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A B S T R A C T  

 This paper presents a nonlinear numerical model, which is based on the modified couple stress 

theory (MCST), and trigonometric shear deformation theory coupled with isogeometric analysis. 

The present approach captures the small scale effects on the geometrically nonlinear behaviors of 

functionally graded carbon nanotube reinforced composite (FG-CNTRC) micro-plate with four 

patterns distribution. The equations of motion are established based on a Garlekin weak form 

associated with von-Kármán nonlinear strains. The MCST utilizes only one material length scale 

parameter to predict the size effect in FG-CNTRC micro-plate, for which its material properties 

are derived from an extended rule of mixture. The solutions of nonlinear static equation are 

obtained by using the Newton-Raphson technique and the Newmark time iteration procedure in 

association with Picard method is assigned to get responses of the nonlinear dynamic problems. In 

addition, the Rayleigh damping is applied to consider the influence of damping characteristic on 

the oscillation of FG-CNTRC micro-plates. Comparisons are performed to verify the proposed 

approach. Afterward, the numerical examples are used to show the effects of the distribution of 

carbon nanotubes (CNT), their volume fraction, the material length scale parameter and the 

boundary conditions on the nonlinear static and dynamic behaviors of FG-CNTRC micro-plates.  
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1. Introduction 

 During the last decade, many scientists focus on studying the size or small scale effects on 

micro- and nano-structures, which are widely used in micro-electromechanical systems (MEMS), 

nano-electromechanical systems (NEMS) biosensors and atomic force microscopes [1-4]. In fact, 

in contrast to macro-mechanical behaviors, experimental measurements pointed out that the 

strength and stiffness of micro and nano-scale material were higher than their bulky materials. 

Through torsional experiments on Cu wires, Fleck et al. [5] showed that the decrease in wire 

diameter from 170 µm to 12 µm led to a systematic increase in torsion. For computing the plasticity 

length scale, Stolken et al. [6] presented a flexible micro-bending test method with the range of 

length scale from 3 µm to 5 µm to the measured moment. Chong et al. [7] performed experimental 

investigation to determine the influences of strain gradient on plastic deformation through nano-

indentation and atomic force microscopy. By experimental measurements, Lam et al. [8] proved 

that strain gradients played a main role in the elastic deformation of thin beams, and also in 

determining the small-scale effect of  MEMS and NEMS. However, the conventional elasticity 

theories is not capable of capturing the size effect of the small scale structures when the material 

size lies below approximately 10 µm [5].  

 Various non-classical elasticity theories calculate both strain and strain gradients to determine 

the scale effect using material length scale (MLS) parameter. Toupin [9], Mindlin and Tiersten 

[10], Koiter [11] proposed the couple stress theories that considered only gradient of rotation 

vector in the strain energy with two MLS parameters. Furthermore, Fleck and Hutchinson  [12] 

and Lam et al. [8] recommended strain gradient theory that employed three MLS parameters to 

apprehend the small scale effect. Owing to the difficulty of resolving more than one MLS 

parameter, Yang et al. [13] established the modified couple stress theory (MCST) based on 

amending the couple tress theory using the symmetric couple stress tensor in equilibrium relation 

condition. This theory contains one MLS parameter, and it is simpler and easier to apply than any 

other strain gradient theory.  

 Based on non-classical theories, many numerical and analytical models have been 

established to predict the responses of micro- and sub-micro structures. An early nonlocal plate 
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solution was presented by Lu et al. [14] for the bending and buckling analysis of isotropic nano-

plates. The variable transformation technique was applied by Duan and Wang [15] to obtain the 

exact nonlocal solution that predicted the axisymmetric bending responses of circular micro-/nano-

plate subjected general loading. Reddy [16] proposed a nonlocal solution to  solve the nonlinear 

problems of isotropic nano-plates. By using refined plate theory and nonlocal elasticity theory, 

Nguyen et al. [17] studied the size-dependent effect on bending, free vibration and buckling 

phenomenon of functionally graded (FG) nano-plates. Thai et al. [18] proposed an MCST 

Timoshenko beam to predict the static, dynamic and buckling behaviors of FG sandwich micro-

beam. Wang et al. [19] derived a nonlinear MCST solution to study the small scale effect on 

nonlinear free vibration of circular micro-plate under clamped and simply supported boundary 

condition. Wang et al. [20] also extended the research to investigate the nonlinear bending of 

circular micro-plate under uniformly distributed transverse load. The MCST was first coupled with 

third order shear deformation theory (TSDT) by Gao et al. [21] to depict the influence of small 

size-dependent on static bending and free vibration of micro-plate under simply supported 

boundary condition. Based on von-Kármán nonlinear strains and MCST, Reddy and Kim [22] 

achieved a small size-dependent model for nonlinear responses of functionally graded micro-plate. 

Nguyen et al. [23] also obtained a MCST refined plate quasi-3D isogeometric solution for FG 

micro-plate. More recently, Thanh et al. [24] established a numerical model for thermal bending 

and buckling analysis of composite laminated micro-plate based on the new MCST. The nonlocal 

and strain gradient elasticity theory was also utilized to establish a Navier closed form solution by 

Karami et al. [25] for resonance vibration of functionally graded polymer composite reinforced 

with grapheme nanoplatelets. Based nonlocal strain gradient theory, Karami et al [26] developed 

a size-dependent analytical solution to capture the small-scale effect on wave dispersion in 

anisotropic doubly-curved nanoshells. Furthermore, Karami and Janghorban [27] presented a three 

dimensional elasticity theory for small-scale effect analysis of anisotropic solid sphere. They also 

studied the size effects on dynamic behavior of porous nanotubes using Timoshenko beam theory 

[28], and obtained a 3D elastic theory for anisotropic spherical nanoparticle [29].  Furthermore, a 

number size-dependent models have been formed according to modified strain gradient theory 

coupled with beam and plate theories [30-33].  

