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Abstract

During the casting of steel �bre reinforced concrete (SFRC) the orientation

of �bres is in�uenced by �ow dynamics of concrete mass. A simple theoretical

model presented allows the calculation of velocity gradient matrices for concrete

mass based on steel �bre orientations measured in the hardened concrete samples

taken from the di�erent regions in the slabs. This made it possible to examine

the realistic trends of the �ow near the formwork or free surface or in the bulk

material. Eigenvalues and eigenvectors of the matrices show the directions of

the maximal and minimal velocity changes, which can be compared in di�erent

positions of the slabs. The outcomes of the study can contribute to controlled

production technology of SFRC.

Keywords: �bres, reinforced cement/plaster, anisotropy, rheological properties

1. Introduction

Fibre reinforced composites become more and more important in many �elds

of application: carbon or glass �bres are introduced into polymers in order

to increase the strength, see f.i. [2, 3]. The mechanical properties of a �bre

reinforced composite depend on �bre orientations, see f.i. [1] for a prediction of

�bre orientations and distributions and [4] for a constitutive model. During the

�ow process the �ow �eld and �bre orientations in�uence each other [5].This

e�ect is well known for di�erent kind of �bre suspensions, like f.i. polystyrene
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melt with carbon nano-�bres and others [6, 7, 8, 9, 10]. Theoretical models

have been developed to account for �ow induced orientational order and shear

thinning in �bre suspensions.

In civil engineering short steel �bres are added to concrete mass to increase

the tensile strength and to decrease brittle failure characteristics of the �nal

composite. During the �lling process of steel �bre reinforced concrete (SFRC)

the orientation of �bres is de�ned by the �ow properties of concrete mass, and

when the mass is set, the orientations are �xed and the orientation distribution

of �bres is frozen.

With the present paper we would like to demonstrate the preferential ten-

dencies of SFRC mass during the casting based on the velocity gradient matrices

reconstructed using the measured orientation distributions of �bres in hardened

state of concrete. The advantage of the approach presented is its simplicity,

meaning that solving of the coupled di�erential equations for the velocity �eld

and �bre orientation is avoided. This would be possible only numerically, and

the question of boundary conditions at the solid interface of the formwork and

at the free surface had to be investigated. The orientation of �bres used in the

study was measured by x-ray micro-computed tomography (µCT ), whose accu-

racy is greater than other methods for measuring of �bre orientations [15]. The

additional advantage of the study is that the reconstructed velocity gradient

matrices take into account the measured �bre orientations in di�erent regions

of full-size �oor-slabs, which makes it possible to examine the realistic trends of

the �ow front of concrete mass near the formwork or free surface or in the bulk

material. The velocity gradient matrix varies depending on the �ow dynamics

of concrete mass making the measuring of �bre orientations in a �owing mass

hardly feasible. In the study the velocity gradient matrices are calculated al-

gebraically at the end phase of concrete mass �ow, when a stationary state for

�bre orientations is reached and the orientation distributions of �bres are frozen

afterwards.

The outcomes of the study can contribute to controlled production technol-

ogy of SFRC by giving an estimate f.i. for a casting technique, such as the e�ect

of �lling rate of concrete mass on the alignment of �bres close to boundary, free

surface or in the bulk material, which is relevant for the properties of the �nal
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composite.

2. Theoretical model

Orientation tensors are introduced as a measure of the anisotropy of the

�bre orientations. The time evolution of the orientation tensors is coupled to

the �ow �eld. The theoretical model for the time derivative of the second order

tensor adopted here goes back to Advani and Tucker [14]:

dO(2)

dt
= −1

2

(
ω ·O(2) −O(2) ·ω

)
+

1
2
λ
(
(∇v)sym ·O(2) + O(2) · (∇v)sym − 2(∇v)sym : O(4)

)
+

2D
(
δ − 3O(2)

)
, (1)

d
dt denotes the material time derivative, λ is the aspect ratio of a �bre, and

(∇v)sym is the symmetric part of the velocity gradient. The orientation tensors

of second and fourth orders are denoted by O(2) and O(4). They are de�ned as

the moments of the orientation distribution function:

O(2)(x, t) =
∫
S2
f(n,x, t)nnd2n (2)

O(4)(x, t) =
∫
S2
f(n,x, t)nnnnd2n (3)

The last term in equation (1) was introduced originally to account for the e�ect

of orientation di�usion. If (∇v)sym = 0 then a term D leads to a decrease

of the second order orientation tensor O(2) by making the distribution more

isotropic (randomising e�ect). The interaction between �bres would make the

distribution more anisotropic, whereas the interaction with aggregate will result

in more isotropic (randomised) orientation distribution. Thereby, due to the size

of steel �bres used (length in the range of centimetres), orientation di�usion is

not important, but the interaction of �bres with aggregate is relevant. This ran-

domising e�ect may be described as well by a term of the form 2D
(
δ − 3O(2)

)
with the unit tensor δ.

