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Abstract8

This paper focuses on mechanisms that limit the sea ice loads on offshore structures. It introduces a9

probabilistic limit load model, which can be used to analyze peak ice load events and to estimate the10

maximum peak ice load values on a wide, inclined, offshore structure. The model is based on simple11

mechanical principles, and it accounts for a mixed-mode ice failure process that includes buckling and12

local crushing of ice. The model development is based on observations on two-dimensional combined13

finite-discrete element method simulations on the ice-structure interaction process. The paper also14

presents a numerical limit load algorithm, which is an extension of the probabilistic limit load model15

and capable of yielding a large number of stochastic peak ice load values. The algorithm is compared16

to simulation-based and full-scale observations. Analyzing peak ice load events is challenging as17

sea ice goes through a complex mixed-mode failure process during such events. The algorithm is18

an effective tool for this analysis, and it shows that distinguishing between the buckling and local19

crushing failure is virtually impossible if the only data available from a peak load event is the value of20

the peak ice load. The algorithm shows potential in improving estimates of maximum peak ice load21

values on offshore structures.22

Keywords: ice loads, offshore structures, Arctic engineering, ice-structure interaction, finite-discrete23

element method, discrete element method, ice mechanics24

1. Introduction25

Insight on sea ice behaviour and ice loads is important as it leads to safer and more sustainable26

Arctic operations, such as marine transportation, offshore wind energy, and offshore drilling. The ice27

loads arise from a complex and stochastic ice-structure interaction process, occurring as ice, moved28

by winds and currents, fails against an offshore structure [1–3] (Figure 1). It has become popular29

to develop rather complicated numerical tools to model ice actions, while the design of offshore30

structures still often relies on simplified ice load models and empirical load estimates. We believe31

the true value of the numerical models resides in careful analysis: It is the analysis that yields the32
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insight on ice mechanics and ice loads. This insight makes it possible to conceive reliable, but simple33

enough, ice load models having the potential to improve the design of offshore structures.34

This paper introduces a novel, but rather simple, approach for the analysis of maximum peak ice load35

events on a wide, inclined, offshore structure. The model development is based on hundreds of FEM-36

DEM-simulations [4, 5] and the introduced model extends our buckling model for peak ice loads [6].37

Figure 1 shows snapshots from a simulation, in which an ice sheet moves against an inclined structure38

and fails into individual ice blocks and floes. These form an ice rubble pile in front of the structure.39

Figure 2 shows a maximum peak ice load event, in which the ice load is transmitted to the structure40

through a force chain [7, 8]. Here, the force chain is a series of ice blocks and floes under a high41

compressive load [9].42

Our buckling model for ice loads assumed that the load on the structure is limited by the buckling of43

the force chain. This model accounted for the individual ice floes broken of the ice sheet and, as such,44

bears resemblance to some earlier models [10–12]. The model yielded the maximum peak ice load45

value (here and in the further text, superscript p refers to peak ice load) [6]46

F p = a
√

kEI, (1)47

where a = a(χ) is a buckling-mode-dependent dimensionless multiplier (Appendix A), k = ρwg is the48

specific weight of water (here, ρw is the mass density of water and g the gravitational acceleration),49

E is the elastic modulus of ice, and I = h3/12 is the second moment of area of a beam having a50

rectangular cross-section and thickness h (and unit width). The buckling model was used to analyze51

the strong effect of ice thickness h on the simulated peak ice load values [13]. This was done by first52

solving Equation 1 for a,53

a =
F p

√
kEI

, (2)54

and then by showing that the hundreds of F p values from the simulations led to a values, which did55

not show dependency on h. The buckling model was successful in quantifying the effect of h on the56

F p values.57

Though being successful in quantifying the effect of force chain buckling on F p, the buckling model58

does not account for the compressive failure of ice: The model could theoretically allow F p to increase59

above the compressive (or crushing) capacity of ice, which is physically not possible and calls for60

model improvement. The crushing strength of ice is often accounted for in studies on the relation61

between buckling and ice loads on vertical structures [1, 16–18], but its role in ice-inclined structure62

interaction is usually not accounted for or simply overlooked. The buckling model also does not63

fully account for the stochasticity of ice loads or the mixed-mode ice-structure interaction processes64

involving ice failure due to buckling and crushing [2, 3, 19]. Hendrikse and Metrikine [20] introduced65

a model for a mixed-mode ice failure process for vertical structures, but there is no comparable model66

for inclined structures. Earlier ice load models for inclined structures account in an approximate way67

for bending failure of ice, sliding and rotational motion of ice blocks, and the effect of ice rubble68