 Thanks to the extraordinary properties of CNTRC material [34-39], research on behaviors of 

CNTRC micro-/nano-beam and plate subjected thermal and mechanical load has gained increasing 
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attention. In particular, Shahrisri et al. [40] presented an analytical Mindlin’s strain gradient TSDT 

solution to predict the natural frequencies of simply supported nano-plate. By using nonlocal 

theory and Navier’s method, Ghorbanpour Arani et al. [41] obtained a closed form solution to 

analyze the surface stress effect on buckling nano-composite plate reinforced by CNTs. 

Mohammadimehr et al. [42] presented a modified strain gradient TSDT model for FG-SWCNTs 

nano-composite plate. A closed form solution for bending and buckling of simply supported plate 

were also derived. In addition, Mohammadimehr et al. [43] investigated the buckling and vibration 

behaviors of double-bonded piezoelectric nano-composite plate on Pasternak foundation. The 

small size-dependent effect on the behaviors of nano-plate was derived from the MCST. Karami 

et al. [44] generated a nonlocal SSDT model for FG-CNTRC plate on Winkler–Pasternak elastic 

foundation. The analytical solutions for static bending, free vibration and buckling were also 

obtained for FG-CNTRC plates.  

 In order to fill the gap between CAD and FEA, NURBS based isogeometric analysis was 

introduced in 2005 [45]. In engineering design, the non-uniform rational B-splines (NURBS) is 

the most widely utilized. NURBS is used as shape function to approximate both geometric model 

and analysis model (unknown field). Additionally, NURBS provides a flexible way to make 

refinement, de-refinement, and degree elevation [46], and makes it easy to obtain Cp-1-continuity 

for pth-order. Therefore, the accuracy of the analysis of complex structures with the geometry 

domain like spheres, cylinder, circle, etc. is obtained. IGA has been widely implemented in 

developing the numerical solutions for mechanical problems [47-53]. Moreover, IGA [45] has 

been assigned to achieve several size-dependent numerical solutions for micro- and nano-plates 

[54-60]. 

 From the above literature, there are few approaches including the size parameters for analysis 

of the small size-dependent effects on FG-CNTRC plates at the order of micro and submicron 

sizes. Furthermore, the damping characteristic of CNTRC structures was not considered due to 

reinforced CNT [61-63]. The experimental work showed that a 200% increase in damping ability 

was observed by CNT reinforcement [62], and therefore the CNT reinforced composite structure 

can significantly dissipate the energy during oscillation. To the best of our awareness, there is no 

publication that analyzes the small scale effect on nonlinear static and nonlinear dynamic taking 

into account damping property of FG-CNTRC micro-plates. By using Hamilton’s principle, a 

nonlinear size-dependent Garlekin weak form is established based on a proposed trigonometric 



5 
 

shear deformation theory and von-Kármán assumption. Moreover, nonlinear dynamic analysis of 

FG-CNTRC micro-plate accounts for the effect of structural damping that is calculated with 

Rayleigh damping. Newton-Raphson technique and the Newmark’s integration coupled with 

Picard method are assigned to explore the nonlinear static and dynamic responses of FG-CNTRC 

micro-plate, respectively. This study also clearly investigates the influences of MLS parameter, 

CNT volume fraction, patterns of CNT distribution and boundary conditions on nonlinear 

deflection of micro-plates.        

2. Theoretical formulations  

2.1. FG-CNTRC definition 

 
UD 

 
FG-V 

 
FG-O 

   
FG-X 

 Fig. 1. Configuration of FG-CNTRC micro-plate with four patterns distribution of CNT: UD; 
FG-V; FG-O; FG-X. 

 

 Suppose that a FG-CNTRC micro-plates are procedure from the isotropic matrix reinforced 

single-wall carbon nanotubes (SWCNTs) that vary across the thickness direction as shown in Fig. 

1, the effective material properties of CNTs reinforced composite micro-plates are predicted based 

on the Mori-Tanaka scheme [64, 65] or the extend rule of mixtures [66, 67]. According to Shen 

[67], the effective material properties of mixture CNTs and isotropic matrix are calculated as 

follows: 
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in which, 11 22,  CNT CNTE E  and 12 CNTG , denote the Young’s modulus and shear modulus of CNTs, 

respectively. 1 2,  η η  and 3 η  denote the CNTs efficiency parameters that are given in Table 1. mE  

and mG are the Young’s modulus and shear modulus of isotropic matrix, respectively. 12  CNTυ  and 

mυ  are the Poisson’s ratio of the CNTs and isotropic matrix, respectively.  CNTρ  and mρ  are the 

density of the CNTs and isotropic matrix.  It is noted that the efficiency parameters were derived 

from the molecular dynamic simulation based on the rule of mixture [68]. 

Table 1 
The CNT efficiency parameters for different volume fraction  

CNTV ∗          1η          2η                3η  

0.11 0.149 0.934 0.934 
0.14 0.150 0.941 0.941 
0.17 0.149 1.381 1.381 

  Additionally, CNTV  and mV , respectively, are the volume fraction of CNTs and matrix that 

observe the equation such as: 

   1CNT mV V+ =  (2) 

 As shown in Fig. 1, the CNTs are uniformly distributed through the plate’s thickness and three 

others patterns of distribution of CNTs are FG-V, FG-O, FG-X are presented. Consequently, the 

volume faction depend on pattern of CNTs distribution can be calculated as follows: 
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in which, 

    
( ) ( )/ /

CNT
CNT

CNT CNT m CNT m CNT

wV
w w

∗ =
+ −ρ ρ ρ ρ

 (4) 

where, the CNTw , CNTρ  and mρ   are the mass fraction of CNTs, densities of the CNTs and matrix, 

respectively. 