We assume, that the vorticity of the �ow �eld (the anti-symmetric part

of the velocity gradient) is zero (ω = 0) and that the orientation tensor is

stationary, dO(2)

dt = 0, meaning that �bre orientations correspond to the end
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phase of mass �ow and their orientation is frozen afterwards. Under these

assumptions equation (1) simpli�es to:

0 =
1
2
λ
(
∇v ·O(2) + O(2) · ∇v − 2∇v : O(4)

)
+ 2D

(
δ − 3O(2)

)
(4)

The components of the orientation tensors are obtained from the measurements

of �bre orientations in hardened state of concrete by µCT , and equation (4) is

solved for the components of the velocity gradient.

3. Orientation tensors based on the measured orientation distribu-

tions of �bres

The orientation distributions of �bres were measured in horizontal structural

elements, i.e. six full-size �oor-slabs [16]. The type of structure selected enabled

to examine the orientation distribution of �bres close to the formwork and in

the bulk material. The slabs were cast in a factory using a bucket (Figure 1(b)),

following the scheme represented in Figure 2(a).

(a) (b)

Fig. 1. Casting of full-size �oor-slabs in a factory. (a) Representation of the formwork with

surface treatment. (b) Representation of the way of casting.

The bottom of the formwork was polyeten�lm on concrete �oor and no oil

or other chemicals were added. The edge of the formwork were plywood �lm-

coated and also no oil or other chemicals were added, since the plywood was

new and was not used before. A class of concrete used was C30/37 with the

largest aggregate size of 16 mm. A type was self compacting concrete (SCC),

meaning that no vibration was needed. The �bres used were steel hooked-end

with an aspect ratio of
lf
df

= 50
1.0 and their amount per cubic meter of concrete

was 88 kg, which made about 250 �bres per dm3, (Figure 2(b)).
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Fig. 2. (a) Casting order of full-size �oor-slabs. (b) Used steel �bres with hooked-ends. The

length of a �bre was lf = 50 mm and diameter was df = 1.0 mm.

After curing for 28 days, the slabs were tested using a three point bending

test. Three out of six slabs demonstrated approximately the same load-bearing

capacity (slabs 1, 2, 3), while the capacity of the remaining slabs were lower

[16, 17].

The orientation distributions of �bres in the tested �oor-slabs were measured

in cylindrical samples with a diameter of 10 cm, which were extracted from the

slabs according to the scheme represented in Figure 3(a). Two cylinders were

drilled from each slab; one from the side region to observe the e�ect of the

vertical formwork (wall e�ect), and another one from the central region of a

slab to measure �bre orientations in the bulk material (Figure 4). The cylinders

extracted from the side region were marked as "A"-samples and from the central

region as "B"-samples (Figure 3). Altogether there were 12 cylinders.
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Fig. 3. (a) The position of cylinder samples in the �oor-slabs. (b) Parts of a cylinder

sample scanned by x-ray micro-tomography.

The orientation distributions of �bres were measured by µCT method, which

allowed to represent the �bres directly in three-dimensions, and the application

of the skeletonization algorithm gave the orientation of each individual �bre. All
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Fig. 4. Boundary conditions of extracted cylinders for estimating the velocity gradient

matrices.

cylindrical samples were scanned in the middle part, which was equal to about

8 cm in cylinder height, and four cylinders were also scanned in the top and

bottom parts (Figure 4). The height of the scanning area was conditioned by

height of LCD detector and by intention to examine the e�ect of formwork, free

surface and bulk material on the orientation distributions of �bres. The mea-

sured orientation distribution functions allowed to calculate the all orientation

tensors of successive order [4, 16]. Here, the second and fourth order orientation

tensors are involved, de�ned by equations (2) and (3).

4. Velocity gradients of concrete mass based on measured �bre ori-

entations in hardened state of concrete

Our model includes the following assumptions:

• The �ow problem to solve is a steady state, meaning that concrete mass

has reached the end phase of �ow;

• Fibre orientation does not change during the setting/hardening time of

concrete mass. The �bres can reorient during the �ow process, but as

soon as a setting of concrete mass begins the orientation of �bres is frozen

and not change afterwards;

• The material parameter D in equation (1) is assumed to be constant;

• In case of (very liquid) SCC, the �ow may become turbulent, see f.i. [18].