[21–24].69
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Figure 1: Snapshots of a 2D FEM-DEM-simulated ice-structure interaction process at six stages, each described by the
length L of the ice pushed against an inclined structure. The ice sheet, moving at a constant velocity v, breaks into ice
blocks, or floes, in the vicinity of the structure. Broken ice forms an ice rubble pile in front of the structure and transmits
the load from the still-intact ice sheet to the structure. The first figure shows the initial vertical velocity perturbation v0,
which was used to vary initial conditions as decribed in Ranta [13]. Here the ice sheet thickness h was 1.25 m. The figure
is reproduced from Ranta et al. [6].

The core contribution of this paper is in extending the buckling load model proposed by Ranta et al.70

[6] into a probabilistic limit load model, and further, into a numerical limit load algorithm. The model71

yields the probability for a peak ice load value in an ice-structure interaction process being limited72

by the buckling or local crushing failure of ice. It can also be used to study how these probabilities73

change with ice parameters and the geometry of the force chains. The ice parameters studied in74

this paper are the ice thickness and the crushing strength of ice. The numerical limit load algorithm75

extends the model into a tool for producing virtual ice load observations and estimates of ice loads.76

In addition to the mixed-mode failure, readily accounted for by the limit load model, the numerical77

algorithm accounts for the inherent stochasticity of the ice loads in an ice-structure interaction process.78

The algorithm attributes the stochasticity to the geometry of the force chains. We compare the results79

yielded by the algorithm against our simulations and validate them against full-scale data as presented80

by Timco and Johnston [25]. The algorithm demonstrates the challenges related to the thorough81

analysis of an ice-structure interaction process: We show that distinguishing between the buckling82

and local crushing failure in an ice load event is virtually impossible if the only data available from83

the peak load events are the values of the ice loads. As the data in this work is based on 2D simulations84

where grounding is not accounted for, the results of the model should apply to wide structures in deep85

waters.86

Our paper first describes the FEM-DEM simulations and the probabilistic limit load model. Then the87

results related to the buckling model are reviewed and combined with the limit load model. After88
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Figure 2: Snapshot from a FEM-DEM simulation showing a force chain — a sequence of ice blocks in contact due to high
compressive stress — transmitting the load from the intact ice sheet, moving from the left towards an inclined structure.
Colors indicate the average normalized compressive stress on the ice blocks. The stress measure is the so-called particle
stress, describing the average compression of an ice block [7, 14, 15]. Here the ice sheet thickness h was 1.25 m.

this, the paper focuses on extending the limit load model into a numerical limit load algorithm and on89

the use of this algorithm in the analysis of the ice-structure interaction process. The algorithm is also90

verified against the limit load model, compared to the FEM-DEM simulations, and validated against91

full-scale observations. Before concluding the paper, we make some remarks on the applicability of92

the limit load model and algorithm.93

2. Methods94

2.1. Simulations of ice-structure process95

The study is based on the combined finite-discrete element method (FEM-DEM) simulations [4, 26].96

The simulations were performed with the 2D FEM-DEM code of the Aalto University Ice Mechanics97

Group [9, 27–29]. Paavilainen et al. [27, 28] found the model results to be in fair agreement with98

the laboratory and full-scale measurements by Saarinen [30] and the data reported in Timco and99

Johnston [25], respectively. The strength of FEM-DEM in ice mechanics resides in its ability to100

account for numerous individual ice floes and blocks and for the granular behavior of ice rubble.101

Models accounting for these features have been used in several studies on ice mechanics [31–49].102

Figures 1a-f describe simulations that had an ice sheet of thickness h pushed against an inclined rigid103

structure. Approximately 100 m from the structure, a viscous damping boundary condition and a104

constant horizontal velocity v = 0.05 m/s were applied to the ice sheet. About 100 meters away from105

the structure, a viscous damping boundary condition was applied on the ice sheet to mimic a semi-106

infinite ice sheet being pushed against the structure [28]. This boundary condition may not be ideal107

for a case of a structure interacting with, for example, a floe field. Paavilainen et al. [27, 28] describe108

the model in detail. The sheet consists of rectangular discrete elements connected by viscous-elastic109