2.2. A size-dependent model for FG-CNTRC micro-plate 

 Conforming to the generalized shear deformation plate theory as [69-71], the displacement 

field of any points in the FG-CNTRC plate within a domain ,
2 2
h hV  = Ω − 

 
x  can be expressed 

as:   

 

( )

( )

0
0

0
0

0

( , )( , , ) ( , ) ( , )

( , )( , , ) ( , ) ( , )     ; 
2 2

( , , ) ( , )

x

y

w x yu x y z u x y z f z x y
x

w x y h hv x y z v x y z f z x y z
y

w x y z w x y

∂
= − +

∂
∂ − = − + ≤ ≤ ∂  

=

β

β  (5) 

in which, 0 0( ,  )u v  are the in-plane displacements along the  x and y coordinates and 0w  is the 

transverse displacement along the z  coordinate. xβ and yβ  denote the rotation components 

around the y-axis and x-axis of cross-sections in x-z and y-z planes, respectively. A trigonometric 

function ( ) ( ) ( )( )2
ln sin sin 1hf z πz h πz h = + + 

 π
 is chosen as the shape function that is 

utilized to define the transverse shear strains and stresses. From Fig. 2, it is clearly seen that the 

first derivative of shape function has a zero value at the top and bottom surfaces of plate. Hence, 

the free shear stress condition at 2z h= ± is also satisfied. Additionally, three others shape 
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functions and their derivative proposed by Reddy [72], Soldatos [73] and Nguyen-Xuan et al. [74]  

are illustrated in Fig. 2. 

  
 Fig. 2. Shape function ( )zf and its first derivative ( )zf ′  across the plate’s thickness.  

 The nonlinear von-Kármán strain-displacement relations with the small strain and moderately 

large rotation assumption are defined based on the displacement field in Eq. (5) and are presented 

in a compact form as: 

   
{ }
{ }

0 1 2 ( )

( )

T

x y xy

T

xz yz s

ε  γ z f z

γ  γ f z

ε= = + +

′= =
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γ ε
 (6) 

in which, 

{ }
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0, ,

1 0, 2 ,

, ,0,
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w

β
β β β

β β

  
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   +   
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ε ε ε

κ   κ   ε

 (7) 

It is noted that 0
NLε  is the nonlinear components of in-plane, which can be rewritten in the following 

form:  

 
0,

0,
0 0,

0,
0, 0,

0
1 0
2

x
xNL

y
y

y x

w w
w

w
w w

θ

 
    =   
    

A θ =ε  (8) 

 The components of rotation vector iθ  associated with Eq. (5) are given by: 
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And the components of curvature vector ijχ are written in compact form as follows: 
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 (11) 

It is noted that, the subscripts ‘,x’  ‘,y’ represent the derivative of arbitrary function for x and y 

directions, respectively.   

 According to the MCST with one MLS parameter proposed by Yang et al. [13], the constitutive 

equation for the stress and strain tensor, respectively, are defined as: 

ij ijkl klC=σ ε  (12) 
22ij ijm G=  χ  (13) 

where ijklC  is the elasticity constant; G  and   are the shear module and the MLS parameter, 

respectively. 

 Furthermore, the CNTRC material behavior is similar to the orthotropic material. Nevertheless, 

in this work, the shear modulus of FG-CNTRC micro-plate in three directions are assumed to be 

equal, i.e. 12 13 23G G G G= = =  . Therefore, the MCST can be applied to predict the small size-

dependent effect of FG-CNTRC micro-plate. 
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  Accordingly, the stress and couple stress-curvature constitutive relations associated with 

the MCST, respectively, are written as: 
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where 

11 12 22 22
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 (16)               

in which, 11E  and 22E are the Young’s moduli of the CNTRC plates in the principal material coordinates, 

12 13,  G G  and 23G  are the effective shear moduli in the 1-2, 1-3 and 2-3 planes, respectively and 

( )21 22 11 12E E=ν ν  is Poisson’s ratio.  

 Next, the in-plane forces, moments, higher order forces and shear forces are expressed as: 
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 From Eq. (6), (14), (17), the stress resultant can be expressed in matrix form as: 
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in which 
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  Similarly, from Eq. (10) and Eq. (15), the couple stress moment resultant is: 
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0

1

2

ˆˆ ˆ

N A B 0 0 0
M B E 0 0 0

m Q D0 0 X Y T
0 0 Y Z VR
0 0 T V WT

bc c c

bc c c

c sc c c
c

c c cc s

c c cc s

                  = =   
    
    
        

χ

χ

= χ χ

χ

χ

 (20) 

in which 

( ) [ ]( )

[ ] [ ]( )

2

/2 2
2

2
/2

2

/2 2
2 2

2
/2

2 0 0 0
0 2 0 0

, , 1, ( ), ( ) d
0 0 2 0
0 0 0 2

2 0
( , , , , , ) 1, ( ), ( ) , ( ), ( ) ( ), ( ) d

0 2

h
c c c

h

h
c c c c c c

h

G
G

f z f z z
G

G

G
f z f z f z f z f z f z z

G

−

−

 
 
 ′ ′=
 
 
  

 
′′ ′′ ′′=  

 

