_ +M lzdn La L ii el Zea | Lot <A 2ol | GO
PAt Ot 2B LAt y/j 2\ B

It is noted that in <q. 49) and Eq. (50), all parameters are found at previous step, i.e. t = nAt.

However, the non’ near stitiness matrix K,+1 is dependent on the displacement at t = (n + 1)At. In

this way, the Picai.' is as' igned to re-approximate Eq. (48) such as:

K(d.,)d +F,, (51)
where the .“1pe >e.ipt “i” represents the iteration number. Thus, Eq. (48) is iteratively solved until

the convergen. = condition of displacement in Eq. (45) is satisfied.
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In this article, the order of NURBS functions is p = ¢ = 3. The numerical inte 2ration in IGA is
same as in FEM, which is performed by the Gauss-Legendre quadrature. H wc . =t, it is a more
complex implementation in case of IGA. Integral over the entire geometry 1n hysical system) is
split into integral over each physical element Qe. The integral is pulled back .. narametric element
via the geometry mapping. Then, the integral over the parametric el .. =nt 1. pulled back to the
parent domain. Additionally, (p + 1) % (g + 1) are the number of Ga. ~si .n points that are adopted

for two-dimensional element by using p' and g™ orders NURBS

5. Results and discussions

In this section, several numerical investigations are i. estic~’¢d in order to show the small
size-dependent effect on the nonlinear static and dyna: ~ic behe viors of FG-CNTRC micro-plate
for different boundary conditions. Firstly, the accuracy ¢ the presented model is authenticated by
comparison with other published model in the literai. -=. The Newton-Raphson iterative procedure
in section 4.1 is employed to get the solutions of 1. ., -~ static analysis. Afterward, the difference
between nonlinear classical model and non-cl. ~icai model (MCST) is explore through the change
of material length scale parameter. Then. the N>wmark Beta method is assigned to obtain the
geometrical nonlinear dynamic response ot “"G-CNTRC micro-plate under excitation load.
Moreover, the effect of microstruct .ce s.-e-dependent on dynamic analysis is also carefully

studied. In this paper, the material nrop. “tie of FG-CNTRC are determined as follows:
e The isotropic matrix (PmPV) a. = om emperature (7= 300 K) [67]
E"=2.1GPa, v"=0.34. 1" =1150 kg/m’
e The (10,10) SWCNTs " /5.

EM =5.6466 TPa, Ey,' =7.05 "Pa, G5 =1.9445 TPa, v"" =0.175, p*" =1400 kg/cm’
In addition, the twe *ound. - y conditions (BC) in this study are:

e Simply support . “th ~ ,ovable edge (SSSS)
J\ , =W, =, =0 atleft and right edges
|1y =w, =B, =0 at lower and upper edges
e Clamped su port (CCCC)
v=u=w=0 atall edges
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5.1. Nonlinear static analysis

In order to validate the faithfulness and efficacy of the proposed nonlinear numc ~cal solution,
let us investigate the nonlinear static bending of FG-CNTRC square micrr -pla e under transverse

uniform distributed load based on classical model(¢/h=0). The obi.ed ..>n-dimensionless
central deflection w=w/h versus load parameter g =gq,L' / (Emh/ )] ¢. 5238 and CCCC FG-

CNTRC plates (L/h=100) for different volume fraction (V* - 0.11, 2.14, 0.17 ) are compared

CNT ~
with those obtained by the element-free IMLS-Ritz of Zhang ~* al. | 7~ and are illustrated in Figs.
3-5. It can be seen that, the present nonlinear results for FG- " .istri yution are in good agreement
with those of reference solution. Nevertheless, the nonlinear a. “ections derived from the proposed
solution are slightly higher than those of reference so'utic.” for FG-V, UD, FG-X. Therefore, the
proposed model will be utilized to predict the nonlinear <= ‘¢ problem in following examples. It

is clear that the linear stiffness matrix K, is constant anc Figs. 3 to 5 show the difference between

linear and nonlinear analyses.