Timoshenko beams, which failed at locations where the beams met a pre-defined failure criterion110
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proposed by Schreyer et al. [50]. The beams went through a cohesive softening process upon failure111

[51], with the energy dissipated due to this process matching that of the fracture energy of ice [52].112

Table 1 gives the main parameters of the simulations.113

Contact forces were solved using an elastic-viscous-plastic normal contact force model, together with114

an incremental tangential contact force model with Coulomb friction [27, 33]. The model describes115

local crushing at ice-block-to-ice-block and ice-structure contacts. The amount of local crushing was116

governed by the plastic limit parameter, σp, which relates the maximum contact load to the contact117

geometry. Plastic limit parameter σp accounts for the compressive strength of ice, or in other words,118

the local crushing between the contacting ice blocks. The maximum compressive force transmitted119

in a contact is the product of σp and the length of the contact (in 3D this would be the contact area).120

Hopkins [33] discusses the role of σp in detail. No new ice features were created, nor did the block121

geometries change during the local crushing (the model cannot be used to describe the continuous122

crushing of an intact ice sheet). Water was accounted for by applying a buoyant force and simplified123

drag model. The model is 2D and does not allow for clearing of the ice around the structure; thus, its124

results do not apply for slender structures.125

The study is based on seven sets of simulations, S1. . .S7, summarized in Table 2. Each set contained126

50 simulations, where all parameters, except the initial vertical velocity perturbation v0, were constant.127

The initial velocity v0 was of the order of 10−12 m/s at the free edge of the ice sheet (Figure 1a)128

and had a unique value for each simulation in a set. While the simulated processes themselves are129

deterministic, they are sensitive to initial conditions [54]: A small perturbation in the initial conditions130

of two simulations with the same parameterization is enough to lead to two different ice loading131

processes. Figure 3a demonstrates this by showing the ice load F measured on the structure as a132

function of the length L of the pushed ice sheet. The F-records are from two simulations of set S5,133

and they show very similar features. However, they diverge after L = 10 . . . 15 m, and thus produce134

ice load data from two different ice loading processes. As shown in Table 2, the simulation sets135

S1. . .S6 differed from each other by the values of h and σp. Simulation set S7 had thick ice, h = 1.25136

m, and a high value of 8 MPa for σp. The simulation sets allowed stochastic peak ice load events to137

be studied with full control of the parameters [6, 13, 54–56]. Often, studies on the statistics of ice138

loads are made based on full-scale data, on ice loads on ships and on fixed structures [3, 25, 57–65],139

in which case, such control is not possible.140

Figures 3a and b illustrate the maximum peak load F p events for two simulations. Since the F-141

records were different for all simulations, the F p events in them occurred at a different time and142

yielded a different F p value. As the close-ups in Figure 3b illustrate, the ice sheet typically advanced143

a few meters (up to tens of meters) during an F p event; the events were not due to sudden impact144

loads. We recorded the maximum peak load F p value from each simulation, as the F p events and the145

resulting peak load values are usually of primary interest in Arctic engineering and in studies of ice146

loads. Often, they are the only result reported in the experiments.147
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Table 1: Summary of the main simulation parameters. Only the ice thickness h and the plastic limit σp were varied
between simulation sets S1. . .S8 (Table 2 describes the simulations sets). The parameter values were mostly chosen
following Timco and Weeks [53]. Fracture energy was chosen after Dempsey et al. [52].

Description and symbol Unit Value

General Gravitational acceleration g m/s2 9.81

Ice sheet velocity v m/s 0.05

Drag coefficient 2.0

Duration of the simulation s 5000

Total length of pushed ice m 250

Ice Thickness h m 0.5, 0.875, 1.25

Elastic modulus E GPa 4

Poisson’s ratio 0.3

Density kg/m3 900

Tensile strength MPa 0.6

Shear strength MPa 0.6

Fracture energy J/m2 12

Contact Plastic limit σp MPa 1.0, 2.0, 8.0

Ice-ice friction coefficient 0.1

Ice-structure friction coefficient 0.1

Water Density ρw kg/m3 1010

Structure Slope angle deg 70

Table 2: Simulation sets S1. . .S7 of this study. The table also shows the number N and the indices (ID) of the simulations
in each set. Detailed list of simulation parameters is given in Table 1.