∫

∫

A B E

X Y Z T V W













 (21) 

 As a result, the virtual strain energy of FG-CNTRC micro-plate using MCST is now 

established as follows 

ˆ ˆˆ ˆ(  + )d  m χU
Ω

δ = δ δ Ω∫ σ ε  (22) 
 By using the principle of virtual displacement, the discrete Galerkin weak form for nonlinear 

responses of FG-CNTRC micro-plate subjected to uniform loading q can be established such as: 

 ( )T Tˆ ˆˆ ˆ ˆ ˆd  d  d dT
u cdiag wq

Ω Ω Ω Ω
δ Ω + δ Ω + δ Ω = δ Ω∫ ∫ ∫ ∫D D u mu 

 ε ε χ Γ χχ  (23) 
in which, ( ) ( ) = 1,  1, 2,1,1,1diag diagΓχ  is the diagonal matrix. 

Besides, the last term in left hand side of Eq. (23) is computed by:  
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( )

( )( )
( )( )

/2

/2
/2

0 0, 0 0,/2

0 0, 0 0,

d d d d

                    ( ) ( )

                                      ( ) ( )

hT

h
h

x x x xh

y y y y

u u v v w w x y z

u zw f z u z w f z

v zw f z v z w f z

Ω Ω −

Ω −

δ Ω = δ + δ + δ

= − + δ − δ + δ +

− + δ − δ + δ +

∫ ∫ ∫
∫ ∫

u mu 

       

 

   

 

   

ρ

ρ β β

β β

( ) ( ) ( )( )
0 0

1 0 1 2 0 2 3 0 3

d d d

                    dT T T

w w x y z

Ω

δ 

= δ + δ + δ Ω∫ u I u u I u u I u

 

     

 (24)               

in which { }1 2 3
T=u u u u , { }1 0 ,

T
x xu w= −u β , { }2 0 ,

T

y yv w= −u β , { }3 0 0 0 Tw=u , ρ  are 

the mass density per unit volume;  m is the mass matrix that is expressed as follows 

( ) ( )( )
0 1 2 4

/2 22
0 0 2 3 5 1 2 3 4 5 6 /2

0 4 5 6

0 0
0 0 ;  ;  , , , , , 1, , , ( ), ( ), ( ) d
0 0

h

h

I I I
I I I I I I I I I z z f z zf z f z z
I I I

−

   
   = = =   
      

∫
I

m I I
I

ρ  (25)               

3. FG-CNTRC micro-plate based on NURBS basis function 

3.1. Brief of isogeometric analysis 

 In 1D, the B-spline basis function is a piecewise polynomial of degree p that is recursively 

constructed by Cox-De Boor algorithm as follow:  

( )

( ) ( ) ( )

1
,0

1
, , 1 1, 1

1 1

1  if  
0    otherwise

1

i i
i

i pi
i p i p i p

i p i i p i

p = 0 ,  N

p ,  N N N

+

+ +
− + −

+ + + +

≤ <
= 


−−

≥ = +
− −

ξ ξ ξ
ξ

ξ ξξ ξξ ξ ξ
ξ ξ ξ ξ

 

 
(26) 

where i Rξ ∈  is called knot and, 1, 2,..., 1i n p= + +  is knot index, p  is the order of polynomial 

function and n  is the number of basic function; The value of knot is taken from the knot vector 

{ }1 2 1, ,..., n pξ ξ ξ + +Ξ = . If two end knots are repeated 1p +  times the knot vector is open. As seen in 

Fig. 3, the one-dimensional (1D) quadratic B-spline basic functions for an open knot are plotted. 
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{ }0,  0,  0,  0.25,  0.5,  0.75,  1,  1,  1Ξ =  

 
{ }0,  0,  0,  0.2,  0.4,  0.6,  0.8,  1,  1,  1Η =  

 Fig. 3. Quadratic B-spline basic functions.  

 The non-uniform rational basis spline (NURBS) basis functions is constructed based on a 

tensor product of two 1D B-splines with polynomial degrees of p and q such as: 

( ) ( ) ( )

( ) ( )
1 1

,
p q

i j ij
n m

p q
i j ij

i j

N M w

N M w
= =

Χ ξ η =

∑∑

ξ η

ξ η
 

 
(27) 

in which ijw  is the control weight.  

3.2. NURBS-based formulation of FG-CNTRC  

 Based on isogeometric analysis, this study establishes a suitable numerical model that easily 

fulfill higher-order derivative requirement in discrete Galerkin weak form. Herein, the NURBS 

basis function is employed to build a finite approximation of displacement field in following form 

[54, 75, 76]:   

0 0

0 0

0 0
1 1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

u N d

II

IImxn mxn
h

I I II
I I

x xII

y yII

u uN
v vN
w wN

N
N

β β
β β

= =

    
    
        = = =   

    
    
        

∑ ∑  (28) 

where { }0 0 0d
T

I I I I xI yIu v w β β= , N I , respectively, are the vector of degree of freedoms 

associated with the control point I  and the shape function. 