1.2
o Af ;o Ny
-0.8 l’ 11 % P
4 ,
206 f;‘/},"):
) y »
< o
§0-4' ; FGX UD FGV FG-O ~
g
O 0.2

Linear ---

0 500 1000 1500 2000 2500 3000
Load parameter

Fig. 3. M onlinea. deflection of clamped FG-CNTRC plate with different
CNT ¢ stri’ atic . (L/A=100, V;,,, = 0.11)

/ / ”  IMLS-Rits[79] © a * A
/ Nonlinear — — — —_—

v
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Fig. 5. Nonlinear de tect'on 0. clamped FG-CNTRC with different CNT
distribution (L/A=1." [, =0.17)

In order to show the reliz oil,, of the proposed solution in capturing the small size-dependent
effect, a square FG micro: plat  (L/h =20, E; = 14.4 GPa, E; = 1.44 GPa, v;= v, = 0.38) subjected
to uniform distributed I- ad us.~e¢ MCST is studied. The notations # and b denote the top and bottom
surfaces and the nonl.~e2 def ection curves are obtained after 20 load levels to reach ¢, = 5.4x10°
N/m?. As depictru 1 Fig. 6, there is a good agreement between the obtained results of
homogeneous mic. ~-plat . and those from general third-order plate theory in Ref. [80] for various

material leng’ 1 scale vatio ¢/h=0, 0.5 and 1.
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Fig. 6. Comparison between nonlinear deflection ~n~.es ¢ Thomogeneous

square micro-plate for various material length s 2le re** . (/h

Next, a detailed study of the parametric effects of ML._ »ara  aeter, CNT volume fraction, CNT

distribution on the nonlinear deflection responses of FG-CN "RC micro-plates (L/h =10) is carried

out in Figs. 7-12. It is worth mentioning that ven ¢/, varies from 0 to 1, ¢/h =0 denotes the
classical theory. Figs. 7-10 illustrate the in‘luenc * of small size-dependent on the nonlinear
deflection of FG-X, UD, FG-V and FG-O CN1 rew.forced composite micro-plate with the CNT
volume fraction V7, =0.11. It can be observe.' that the deflections are smaller for the higher value
of length scale ratio ¢/A . At the same 10au narameter level, the highest deflection is obtained for
¢/h=1. Moreover, the deviation tztwe.~ c.assical and MCST model for CCCC BC as the ratio
¢/h <0.251s not noticeable, in s *e Of th s the reduction of central deformation is remarkable as
the ratio //h>0.25. It is al .« =een that an increase in ratio ¢/4 lead to decrease in nonlinear

central deflection of FG-C v "RC micro-plate not only for SSSS but also for CCCC boundary

condition, and this is becau. * of the stiffness increase due to the size-dependent effect as ¢/h=0.

In addition, the va..~ 1on .n central deflection with load parameter for UD and the other three
patterns of CNTs uistrib. *ion subjected a uniform transverse load are carried out in Fig. (10). It is
clearly seen that the '~ _ction responses of FG-O and FG-V are higher than those of UD and FG-
X model. Besides, 11e minimum and maximum values of normalized central deflections are
derived frem FG-a and FG-O model, respectively. This is explained by a more significant increase
in the stiffnc -5 of FG-CNT reinforced plate that is obtained at the top and bottom surfaces with
CNT-rich compared to CNTs reinforced near the mid-plate. Furthermore, it is attained that the
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MCST produces lower load-deflection curves more than classical theory (¢/h--0) due to stiffer

stiffness of micro-plate for the length scale ratio ¢//h#0. It is also observed from .~ figure that

the nonlinear deflections of CCCC micro-plate are lower than those of the 5SS > micro-plate. This

is owning to the CCCC BC, which has less constraints compared to SSS.. RC.

Fig. 12 reveals the influence of different volume fraction V(,, »n t'«¢ load versus deflection
curves of FG-CNTRC micro-plate for four patterns of CNTs dis’.1buticn and the ratio //h=0, 1.
It can be seen that the volume fraction V/,, increases from 0 1, “~ 7,17 leading to decrease in

deflection. This behavior owning to the fact that there is an ~ gme' tation in CNTs reinforced in

the isotropic matrix as CNTs volume fraction increases.

3.5 . , . .
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Fig. 7. Comparison of the load- .eflectic 1 curve of FG-X micro-plate with V., =0.11 and
under: SSSS (left) and CCCC frighy, o' ndary condition.
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5.2. Nonlinear dynamic analysis

In the following examples, the no.“linear lynamic behaviors of FG-CNTRC micro-plate under
the transient loadings are studiec in letail. In all examples, the plates are subjected to uniform

transverse distributed load in 2 1y in.*~r. of time, which is ¢ = g,F (¢), in which F(r) is the load

factor defined as follows:

1 0<r<t
Step load
0 1>,
)= (1=t/t, 0<t<t 52
) /t ' Triangular load (52)
0 t>1,
e Explosive blast load

where g, =1( MPa, 1=2.5x10" s, 1, =4.5x10s and the time history of load factor F(¢) is
illustrated ... 7°~ 13,