Set ID N h σp

[m] [MPa]

S1 1-50 50 0.5 1

S2 51-100 50 0.5 2

S3 101-150 50 0.875 1

S4 151-200 50 0.875 2

S5 201-250 50 1.25 1

S6 251-300 50 1.25 2

S7 301-350 50 1.25 8
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Figure 3: Examples of ice load F records yielded by our simulations: (a) shows two F-records plotted against length L of
pushed ice and (b) close-ups of the maximum peak ice load F p events from the same two simulations. On a general level,
the F-records consist of consecutive peak load events, of which one corresponds to the maximum peak load F p. Here the
ice thickness h = 1.25 m and the plastic limit σp = 1 MPa in both simulations, which only differed by the value of the
initial velocity perturbation v0 (Figure 1).

2.2. Probabilistic limit load model148

The probabilistic limit load model assumes that the peak ice loads are related to the force chains,149

which transmit the load from the intact ice sheet to the structure (Figure 2). The model uses the150

above-described buckling model [6], which is extended into the probabilistic limit load model by (1)151

supplementing it with a local crushing model and (2) by accounting for the stochasticity in the contact152

geometries of the blocks belonging to the force chains. The model estimates maximum peak ice load153

during an ice-structure interaction process. These usually occur after the initial stages of the process154

and the model does not consider parameters, such as the inclination angle of the structure, which may155

strongly affect the loads in the beginning of the process, but only weakly later into it [1, 13, 56].156

An elementary unit of the model, shown in Figure 4, is a contact interface between a pair of ice blocks157

belonging to a force chain. The blocks are in partial face-to-face contact due to a compressive load158

P, which the force chain transmits. The crushing model assumes that local crushing occurs at the159

interface of the two blocks if P ≥ h̄σp, where h̄ is the length of the contact interface and σp is the160

limit for compressive stress (also the blocks are assumed to have a unit width). For simplicity, the line161

of action for P in Figure 4 is assumed to remain on a straight line, and the model remains unchanged162
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Figure 4: An illustration of a force chain transmitting a load P and a contact interface between a pair of ice blocks having a
contact length of h̄. The figure also shows three different contact offset scenarios, each having a different non-dimensional
offset, e = 1 − h̄/h, where h is the ice thickness.

for curved force chains (Figure 2), for which P can be assumed to be approximately constant along163

the length of the chain.164

By using Equation 1 and the criterion P ≥ h̄σp for local crushing, it is simple to determine the critical165

contact length h̄c, for which the local crushing event occurs with the same compressive load as the166

buckling. The critical contact length is the limit where the cause of failure for a pair of blocks changes167

from buckling to local crushing, and it is obtained via the following168

σph̄c = a
√

kEI ⇒ h̄c =
a
σp

√
kEI =

a

σp

√
ρwgEh3

12
. (3)169

When the contact length h̄ ≤ h̄c for a given pair of contacting blocks, then the local crushing event170

limits the P transmitted by them. In contrast, when h̄ > h̄c, buckling limits P. We would like to171

emphasize that the model accounts for the root cause of failure only, and it assumes that the load P is172

limited by failure due to either buckling or local crushing. The two failure modes are assumed to not173

occur simultaneously, but, for example, the blocks of the force chain could buckle immediately after174

the initial failure by local crushing.175

When including stochasticity in the model, the contact length h̄ and ice thickness h are used to intro-176

duce a non-dimensional contact offset (Figure 4)177

e = 1 −
h̄
h
, (4)178
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where, by definition, 0 ≤ e ≤ 1. The critical contact offset ec, at which the load-limiting mechanism179

changes from buckling to local crushing, is achieved by substituting h̄c into the previous equation:180

ec = 1 −
h̄c

h
= 1 −

a
√

kEI
σph

= 1 −
a

σp

√
ρwgEh

12
. (5)181

The above equations, together with Equation 1 and an assumption of a being independent of e, can be182

used to write the maximum load Pm, which a system with one contact interface is able to transmit as183

Pm =

a
√

kEI if e < ec (limiting mechanism: buckling)