 Replacing Eq. (28) into Eq. (7), the strain components is now expressed in matrix form as: 

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8
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1

1ˆ
2

ε B B d
m n

L NL
I I I

i

×

=

 = + 
 

∑  (29) 

where ( ) ( ) ( ) ( )1 2B B B B B
TT T T TL m b b s

I I I I I
 =   

 , in which 

( )

, , ,
1 2

, , ,

, , , , ,

,

,

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 ;  0 0 0 0 ;  0 0 0 0 ;

0 0 0 0 0 2 0 0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
 with 

0 0 0 0

I x I xx I x
m b b
I I y I I yy I I y

I y I x I xy I y I x

Is
I

I

I xNL g g
I I I

I y

N N N
N N N

N N N N N

N
N

N
N

     
     = = − =     
          
 

=  
 

 
= = 

  

B B B

B

A
B d B B

0
θ 

 


 
(30) 

 Substituting Eq. (28) into Eq. (11), the couple stress curvature components are rewritten in 
matrix form as: 

( ) ( ) ( ) ( ) ( )1 2 0 1 2
1

ˆ whereB d   B     
m n TT T T T Tb b s s s

I I I
i

×
χ χ

=

 = =   ∑χ χ χ χ χ χ  (31) 

in which 

( )

, ,

, ,1 2

, ,, ,

, ,

, , ,0 1

, ,

0 0 2 0 0 0 0 0 0 2
0 0 2 0 0 0 0 0 2 01 1;  

0 0 00 0 0 02 4
0 0 0 2 20 0 0 0 0

0 0 0 0 0 01 1;       
0 0 04 4

B B

B B

I xy I x

I xy I yb b
I I

I x I yI yy I xx

I y I x

I xy I xx I xy Is s
I I

I yy I xy

N N
N N

N NN N
N N

N N N N
N N

χ χ

χ χ

  − 
   −   = =   −−
   −     
− − 

= = − 

,

, ,

2

0 0 0

0 0 0 01
0 0 0 04

B

xx

I yy I xy

Is
I

I

N N

N
N

χ

 
 − 

− 
=  

 

 

(32) 

 Substituting Eq. (29) and Eq. (31) into Eq. (23), the virtual displacement vector dδ  is 

eliminated and the global equation of motion of FG-CNTRC micro-plate is established in the 

matrix form as follows: 

( )L NL+ =K K d + Md F  (33) 

where K = K Ku
L L L

θ+  and K NL , respectively,  are the linear and nonlinear global stiffness matrix 

and M  is the global mass matrix. These matrices are expressed in a clear form as: 
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( )
( )

( ) ( ) ( )

ˆ d

ˆ d

1 1ˆ ˆ ˆd d d
2 2

d

Tu L L
L u

T

L c

T T TL NL NL L NL NL
NL u u u

T

Ω

θ χ χ

Ω

Ω Ω Ω

Ω

= Ω

= Ω

= Ω + Ω + Ω

= Ω

∫
∫

∫ ∫ ∫
∫

K B D B

K B D B

K B D B B D B B D B

M R mR 

 (34) 

where 

1

2 1 ,

3

2 , 3

0 0 0 0
;    0 0 0 0 ;

0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 ;    0 0 0 0 0
0 0 0 0 0 0 0 0 0

I

I x

I

I I

I y

I

N
N

N

N N
N

N

   
   = = −   
      
   
   = − =   
      

R
R R R

R

R R



 (35) 

In the following equation, the external force vector is given by: 

( )[ ]0 0 0 0 d
T

Iq t N
Ω

= Ω∫F  (36) 

 In addition, the structural damping of FG-CNTRC micro-plate is derived through Rayleigh 

damping. Thus, the nonlinear equation of motion in Eq. (33) is now rewritten in the following 

matrix form: 

+ =Kd + Cd Md F   (37) 

where L NL= +K K K  and the structural damping matrix C  is defined based on a linear association 

between K  and M  such as: 

R R= +C M Kγ ς  (38) 

in which the Rayleigh damping coefficients ( ),  R Rγ ς are obtained from the experimental work. 

However, in this study,  Rγ  and Rς  are defined as in Ref. [77], where a damping ratio of FG-

CNTRC plate was assumed to be 0.3.  
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4. Nonlinear solution procedure 

4.1 Nonlinear static bending solution  

 In this study, the nonlinear static equation ( )L NL+ =K K d F  is obtained by neglecting the mass 

matrix effect in Eq. (33) that is solved by using Newton-Raphson technique. At a specific load 

level mth, the residual force R(di) at  ith iteration is computed as follows: 

 ( ) ( )( )i i m
L NL= + −R d K K d F  (39) 

 By iterations, the residual force tends to zero. When the residual force is still large enough, the 
displacement at (i+1)th iteration, is then calculated as: 

 1 1i i i+ += + ∆d d d  (40) 

 The increment displacement 1i+∆d  is computed by following equation: 

( ) ( )1i i
T i

+∆ = −d R d K d  (41) 

where the tangent stiffness matrix TK  at ith iteration is defined as: 

 ( ) ( )i
i

T NL gi

∂
= = +

∂

R d
K d K K

d
  (42) 

in which the stiffness matrix NLK  contains the variables  id  given by: 

( ) ( ) ( )ˆ ˆd d
T TL NL L NL

NL u c
χ χ

Ω Ω
= + + Ω + Ω∫ ∫K B B D B B B D B  (43) 

And gK  is the geometric stiffness matrix that related to the in-plane forces and is defined such as 

( ) ( )
0 0

0 0 d
T x xyg g

g
xy y

N N
N NΩ

 
= Ω 

  
∫K B B  (44) 

 The iteration is repeated until the convergence condition of displacement is obtained. In other 

words, the displacement error between two uninterrupted iterations must be smaller than an 

allowable error, i.e.:  

  
1

0.01
i i

i

+ −
<

d d

d
 (45) 
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4.2 Nonlinear dynamic solution 

 In this section, the Newmark’s integration procedure with the average acceleration method 

[77] is utilized to obtain the solution of the equation of dynamic system in Eq. (33) and Eq. (37). 

Additionally, the nonlinear responses of plate are obtained by using the Picard method. 