To verify t. @ dependency of the present model for geometrically nonlinear dynamic study, the
responses of SSSS orthotropic square plate with the length L = 0.25 m and thickness # = 0.05 m
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under uniform step loading of ¢, =1 MPais considered with the following m .terial properties:
E, =525 GPa, E, =21 GPa, Gi2 = G13 = G2 = 10.5 GPa, and v =0.25, p =300 kg "n’ . It can be

seen from Fig. 14 that the predictions of the linear and nonlinear respons :s sk ow an outstanding
agreement in comparison with the solutions derived from the finite strip n.. *hoa , resented by Chen

et al. [81].

Next, Figs. 15-17 illustrate the influence of small size-deper oent on the nonlinear dynamic
responses of FG-CNTRC micro-plate under different types of loc 1 factc . The plate’s thickness is
set at 17.6x10¢ and the length to thickness is chosen as L/” =2". 't is observed that as the ¢/h

increase, nonlinear displacement and periods of motio.. of r~*_ro-plate decrease due to the
enlargement in the strength of micro-plate that come fro. ~ small : ize effect. The MCST predictions

are markedly different from the classical prediction at the ~atio //h =1. Comparing the figures, it

is seen that the triangular and explosive blast load give ~early same response, except for step load.

The effects of CNTs volume fraction on FG-X, " "D, FG-V and FG-O are also described in Fig.

18. As shown, the increase in the value 7, lcras o the lower magnitude of the deflection and

period of motion at the level of loading owni..~ to the more CNTs reinforced in isotropic matrix.
Similarly, the nonlinear predictions of *..c MCTS model for four patterns of CNTs distribution are

lower than those of classical model.

In the last example, the influ. ce of ¢ .ructural damping on the nonlinear dynamic response of
FG-CNTRC micro-plate unde the step, triangular and explosive blast load is also investigated and
the results are shown in Fi~s. 19-2(. According to these figures, it can be concluded that the
oscillation of the plate w. hor. damping keep continue to the end of time # = 9x10°. However, by
including the effect c. structural damping, the geometrically nonlinear dynamic responses is
reduced. The oscillatiow. ~f 7 iicro-plate is extinguished after two or three cycle vibration. These
behaviors can be explai ed that the damping has the effects of reducing and preventing the
structure’s osci''~tiow. . can be concluded that the damping property of FG-CNTRC micro-plates

plays an impc tant ro e in the vibrational energy dissipation.
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6. Conclusions

A nonlinear numerical size-depe «dent n >del using the MCST and IGA was investigated for
the nonlinear static and dynamic r spenses of FG-CNTRC micro-plates. The nonlinear governing
equation of motion was establisn.© ba ed on the nonlinear von-Karman strain assumption. A
proposed trigonometric shea <~formation theory coupled with IGA was utilized to obtain the
nonlinear displacement of p. te. The proposed size-dependent using one MLS parameter can
generate a classical mode1 _- set the ratio //h=0. The faithfulness and efficacy of the proposed
solution was verified tre «gh “wmerical examples for static and dynamic problems. The extended
rule of mixture wr ., ussign.d to predict the material properties of FG-CNTRC micro-plate with
FG-X, UD, FG-V and F( -O carbon nanotubes distribution across the plate’s thickness. Through

the detailed n".meric °l example studies, some noteworthy conclusions are summarized as follows:

e By ~onsiaering only one MLS parameter, the proposed size-dependent model can easily
captu " the small size-dependent effect on the geometrically nonlinear responses of FG-

CNTRC micro-plate. An increase in MLS ratio leads to a decrease in nonlinear static and
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dynamic central deflection. Thus, the MCST model produces a s‘iffer micro-plate
compared to the classical model.

e For the patterns of CNTs distribution, at the same load level, th. hi thest deflection is
obtained for FG-O and the lowest value is obtained for FG-X.

e The increase in volume fraction V(,, from 0.11 to 0.17 is denr ..." for .ie augmentation in
CNTs reinforced in the isotropic matrix. Consequently, the st1i.” :ss of FG-CNTRC micro-
plate tends to higher value as V[, rises.

e By including the structural damping, the nonlinear uynamic responses of FG-CNTRC
micro-plate are extraordinary different from the predic..on 0o’ model without damping. The

damping reduces and prevents the structure’s oscillatio. Therefore, the damping property

of CNTRC structures is important in dynamic ~naly. ‘= sf FG-CNTRC micro-plates.
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