σph (1 − e) if e ≥ ec. (limiting mechanism: local crushing).
(6)184

This equation is applicable for a pair of blocks in all force chain-induced peak load events in an ice-185

structure interaction process (Figure 3). In other words, it is not restricted to modeling the maximum186

peak ice load event only.187

In a peak load event that occurs during an ice-structure interaction process, the e values for the pairs188

of contacting blocks in force chains vary randomly. To use the model for predicting the limiting189

mechanism in the maximum peak ice load event only, the model requires e to have a reasonable190

maximum contact offset length, em. Clearly, as Equation 4 and Figure 4 demonstrate, e could vary191

between values of 0 and 1. When e = 0, the contact length h̄ is equal to the ice thickness h. When192

e = 1, the contact length becomes zero and the force chain does not exist. Thus, for a given pair of193

adjacent blocks in a force chain, e can have a random value varying at an interval of 0 . . . em, where194

0 < em < 1. The distribution for e values is not known; thus, a simple triangular distribution that195

has its maximum at em was chosen here. This distribution (Figure 5a) has a cumulative distribution196

function (CDF)197

T (e) =


0 , e < 0

(2em − e)e/e2
m , 0 ≤ e ≤ em

1 , e > em.

, where 0 < em < 1 (7)198

Figures 5a-d illustrate the shape of T (e), and the corresponding probability density function, Tpdf(e),199

if one of the values, 0.6, 0.8 or 1.0, is chosen for em. The figures also show the cumulative and200

probability density functions for a more complicated normal distribution. The difference between the201

distributions is small and the simple triangular one is used here. It is important to notice that relating202

the randomness of the process to parameter e causes the stochasticity of the loads to be related to the203

geometrical configuration of the rubble pile. The configuration, on the other hand, can be justifiably204

considered to be a random physical property of the studied system consisting of still intact ice, ice205

rubble, and an inclined structure. Here the triangular distribution for e was chosen due to its simplicity,206

but as will be discussed below, other distributions for it should be tested in the future.207

The choice of a triangular cumulative distribution function T (e) leads to fairly simple formulas for the208

probabilities of buckling and local crushing events. In a system with one pair of contacting blocks and209
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one contact interface, the buckling event limits the load when e < ec. The probability of a buckling210

event is given by211

p(buckles) = T (ec) = 1 −
1
e2

m

em − 1 +
a
σp

√
ρwgEh

12

2 , 0 ≤ ec ≤ em & 0 ≤ em < 1. (8)212

If the buckling event does not limit the load, then the local crushing event will limit it. The prob-213

ability that the local crushing event in one contact interface limits the load is, thus, given by the214

complementary probability of the previous equation:215

p(crushes) = 1 − p(buckles). (9)216

The final step in developing the model is to extend it so that it considers a force chain having n contact217

interfaces. For this step, it is assumed that the limit for the load is reached when the system buckles218

or when any of the contact interfaces locally crushes. If the conditions in all n contact interfaces are219

independent of each other, and such that the system will not undergo local crushing, the probability220

for buckling is221

pn(buckles) =

n∏
i=1

p(buckles) = p(buckles)n. (10)222
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Figure 5: Functions describing the random non-dimensional offset e defined in Figure 4: (a) the cumulative distribution
function T (e) defined by Equation 7 and (b)-(d) the probability density functions (PDF) of a triangular distribution with
em = 0.6, 0.8, and 1.0, respectively. For comparison, the figures also show corresponding functions derived using a
standard normal distribution.
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Again, the probability that a crushing event will limit the load is given by a complementary probability223

of the previous equation:224

pn(crushes) = 1 − pn(buckles). (11)225

A simple way to demonstrate how the model works, and the parameter effects it yields, is to consider226

a hypothetical peak load event that a pair of blocks would cause if a triangular distribution with em = 1227

were used (we emphasize that em = 1 would allow the model to predict a zero maximum peak ice load228

value for an ice-structure interaction process). In this hypothetical case, the probability of a buckling229

event is230

pn(buckles) =

[
1 −

a2ρwgEh
12σ2

p

]n
. (12)231

This example shows the following expected outcome. Force chains formed by ice blocks, that orig-232

inate from an ice sheet with low E and/or h, are more prone to buckle than chains with blocks orig-233

inating from a sheet with high E and/or h. This shows that the model yields plausible results: The234

buckling events are more likely to occur in the ice-structure interaction process when the ice is thin235