A single �bre in fresh concrete mass is reoriented by the local velocity
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gradient, because both �bre ends experience di�erent velocities. The ori-

entation of a single �bre depends on the velocity gradient at the �bre

position. The orientation of all steel �bres measured in the cylindrical

sample means that the calculated velocity gradient is an average over the

sample of 10 cm in diameter.

If the components of (∇v)symm in equation (1) are denoted by γ̇ij then the

equation reads (in Cartesian components) as follows:

(2O11 − 2O1111)γ̇11 − 2O1122γ̇22 − 2O1133γ̇33

+(2O12 − 4O1112)γ̇12 + (2O13 − 4O1113)γ̇13 − 4O1123 ˙γ23

= − 2D
λ

(1− 3O11)

−2O2211γ̇11 + (2O22 − 2O2222)γ̇22 − 2O2233γ̇33+

(2O12 − 4O2212)γ̇12 − 4O2213γ̇13 + (2O23 − 4O2223)γ̇23

= − 2D
λ

(1− 3O22)

−2O3311γ̇11 − 2O3322γ̇22 + (2O33 − 2O3333)γ̇33

−4O3312γ̇12 + (2O13 − 4O3313)γ̇13 + (2O23 − 4O3323)γ̇23

= − 2D
λ

(1− 3O33)

(O12 − 2O1211)γ̇11 + (O12 − 2O1222)γ̇22 − 2O1233γ̇33

+(O22 +O11 − 4O1212)γ̇12 + (O32 − 4O1213)γ̇13 + (O13 − 4O1223)γ̇23

= 2D
λ

3O12

(O13 − 2O1311)γ̇11 − 2O1322γ̇22 + (O13 − 2O1333)γ̇33

+(O23 − 4O1312)γ̇12 + (O33 +O11 − 4O1313)γ̇13 + (O12 − 4O1323)γ̇23

= 2D
λ

3O13

−2O2311γ̇11 + (O23 − 2O2322)γ̇22 + (O23 − 2O2333)γ̇33

+(O13 − 4O2312)γ̇12 + (O21 − 4O2313)γ̇13 + (O33 +O22 − 4O2323)γ̇23

= 2D
λ

3O23

(5)

The example results of calculated orientation tensors of the second and
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fourth orders based on the measured �bre orientations in the top, middle and

bottom parts of the cylinder 1A are given in the Appendix A. The system of

linear equations (5) for the components of the velocity gradient γ̇ij is solved

for the ratio of
γ̇ijλ
D . As the model parameter D

λ is not known, the results on

the velocity gradients in di�erent positions of the sample can be compared only

relatively, i.e. as scaled velocity gradients.

5. Results

For each sample the components of the scaled velocity gradient
γ̇ijλ
D have

been calculated. The matrices are presented in Appendix B. For each velocity

gradient matrix the eigenvalues and eigenvectors have been determined, Ta-

bles 1, 2, 3, 4, 5, 6. The eigenvector corresponding to the largest eigenvalue

gives the direction of the largest change of velocity. A positive eigenvalue means

an increase of velocity in that direction, and a negative eigenvalue shows that

the �ow velocity is decreasing in the direction of that eigenvector.

z

y

x

Fig. 5. The direction of the axes in visualisation of the eigenvectors received based on the

velocity gradient matrices.

The following assumptions about the �ow �eld of concrete mass can be made

based on the measured �bre orientations and calculated velocity gradients:

• In the middle parts of the cylinders 1A, 1B, 2A, 2B there is a considerable

di�erence between the largest and the smallest eigenvalue of the velocity

gradient, Tables 1, 5. Two eigenvalues are of the same order of magnitude,

whereas the third one is up to a factor of 20 smaller. This shows, that in

one direction the velocity of concrete mass during the setting was almost

constant, whereas in the perpendicular directions the velocity changed

8



  

considerably in space. The di�erence between the eigenvalues, as well as

the value of the largest eigenvalue, is smaller in the other samples. This

could indicate that compared with the other slabs the �lling process for

the slabs 1 and 2 was faster in the regions where the respective cylinders

were extracted;

• In the middle parts of cylinders 1A, 2A, which are close to the boundary

of the slab, Tables 1, 5, the direction of the largest velocity gradient is

the z-direction, which was the average �ow direction of concrete mass

(Figure 3(a));