Specifically, at the initial time step t = 0, the displacement, velocity and acceleration are assumed 

to be zeros. As the displacement d  is found at time t = (n + 1)∆t, the velocity and acceleration are 

calculated as follows: 

         ( )1 12 2

1 1 1 1n n n n nt t+ +

 
= − − − − ∆ ∆ 2 

d d d d d  

β β β
 (46) 

         ( )1 11n n n nt t+ += + ∆ − + ∆d d d d   γ γ  (47) 

in which, the Newmark =1/ 4 β is known as the constant average acceleration method with the 

factor =1/ 2 γ . Substituting Eq. (46) and Eq. (47) into Eq. (37), the equation of motion is now 

rewritten as: 

  1 1 1
ˆ ˆ

n n n+ + +=K d F  (48) 

where 1
ˆ

n+K  is the effective stiffness matrix at time (n + 1)∆t  

  1 1 2

1ˆ
n n t t+ += +

∆ ∆
K K M + Cγ

β β
 (49) 

and the effective force vector 

  

1 1 2

1 1 1ˆ 1 + 1 2
2n n n n n n n n
t

t t t+ +

        ∆
= + + + − + − + −        ∆ ∆ ∆        

F F M d d d C d d d   

γ γ γ
β β 2β β β β

 (50) 

 It is noted that in Eq. (49) and Eq. (50), all parameters are found at previous step, i.e. t = n∆t. 

However, the nonlinear stiffness matrix Kn+1 is dependent on the displacement at t = (n + 1)∆t. In 

this way, the Picard is assigned to re-approximate Eq. (48) such as: 

   ( ) 1
1 1 1

ˆ ˆi i
n n n

+
+ + ++K d d F  (51) 

where the superscript ‘i’ represents the iteration number. Thus, Eq. (48) is iteratively solved until 

the convergence condition of displacement in Eq. (45) is satisfied.  
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In this article, the order of NURBS functions is p = q = 3. The numerical integration in IGA is 

same as in FEM, which is performed by the Gauss-Legendre quadrature. However, it is a more 

complex implementation in case of IGA. Integral over the entire geometry (in physical system) is 

split into integral over each physical element Ωe. The integral is pulled back to parametric element   

via the geometry mapping. Then, the integral over the parametric element is pulled back to the 

parent domain. Additionally, (p + 1) × (q + 1) are the number of Gaussian points that are adopted 

for two-dimensional element by using pth and qth orders NURBS. 

5. Results and discussions 

 In this section, several numerical investigations are investigated in order to show the small 

size-dependent effect on the nonlinear static and dynamic behaviors of FG-CNTRC micro-plate 

for different boundary conditions. Firstly, the accuracy of the presented model is authenticated by 

comparison with other published model in the literature. The Newton-Raphson iterative procedure 

in section 4.1 is employed to get the solutions of nonlinear static analysis. Afterward, the difference 

between nonlinear classical model and non-classical model (MCST) is explore through the change 

of material length scale parameter. Then, the Newmark Beta method is assigned to obtain the 

geometrical nonlinear dynamic response of FG-CNTRC micro-plate under excitation load. 

Moreover, the effect of microstructure size-dependent on dynamic analysis is also carefully 

studied. In this paper, the material properties of FG-CNTRC are determined as follows:  

• The isotropic matrix (PmPV) at room temperature (T = 300 K) [67] 
32.1 GPa , 0.34,  1150 kg/mm m mE = = =ν ρ  

• The (10,10)  SWCNTs [78] 

3
11 22 12 125.6466 TPa,  7.08 TPa,  1.9445 TPa,  0.175,  1400 kg/cmCNT CNT CNT CNT CNTE E G= = = = =υ ρ  

In addition, the two boundary conditions (BC) in this study are:     

• Simply support with movable edge (SSSS) 

  0 0

0 0

0  at left and right edges
0  at lower and upper edges

y

x

v w
u w

= = =


= = =

β

β
 

• Clamped support (CCCC) 

  0  at all edgesv u w= = =  
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5.1. Nonlinear static analysis 

 In order to validate the faithfulness and efficacy of the proposed nonlinear numerical solution, 

let us investigate the nonlinear static bending of FG-CNTRC square micro-plate under transverse 

uniform distributed load based on classical model ( )0h = . The obtained non-dimensionless 

central deflection w w h=  versus load parameter ( )4 4
0 mq q L E h=  of SSSS and CCCC FG-

CNTRC plates ( )100L h =  for different volume fraction ( )0 11, 0 14, 0 17CNTV   ∗ = . . .  are compared 

with those obtained by the element-free IMLS-Ritz of Zhang et al. [79] and are illustrated in Figs. 

3-5. It can be seen that, the present nonlinear results for FG-O distribution are in good agreement 

with those of reference solution. Nevertheless, the nonlinear deflections derived from the proposed 

solution are slightly higher than those of reference solution for FG-V, UD, FG-X. Therefore, the 

proposed model will be utilized to predict the nonlinear static problem in following examples. It 

is clear that the linear stiffness matrix LK  is constant and Figs. 3 to 5 show the difference between 

linear and nonlinear analyses.    