[1]. It is also justified to expect that an increase in the plastic limit σp makes a buckling event more236

likely to occur than a local crushing event. The previous equation shows that this, as well, is a result237

shown by the model.238

3. Results239

This section first reviews some of the results from Ranta et al. [6] and then uses them as input for240

the limit load model, which sheds light on the roles of buckling and local crushing in limiting the241

maximum peak ice load values.242

3.1. Peak ice loads and buckling243

Figure 6a shows the maximum peak ice load F p values (Figure 3a and b) from our FEM-DEM simu-244

lations. Additionally, it shows the mean F p values with their standard deviations for the simulations245

of each set, S1. . . S7 (Table 2). While the F p values from the simulations in a given set show scatter,246

the mean F p values of the sets S1. . . S7 differed considerably, by up to about 500 %, mainly due to a247

difference in ice thickness h between the sets[13]. The simulations with high σp in S7 yielded larger248

values than sets S5 and S6 with the same ice thickness, h = 1.25 m, but smaller σp. The variation249

between the F p values yielded by the simulations in each set was largely due to the stochasticity of250

the ice loading process [13, 54, 55].251

The values of a (Equation 2), solved using the F p data in Figure 6a, are shown in Figure 6b and252

indicate that the peak load events were related to buckling. All of the mean a values are in the same253

range. There is no dependency between a and h. The mean a value is clearly larger in set S7, which254

had a high value for the plastic limit σp. However, the F p values are well normalized by factor
√

kEI255

(Equation 2), suggesting that buckling has an important role in limiting the peak ice load values. In256
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other words, multiplying F p by 1/
√

h3 yields normalized a data. Nonetheless, the data still shows257

scatter not explained by the buckling model.258

Below, we will use the a values for the probabilistic limit load model, in which they only relate to the259

ice failure due to buckling (Equation 6). For finding a suitable a value for the limit load model, it is260

thus natural to look for a distribution for a using the simulation results, whereby local ice crushing261

would least likely affect the results. Figure 7a shows a histogram for the peak load F p observations262

for set S7, which had a very high value of 8 MPa for σp — the simulations in S7 can be assumed to263

give F p values governed by buckling and, thus, being virtually independent of local crushing. The264

figure also shows, and specifies, a two-parameter Gumbel (type I) extreme value distribution fitted to265

the a data (our previous study showed a values are likely Gumbel distributed [55]). Figure 7b shows266

the data quantiles from the same data plotted against Gumbel theoretical quantiles, with the linearity267

of the data points showing that the Gumbel distribution describes the data well.268

3.2. Load limits due to buckling and crushing events269

Figures 8a-d demonstrate the use of the probabilistic limit load model by showing the probabilities270

pn(buckles) and pn(crushes) of buckling or local crushing failure (Equations 10 and 11), respectively,271

limiting the peak ice load F p value. While Figures 8a and b show pn(buckles) and pn(crushes) as a272

function of h, with σp fixed to 1 MPa, Figures 8c and d show them plotted against σp, with h fixed to273

1.25 m. All figures show the results for the number n of ice floe contact interfaces 4 and 8. Figures 8a274

and b (and similarly c and d) differ by the value of em, which was 0.6 and 0.8, respectively. Parameter275

a was fixed to 0.39 corresponding with the mean a value for simulation set S7 (Figure 8b), while the276

other parameters were from Table 1.277

Figures 8a-d show that the probabilistic limit load model yields some fairly intuitive, but also more278

surprising, results. The probability pn(buckles) increases with σp and decreases with an increasing279

h. The first result is due to a high σp inhibiting the local crushing, while the latter can be understood280

by accounting for the buckling load being dependent on h (Equation 1 shows that the buckling load281

is proportional to
√

h3). In addition, the figures show that the pn(buckles) for fixed h or σp decreases282

when the number of contact interfaces, n, within the force chains increases. This underlines the283

importance of understanding local phenomena at the contact interfaces; the effect of local crushing284

may override the larger scale phenomena of force chain buckling, which is easier to detect. Figures 8a285

and b also show that for a fixed σp, n has no effect on the limit for h, at which peak loads become286

solely governed by buckling. This is shown by the pn(crushing) being zero with h / 0.4 m, when287

σp = 2 MPa (h / 0.1 m, when σp = 1 MPa), for both values of n shown in the figure.288