• In most of "A"-samples, (Figure 4), in the middle parts of cylinders 1A,

2A, 4A, 5A, Tables 1, 5, 3, 6, the eigenvector to the smallest eigenvalue is

almost in the x-y-plane, i.e. the smallest variation of velocity of concrete

mass is in the x-y-plane. This is the plane perpendicular to the average

�ow direction during the �lling process;

• In "B"-samples, (Figure 4), in the middle parts of cylinders, the minimal

velocity gradient is approximately in the y-direction. In this direction, the

local velocity change is small;

• In "A"-samples close to the boundary, (Figure 4), the di�erence between

the minimal and the maximal eigenvalue of the velocity gradient is more

pronounced than in "B"-samples. In most cases, the maximal velocity

gradient is larger in the "A"-samples than in the "B"-samples. Both

results are reasonable due to the zero-slip condition at the boundary (zero

velocity) and due to the in�uence of the boundary on �bre orientation;

• The velocity gradient in the samples taken from the top of the slab is

much smaller than that in the samples taken from the bottom, Tables 1,

2, 3, 4. This is reasonable due to the in�uence of the solid formwork at

the bottom, which enforces zero velocity at the boundary. On top there

is a free surface, meaning no restrictions on the velocity.

9



  

Table 1

Eigenvalues and eigenvectors of velocity gradients in the top, middle and bottom parts of

the cylinder 1A. Red line corresponds to vector x1, green line to vector x2 and blue line to

vector x3.

speci- velocity gradient (∇v)sym λ
D visualisation velocity gradient

men in Cartesian components (∇v)sym λ
D in

Spherical components

1A top λ1 = −19.270, x1 =


−0.621

0.778

0.922



-0.5
1-1 0.5

0
0.5

0

1

-0.5 -1 1 0.50
-0.5-1

θ1 = 23,

φ1 = 309

λ2 = 15.830, x2 =


0.749

0.555

0.361

 θ2 = 69,

φ2 = 37

λ3 = 18.510, x3 =


−0.230

−0.293

0.928

 θ3 = 22,

φ3 = 52

1A middle λ1 = −1.563, x1 =


0.711

−0.703

0.015



-0.5
1-1 0.5

0.5
1

0

0 -0.5 -1 1 0.50
-0.5-1

θ1 = 89,

φ1 = 315

λ2 = 31.873, x2 =


0.645

0.660

0.386

 θ2 = 67,

φ2 = 46

λ3 = 33.350, x3 =


−0.260

−0.244

0.851

 θ3 = 32,

φ3 = 43

1A bottom λ1 = 95.850, x1 =


−0.779

0.626

0.041



-0.5
1-1 0.5

0.5
1

0

0 -0.5 -1 1 0.50
-0.5-1

θ1 = 88,

φ1 = 321

λ2 = 117.370, x2 =


−0.626

−0.780

0.027

 θ2 = 88,

φ2 = 51

λ3 = 125.320, x3 =


0.049

−0.044

0.999

 θ3 = 3,

φ3 = 318
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Table 2

Eigenvalues and eigenvectors of velocity gradients in the top, middle and bottom parts of

the cylinder 1B. Red line corresponds to vector x1, green line to vector x2 and blue line to

vector x3.

speci- velocity gradient (∇v)sym λ
D visualisation velocity gradient

men in Cartesian components (∇v)sym λ
D in

Spherical components

1B top λ1 = −0.057, x1 =


−0.141

−0.078

0.987



1-1
-0.5

0.5

0
0.5

1

0 -0.5 -1 1 0.50
-0.5-1

θ1 = 9,

φ1 = 29

λ2 = 0.493, x2 =


−0.079

0.995

0.067

 θ2 = 86,

φ2 = 275

λ3 = 5.500, x3 =


0.987

0.068

0.147

 θ3 = 82,

φ3 = 4

1B middle λ1 = 2.833, x1 =


0.021

1.000

0.004



1-1
-0.5

0.5

0
0.5

1

0 -0.5 -1 1 0.50
-0.5-1

θ1 = 90,

φ1 = 89

λ2 = 12.957, x2 =


0.648

−0.016

0.762

 θ2 = 40,

φ2 = 359

λ3 = 22.760, x3 =


−0.762

0.0136

0.648

 θ3 = 50,

φ3 = 359

1B bottom λ1 = −47.013, x1 =


0.095

−0.993

0.066



1-1
-0.5

0.5

0
0.5

1

0 -0.5 -1 1 0.50
-0.5-1

θ1 = 86,

φ1 = 275

λ2 = −10.226, x2 =


−0.007

0.065

0.998

 θ2 = 4,

φ2 = 276

λ3 = −4.614, x3 =


0.995

0.095

0.001

 θ3 = 90,

φ3 = 5
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Table 3

Eigenvalues and eigenvectors of velocity gradients in the top, middle and bottom parts of

the cylinder 4A. Red line corresponds to vector x1, green line to vector x2 and blue line to

vector x3.