 
 Fig. 3. Nonlinear deflection of clamped FG-CNTRC plate with different 

CNT distribution (L/h=100, 0 11CNTV .∗ = ) 
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 Fig. 4. Nonlinear deflection of clamped FG-CNTRC with different CNT 

distribution (L/h=100, 0 14CNTV .∗ = ) 
 

 

 
 Fig. 5. Nonlinear deflection of clamped FG-CNTRC with different CNT 

distribution (L/h=100, 0 17CNTV .∗ = ) 
 

  In order to show the reliability of the proposed solution in capturing the small size-dependent 

effect, a square FG micro-plate (L/h = 20, Et = 14.4 GPa, Eb = 1.44 GPa, νt = νb = 0.38) subjected 

to uniform distributed load using MCST is studied. The notations t and b denote the top and bottom 

surfaces and the nonlinear deflection curves are obtained after 20 load levels to reach qz = 5.4×106 

N/m2. As depicted in Fig. 6, there is a good agreement between the obtained results of 

homogeneous micro-plate and those from general third-order plate theory in Ref. [80] for various 

material length scale ratio h = 0, 0.5 and 1.  
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 Fig. 6. Comparison between nonlinear deflection curves of homogeneous 

square micro-plate for various material length scale ratio  h      
 

 Next, a detailed study of the parametric effects of MLS parameter, CNT volume fraction, CNT 

distribution on the nonlinear deflection responses of FG-CNTRC micro-plates ( )10L h = is carried 

out in Figs. 7-12. It is worth mentioning that when h varies from 0 to 1, 0h = denotes the 

classical theory. Figs. 7-10 illustrate the influence of small size-dependent on the nonlinear 

deflection of FG-X, UD, FG-V and FG-O CNT reinforced composite micro-plate with the CNT 

volume fraction 0.11CNTV ∗ = . It can be observed that the deflections are smaller for the higher value 

of length scale ratio h . At the same load parameter level, the highest deflection is obtained for 

1h = . Moreover, the deviation between classical and MCST model for CCCC BC as the ratio 

0.25h ≤ is not noticeable, in spite of this the reduction of central deformation is remarkable as 

the ratio 0.25h > .  It is also seen that an increase in ratio h  lead to decrease in nonlinear 

central deflection of FG-CNTRC micro-plate not only for SSSS but also for CCCC boundary 

condition, and this is because of the stiffness increase due to the size-dependent effect as 0h ≠ .  

 In addition, the variation in central deflection with load parameter for UD and the other three 

patterns of CNTs distribution subjected a uniform transverse load are carried out in Fig. (10). It is 

clearly seen that the deflection responses of FG-O and FG-V are higher than those of UD and FG-

X model. Besides, the minimum and maximum values of normalized central deflections are 

derived from FG-X and FG-O model, respectively. This is explained by a more significant increase 

in the stiffness of FG-CNT reinforced plate that is obtained at the top and bottom surfaces with 

CNT-rich compared to CNTs reinforced near the mid-plate. Furthermore, it is attained that the 
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MCST produces lower load-deflection curves more than classical theory ( )0h =  due to stiffer 

stiffness of micro-plate for the length scale ratio 0h ≠ . It is also observed from the figure that 

the nonlinear deflections of CCCC micro-plate are lower than those of the SSSS micro-plate. This 

is owning to the CCCC BC, which has less constraints compared to SSSS BC. 

 Fig. 12 reveals the influence of different volume fraction CNTV ∗  on the load versus deflection 

curves of FG-CNTRC micro-plate for four patterns of CNTs distribution and the ratio 0,  1h = . 

It can be seen that the volume fraction CNTV ∗  increases from 0.11 to 0.17 leading to decrease in 

deflection. This behavior owning to the fact that there is an augmentation in CNTs reinforced in 

the isotropic matrix as CNTs volume fraction increases.      

  
 Fig. 7. Comparison of the load-deflection curve of FG-X micro-plate with 0 11CNTV .∗ =  and 

under: SSSS (left) and CCCC (right) boundary condition. 

 

           

  
 Fig. 8. Comparison of the load-deflection curve of UD micro-plate with 0 11CNTV .∗ =  under: 

SSSS (left) and CCCC (right) boundary condition. 
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 Fig. 9. Comparison of the load-deflection curve of FG-V micro-plate with 0 11CNTV .∗ =  under: 

SSSS (left) and CCCC (right) boundary condition.  

 

 

  
 Fig. 10. Comparison of the load-deflection curve of FG-O micro-plate with 0 11CNTV .∗ =  under: 

SSSS (left) and CCCC (right) boundary condition. 

 

 

  
 Fig. 11. Load-deflection curve of CNT micro-plate with 0.14CNTV ∗ =  for the classical and 

MCST model under: SSSS (left) and CCCC (right) boundary condition. 
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 Fig. 12. The effect of volume fraction CNTV ∗  on the load-deflection curve of FG-CNTRC 

micro-plate under SSSS boundary condition for the classical and MCST model. 

 

       

5.2. Nonlinear dynamic analysis 

 In the following examples, the nonlinear dynamic behaviors of FG-CNTRC micro-plate under 

the transient loadings are studied in detail. In all examples, the plates are subjected to uniform 

transverse distributed load in any instant of time, which is ( )0q q F t= , in which ( )F t  is the load 

factor defined as follows: 

          ( )

1

1

1 1

1

1              0
  Step load

0                   

1      0
  Triangular load

0                   
                    Explosive blast loadt

t t
t > t

F t t t t t
t > t

e−λ

 ≤ ≤



= − ≤ ≤





 (52) 

where 0 10 MPaq = , 5 12.5 10  s−= ×λ , 9
1 4.5 10t s−= ×  and the time history of load factor ( )F t  is 

illustrated in Fig. 13.       