speci- velocity gradient (∇v)sym λ
D visualisation velocity gradient

men in Cartesian components (∇v)sym λ
D in

Spherical components

4A top λ1 = −19.075, x1 =


−0.531

0.845

0.068



-0.5
1-1 0.5

0.5
1

0

0 -0.5 -1 1 0.50
-0.5-1

θ1 = 86,

φ1 = 302

λ2 = 2.269, x2 =


0.605

0.321

0.729

 θ2 = 43,

φ2 = 28

λ3 = 4.059, x3 =


−0.594

−0.428

0.681

 θ3 = 47,

φ3 = 36

4A middle λ1 = −7.032, x1 =


0.792

−0.579

0.192



-0.5
1-1 0.5

0
0.5

0

1

-0.5 -1 1 0.50
-0.5-1

θ1 = 79,

φ1 = 324

λ2 = 18.560, x2 =


0.004

0.320

0.948

 θ2 = 19,

φ2 = 89

λ3 = 21.706, x3 =


−0.610

−0.750

0.256

 θ3 = 75,

φ3 = 51

4A bottom λ1 = −4.711, x1 =


0.608

−0.710

0.356



-0.5
1-1 0.5

0.5
1

0

0 -0.5 -1 1 0.50
-0.5-1

θ1 = 69,

φ1 = 311

λ2 = 14.209, x2 =


0.622

0.704

0.343

 θ2 = 70,

φ2 = 49

λ3 = 18.981, x3 =


−0.494

0.013

0.870

 θ3 = 30,

φ3 = 358
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Table 4

Eigenvalues and eigenvectors of velocity gradients in the top, middle and bottom parts of

the cylinder 4B. Red line corresponds to vector x1, green line to vector x2 and blue line to

vector x3.

speci- velocity gradient (∇v)sym λ
D visualisation velocity gradient

men in Cartesian components (∇v)sym λ
D in

Spherical components

4B top λ1 = −7.282, x1 =


0.345

0.839

0.421



-0.5
1-1 0.5

0.5
1

0

0 -0.5 -1 1 0.50
-0.5-1

θ1 = 65,

φ1 = 68

λ2 = 1.487, x2 =


0.013

−0.453

0.892

 θ2 = 27,

φ2 = 272

λ3 = 3.820, x3 =


−0.939

0.302

0.167

 θ3 = 80,

φ3 = 342

4B middle λ1 = 1.954, x1 =


0.062

−0.993

0.096



1-1
-0.5

0.5

0
0.5

1

0 -0.5 -1 1 0.50
-0.5-1

θ1 = 84,

φ1 = 274

λ2 = 7.096, x2 =


−0.124

0.103

0.987

 θ2 = 9,

φ2 = 320

λ3 = 14.856, x3 =


0.990

−0.049

0.130

 θ3 = 83,

φ3 = 357

4B bottom λ1 = −23.593, x1 =


0.094

−0.993

0.064



1-1
-0.5

0.5

0
0.5

1

0 -0.5 -1 1 0.50
-0.5-1

θ1 = 86,

φ1 = 275

λ2 = −5.133, x2 =


−0.085

0.056

0.995

 θ2 = 6,

φ2 = 327

λ3 = −2.290, x3 =


0.991

0.099

0.079

 θ3 = 85,

φ3 = 6
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Table 5

Eigenvalues and eigenvectors of velocity gradients in the middle parts of the cylinders 2A,

2B, 3A, 3B. Red line corresponds to vector x1, green line to vector x2 and blue line to

vector x3.

speci- velocity gradient (∇v)sym λ
D visualisation velocity gradient

men in Cartesian components (∇v)sym λ
D in

Spherical components

2A middle λ1 = −1.563, x1 =


0.771

−0.703

0.015



-0.5
1-1 0.5

0.5
1

0

0 -0.5 -1 1 0.50
-0.5-1

θ1 = 89,

φ1 = 318

λ2 = 31.870, x2 =


0.645

0.660

0.386

 θ2 = 67,

φ2 = 46

λ3 = 33.350, x3 =


0.281

0.265

0.922

 θ3 = 23,

φ3 = 43

2B middle λ1 = 2.283, x1 =


−0.056

0.998

0.006



1-1
-0.5

0.5

0
0.5

1

0 -0.5 -1 1 0.50
-0.5-1

θ1 = 90,

φ1 = 273

λ2 = 10.353, x2 =


0.003

−0.005

0.100

 θ2 = 84,

φ2 = 301

λ3 = 15.019, x3 =


−0.998

−0.056

0.003

 θ3 = 90,

φ3 = 3

3A middle λ1 = −5.015, x1 =


−0.493

0.514

0.702



-0.5
1-1 0.5

0.5
1

0

0 -0.5 -1 1 0.50
-0.5-1

θ1 = 45,

φ1 = 314

λ2 = −4.520, x2 =


0.859

0.163

0.485

 θ2 = 61,

φ2 = 11

λ3 = −0.726, x3 =


−0.134

−0.842

0.522

 θ3 = 59,

φ3 = 81

3B middle λ1 = −41.907, x1 =


0.154

0.661

0.735



-0.5
1-1 0.5

0.5
1

0

0 -0.5 -1 1 0.50
-0.5-1

θ1 = 43,

φ1 = 77

λ2 = −18.810, x2 =


0.519

−0.687

0.509

 θ2 = 59,

φ2 = 307

λ3 = −12.486, x3 =


−0.841

0.303

0.449

 θ3 = 63,

φ3 = 340
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Table 6

Eigenvalues and eigenvectors of the velocity gradient in middle parts of the cylinders 5A, 5B,

6A, 6B. Red line corresponds to vector x1, green line to vector x2 and blue line to vector x3.

speci- velocity gradient (∇v)sym λ
D visualisation velocity gradient

men in Cartesian components (∇v)sym λ
D in

Spherical components

5A middle λ1 = 0.143, x1 =


−0.835

0.461

0.064



-0.5
1-1 0.5

0.5
1

0

0 -0.5 -1 1 0.50
-0.5-1

θ1 = 86,

φ1 = 331

λ2 = 15.704, x2 =


−0.229

−0.594

0.796

 θ2 = 37,

φ2 = 69

λ3 = 21.472, x3 =


0.405

0.695

0.595

 θ3 = 53,

φ3 = 60

5B middle λ1 = 14.667, x1 =


−0.110

−0.957

0.291



-1
-0.5

0.5

1 0.5

0

1

0 -0.5 -1 1 0.50
-0.5-1

θ1 = 73,

φ1 = 83

λ2 = 20.178, x2 =


−0.458

0.306

0.835

 θ2 = 33,

φ2 = 326

λ3 = 23.556, x3 =


0.882

0.040

0.469

 θ3 = 62,

φ3 = 3

6A middle λ1 = 3.442, x1 =


0.672

−0.520

0.527



-0.5
1-1 0.5

0.5
1

0

0 -0.5 -1 1 0.50
-0.5-1

θ1 = 58,

φ1 = 322

λ2 = 7.501, x2 =


−0.289

0.471

0.834

 θ2 = 33,

φ2 = 302

λ3 = 12.717, x3 =


−0.681

−0.713

0.166

 θ3 = 80,

φ3 = 46

6B middle λ1 = −50.793, x1 =


−0.245

−0.874

0.423



-0.5
1-1 0.5

0.5
1

0

0 -0.5 -1 1 0.50
-0.5-1

θ1 = 65,

φ1 = 74

λ2 = −37.816, x2 =


−0.350

0.486

0.801

 θ2 = 37,

φ2 = 306

λ3 = −20.104, x3 =


0.904

−0.048

0.424

 θ3 = 65,

φ3 = 357
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6. Discussion

The possible reasons why the estimated velocity gradients di�er from each

other in the di�erent �oor slabs may be:

• Usually, during the placing the fresh SCC behaves as a �uid. However,

when it is cast slowly enough or if it is at rest, it �occulates and builds

up an internal structure, and has the ability to withstand a load coming

from the concrete mass casting above, without increasing the lateral stress

against the formwork [18]. During the production of full-size �oor slabs

the casting conditions might have been di�erent;