 To verify the dependency of the present model for geometrically nonlinear dynamic study, the 

responses of SSSS orthotropic square plate with the length L = 0.25 m and thickness h = 0.05 m 
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under uniform step loading of 0 1 MPaq = is considered with the following material properties:

1 525 GPaE = , 2 21 GPaE = , G12 = G13 = G23 = 10.5 GPa, and 3kg/m= 0.25, = 800 υ ρ . It can be 

seen from Fig. 14 that the predictions of the linear and nonlinear responses show an outstanding 

agreement in comparison with the solutions derived from the finite strip method presented by Chen 

et al. [81]. 

 Next, Figs. 15-17 illustrate the influence of small size-dependent on the nonlinear dynamic 

responses of FG-CNTRC micro-plate under different types of load factor. The plate’s thickness is 

set at 17.6×10-6 and the length to thickness is chosen as 20L h = . It is observed that as the h  

increase, nonlinear displacement and periods of motion of micro-plate decrease due to the 

enlargement in the strength of micro-plate that come from small size effect. The MCST predictions 

are markedly different from the classical prediction at the ratio 1h = . Comparing the figures, it 

is seen that the triangular and explosive blast load give nearly same response, except for step load. 

 The effects of CNTs volume fraction on FG-X, UD, FG-V and FG-O are also described in Fig. 

18. As shown, the increase in the value CNTV ∗ leads to the lower magnitude of the deflection and 

period of motion at the level of loading owning to the more CNTs reinforced in isotropic matrix. 

Similarly, the nonlinear predictions of the MCTS model for four patterns of CNTs distribution are 

lower than those of classical model.  

 In the last example, the influence of structural damping on the nonlinear dynamic response of 

FG-CNTRC micro-plate under the step, triangular and explosive blast load is also investigated and 

the results are shown in Figs. 19-21. According to these figures, it can be concluded that the 

oscillation of the plate without damping keep continue to the end of time t = 9×10-6. However, by 

including the effect of structural damping, the geometrically nonlinear dynamic responses is 

reduced. The oscillation of micro-plate is extinguished after two or three cycle vibration. These 

behaviors can be explained that the damping has the effects of reducing and preventing the 

structure’s oscillation. It can be concluded that the damping property of FG-CNTRC micro-plates 

plays an important role in the vibrational energy dissipation.         
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 Fig. 13. Time history of load factor F(t).  

 

 
 Fig. 14. Comparisons of linear and nonlinear deflections of an orthotropic 

plate subjected to a uniform step loading. 
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 Fig. 15. The comparison of nonlinear deflections of CNT micro-plate with 0 11CNTV .∗ =  

subjected to step load. 

 

 

  

  
 Fig. 16. The comparison of the material length scale ratios h  on nonlinear deflections of CNT 

micro-plate with 0 11CNTV ∗ = .  subjected to triangular load. 
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 Fig. 17. The comparison of the material length scale ratios h  on nonlinear deflections of CNT 

micro-plate with 0 11CNTV ∗ = .  subjected to explosive blast load. 
 

 

  

  
 Fig. 18. The comparison of the volume fraction CNTV ∗  on nonlinear deflections of CNT micro-

plate subjected to explosive blast load for the material length scale ratios h =
0, 1. 
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 Fig. 19. Nonlinear deflections of CNT micro-plate with 0 14CNTV ∗ = .  subjected to step load 

with and without damping.  

 

 

  

  
 Fig. 20. Nonlinear deflections of CNT micro-plate with 0 14CNTV ∗ = .  subjected to triangular 

load with and without damping.  
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 Fig. 21. Nonlinear deflections of CNT micro-plate with 0 14CNTV ∗ = .  subjected to explosive 

blast load with and without damping.  

 

 

 6. Conclusions 

 A nonlinear numerical size-dependent model using the MCST and IGA was investigated for 

the nonlinear static and dynamic responses of FG-CNTRC micro-plates. The nonlinear governing 

equation of motion was established based on the nonlinear von-Kármán strain assumption. A 

proposed trigonometric shear deformation theory coupled with IGA was utilized to obtain the 

nonlinear displacement of plate. The proposed size-dependent using one MLS parameter can 

generate a classical model by set the ratio 0h = . The faithfulness and efficacy of the proposed 

solution was verified through numerical examples for static and dynamic problems. The extended 

rule of mixture was assigned to predict the material properties of FG-CNTRC micro-plate with 

FG-X, UD, FG-V and FG-O carbon nanotubes distribution across the plate’s thickness. Through 

the detailed numerical example studies, some noteworthy conclusions are summarized as follows:  

• By considering only one MLS parameter, the proposed size-dependent model can easily 

capture the small size-dependent effect on the geometrically nonlinear responses of FG-

CNTRC micro-plate. An increase in MLS ratio leads to a decrease in nonlinear static and 
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dynamic central deflection. Thus, the MCST model produces a stiffer micro-plate 

compared to the classical model.    

• For the patterns of CNTs distribution, at the same load level, the highest deflection is 

obtained for FG-O and the lowest value is obtained for FG-X.  

• The increase in volume fraction CNTV ∗ from 0.11 to 0.17 is denoted for the augmentation in 

CNTs reinforced in the isotropic matrix. Consequently, the stiffness of FG-CNTRC micro-

plate tends to higher value as CNTV ∗  rises.  

•  By including the structural damping, the nonlinear dynamic responses of FG-CNTRC 

micro-plate are extraordinary different from the prediction of model without damping. The 

damping reduces and prevents the structure’s oscillation. Therefore, the damping property 

of CNTRC structures is important in dynamic analysis of FG-CNTRC micro-plates.  
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   Fig. 1. Shape function ( )zf and its first derivative ( )zf   across the plate’s thickness.  
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• Influence of damping characteristic on the oscillation of FG-CNTRC micro-plates 

      