• The casting process used to produce the slabs was a multi-layer or distinct

layers casting (Figure 2). During the placing, a layer of SCC has a short

time to rest and �occulates before a second layer of concrete is cast above

it. If it �occulates too much and its apparent yield stress increases above a

critical value, then the two layers do not mix at all, and this creates a weak

interface in the �nal structure. The fact that the full-size �oor slabs 4,5

and 6 were weaker in the bending test [16, 17], might indicate that in these

slabs there was insu�cient mixing of concrete mass between the layers

formed by the casting order represented in Figure 2. This correlated with

the observations, that in cylinders 1 and 2 the largest velocity gradient

was calculated, which may support an assumption that the casting of the

slabs 1 and 2 was faster compared to the other ones;

• In the case of cementitious composites the amount of �bres added to the

mass is usually su�cient to create the interactions between �bres, such as

direct contacts or hydrodynamic interactions. When the length of �bres

is of the same order as the maximum aggregate size, �bre orientations will

be dictated by the random contact interactions between grains and �bres.

This is an additional randomising e�ect. All these additional interactions

are important for the �nal orientation of �bres, but are not taken into

account in the Je�rey model. This may lead to deviations between the

theoretical predictions and experimental results.

The model equation (4) is simpli�ed in several aspects, such as:

16



  

• The anti-symmetric part of the velocity gradient has been neglected, but

it is not clear, if this is justi�ed during the �lling process;

• Fibre-�bre interactions have not been taken into account. Such interac-

tions would lead to terms nonlinear in the orientation tensor. Fibre-grain

interactions may also be relevant.

7. Conclusion

The present study gives a �rst idea about the trends of �ow dynamics of con-

crete mass with steel �bres during the �lling process. The approach presented

leads to a set of linear algebraic equations for the components of the velocity

gradient, meaning that no numerical methods are needed. The model equation

(4) allowed to calculate the scaled velocity gradients of concrete mass (∇v)sym λ
D

based on �bre orientations measured in the hardened concrete samples taken

from the di�erent regions in the slabs. The results lead to a comparison of the

magnitude of the velocity gradients in di�erent regions, and they demonstrate,

in which direction the change of velocity of concrete mass is large and in which

direction it is small.

As the measuring of �bre orientations during the �ow of concrete mass is

hardly feasible then the approach proposed can be used f.i. to interpolate the

orientation of �bres between two time moments with the known �bre orienta-

tions. If the casting is made by pump tube then at a time moment corresponding

to the start of casting, the �bres are aligned with �ow direction of concrete mass

in the pipe, and their orientation is known. The �nal time moment corresponds

to a steady state, when the concrete mass has set and �bre orientations are

frozen, and can be measured. By knowing the orientation of �bres at these two

time moments it is possible to interpolate the orientation of �bres using the

equation (1). Fibre orientations interpolated between two time moments with

the known �bre orientations is a subject of future studies.
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Appendix A. OTs of the second and fourth orders for the top, middle

and bottom parts of the cylinder 1A

Second order orientation tensors Oij

Top part





0.34 0.24 −0.10

0.24 0.23 −0.15

−0.10 −0.15 0.43




;

Middle part





0.20 0.16 −0.11

0.16 0.21 −0.12

−0.11 −0.12 0.59




;

Bottom part





0.10 0.09 0.09

0.09 0.14 0.12

0.09 0.12 0.76




;
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Fourth order orientation tensors Oijkl

Top part

Oij11 =

0.178 0.114 −0.038

0.114 0.088 −0.036

−0.038 −0.036 0.073

Oij21 =

0.114 0.088 −0.036

0.088 0.075 −0.033

−0.036 −0.033 0.049

Oij31 =

−0.038 −0.036 0.073

−0.036 −0.033 0.049

0.073 0.049 −0.032

Oij12 =

0.114 0.088 −0.036

0.088 0.075 −0.033

−0.036 −0.033 0.049

Oij22 =

0.088 0.075 −0.033

0.075 0.081 −0.042

−0.033 −0.042 0.066

Oij32 =

−0.036 −0.033 0.049

−0.033 −0.042 0.066

0.049 0.066 −0.071

Oij13 =

−0.038 −0.036 0.073

−0.036 −0.033 0.049

0.073 0.049 −0.032

Oij23 =

−0.036 −0.033 0.049

−0.033 −0.042 0.066

0.049 0.066 −0.071

Oij33 =

0.073 0.049 −0.032

0.049 0.066 −0.071

−0.032 −0.071 0.289

Middle part

Oij11 =

0.078 0.055 −0.028

0.055 0.050 −0.026

−0.028 −0.026 0.071

Oij21 =

0.055 0.050 −0.026

0.050 0.052 −0.027

−0.026 −0.027 0.052

Oij31 =

−0.028 −0.026 0.071

−0.026 −0.027 0.052

0.071 0.052 −0.055

Oij12 =

0.055 0.050 −0.026

0.050 0.052 −0.027

−0.026 −0.027 0.052

Oij22 =

0.050 0.052 −0.027

0.052 0.089 −0.030

−0.027 −0.030 0.072

Oij32 =

−0.026 −0.027 0.052

−0.027 −0.030 0.072

0.052 0.072 −0.069

Oij13 =

−0.028 −0.026 0.071

−0.026 −0.027 0.052

0.071 0.052 −0.055

Oij23 =

−0.026 −0.027 0.052

−0.027 −0.030 0.072

0.052 0.072 −0.069

Oij33 =

0.071 0.052 −0.055

0.052 0.072 −0.069

−0.055 −0.069 0.448

Bottom part

Oij11 =

0.027 0.021 0.015

0.021 0.025 0.015

0.015 0.015 0.049

Oij21 =

0.021 0.025 0.015

0.025 0.033 0.015

0.015 0.015 0.031

Oij31 =

0.015 0.015 0.049

0.015 0.015 0.031

0.049 0.031 0.062

Oij12 =

0.021 0.025 0.015

0.025 0.033 0.015

0.015 0.015 0.031

Oij22 =

0.025 0.033 0.015

0.033 0.058 0.025

0.015 0.025 0.056

Oij32 =

0.015 0.015 0.031

0.015 0.025 0.056

0.031 0.056 0.080

Oij13 =

0.015 0.015 0.049

0.015 0.015 0.031

0.049 0.031 0.062

Oij23 =

0.015 0.015 0.031

0.015 0.025 0.056

0.031 0.056 0.080

Oij33 =

0.049 0.031 0.062

0.031 0.056 0.080

0.062 0.080 0.655
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Appendix B. Calculated velocity gradients in di�erent samples

Table B.7

The components of the symmetric part of the velocity gradient

speci- velocity gradient (∇v)sym λ
D speci- velocity gradient (∇v)sym λ

D

men in Cartesian components men in Cartesian components

1A

top


2.417 17.150 1.440

17.150 −5.187 −3.248

1.440 −3.248 17.839

 1B

top


5.358 0.330 0.801

0.330 0.513 0.092

0.801 0.092 0.065



1A

middle


15.098 16.823 −0.749

16.823 15.440 0.001

−0.749 0.001 33.122

 1B

middle


18.636 −0.308 −4.838

−0.308 2.839 0.049

−4.838 0.049 17.074



1A

bottom


104.340 10.490 1.067

10.490 108.930 −0.583

1.067 −0.583 125.270

 1B

bottom


−4.998 4.010 −0.224

4.010 −46.470 2.398

−0.224 2.398 −10.384



2A

middle


15.098 16.823 −0.749

16.823 15.440 0.001

−0.749 0.001 33.122

 2B

middle


14.979 0.711 −0.011

0.711 2.323 −0.046

−0.011 −0.046 10.353



3A

middle


−4.572 0.555 −0.095

0.555 −1.960 −1.847

−0.095 −1.847 −3.729

 3B

middle


−14.892 −0.742 −5.004

−0.742 −28.309 −2.071

−5.004 −2.071 −30.003



4A

top


−3.117 10.027 0.050

10.027 −12.630 −1.753

0.050 −1.753 3.000

 4B

top


2.501 −3.197 −1.638

−3.197 −4.474 −2.980

−1.638 −2.980 −0.003



4A

middle


3.677 13.185 −4.385

13.185 11.737 2.246

−4.385 2.246 17.821

 4B

middle


14.687 −0.690 1.029

−0.690 2.040 0.443

1.029 0.443 7.179



4A

bottom


8.386 8.133 −6.138

8.133 4.669 4.833

−6.138 4.833 15.423

 4B

bottom


−2.499 2.005 0.112

2.005 −23.326 1.199

0.112 1.199 −5.192



5A

middle


4.452 7.966 −2.271

7.966 15.188 1.924

−2.271 1.924 17.680

 5B

middle


22.742 −0.452 1.571

−0.452 15.198 1.578

1.571 1.578 20.461



6A

middle


8.088 3.952 −2.029

3.952 9.055 0.494

−2.029 0.494 6.518

 6B

middle


−24.109 −3.532 8.136

−3.532 −47.663 4.426

8.136 4.426 −36.941


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