Figures 8c and d show an important outcome of the model. For a fixed h, soft ice (low σp) will never289

fail by buckling. For example, in the case of the figures where h = 1.25 m, the pn(buckles) = 0 for290

σp / 1 MPa. This means that soft ice will never exhibit any failure mode other than local crushing291

and that, consequently, (1) the mechanical phenomena limiting F p values in ice-structure interaction292

differ drastically for soft and strong ice and (2) the analysis of ice loading processes should account293

for this fact. With respect to our discussion on this phenomenon in Section 4.4, we already note294
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Figure 6: The values of (a) maximum peak ice loads F p from all simulations in sets S1 . . . S7 (Table 2) and (b) dimen-
sionless a factors derived using the F p data points (Equation 2). The graphs also give the mean values (Avg, solid lines)
and standard deviations (SD, dashed lines) for the F p and a data of each set. The mean a value 0.39 of set S7 was used in
plotting Figure 8

that the values chosen for the maximum contact offset and number of contact interfaces, em and n,295

respectively, have only a very small effect on this observation.296

4. Analysis and Discussion297

This section first discusses how to extend the above-described limit load model into a numerical limit298

load algorithm. The algorithm enables detailed analysis of peak ice load events and shows potential299

in estimating the maximum peak ice load values and their distribution. The section also validates the300

model and the algorithm and discusses their applicability.301
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4.1. Numerical limit load algorithm302

The limit load model (Section 2.2) can be extended into a numerical limit load algorithm, which can303

be used to generate large amounts of virtual maximum peak ice load observations and related load304
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distributions. The flowchart in Figure 9 describes the algorithm. As with the limit load model, it is305

based on the a-factor distribution and on the random non-dimensional contact offset e. (Examples of306

suitable distributions for e and a are, respectively, given by Figures 5 and 7.) In addition, the required307

input parameters are those needed to define the critical contact offset ec (Equation 5), namely the water308

density ρw, ice thickness h, ice crushing strength σp, elastic modulus E, and gravitational acceleration309

g.310

The flowchart in Figure 9 describes how to use the numerical limit load algorithm. For a floe-to-311

floe contact (number of contact interfaces n = 1), the algorithm yields one peak load observation by312

picking a random e and checking it against the critical contact offset ec, solved by picking a random313

a value and substituting it into Equation 5. If e ≥ ec, the failure mode is local crushing and the314

algorithm yields a peak load value F p = σph(1 − e) (Equation 6). On the other hand, if e < ec, the315

failure mode is buckling and F p = a
√

kEI. To achieve one peak load observation for a case having316

n contact interfaces, the algorithm picks n random values for e, and chooses the largest as it yields317
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the lowest F p. Multiple Fp observations can be made by repeating the procedure. We verified this318

approach by numerically reproducing the data described in Figure 8.319

4.2. Simulated peak ice load events320

We used the numerical limit load algorithm from the previous section to produce seven sets, A1. . . A7,321

of virtual F p observations with the corresponding a values. Sets A1. . . A7 contained 100 observations322

each and they were parameterized, respectively, following the parameterization of the simulation sets323

of S1. . . S7. Tables 1 and 2 give the parameterization for sets S1. . . S7, while Figure 6 shows the324

F p and a values from the FEM-DEM simulations. We created sets A1. . . A7 to verify the algorithm325

by comparing its results to those yielded by the FEM-DEM simulations. Here the values for the326

maximum contact offset and for the number of contact interfaces were fixed to em = 0.8 and n = 4,327

respectively, even if they varied throughout the FEM-DEM-simulated interaction process.328

Figure 10 shows the a values calculated using the F p observations originating from the numerical329

limit load algorithm. The algorithm yields virtual F p data that fit well with the data from the FEM-330

DEM simulations. The mean values of a for sets A1. . . A7 are close, but slightly larger, to those of sets331

S1. . . S7, and the data show a similar dependency onσp than the data from the FEM-DEM simulations332

(see Figure 6b for comparison). We note that a one-to-one fit between the data sets would not be333

expected due to the stochasticity of the algorithm and the simulated ice-structure interaction process.334

We did not carry out any optimization for the parameters to obtain the best possible fit between data335

sets A1. . . A7 and S1. . . S7, which at least partially explains the tendency of the algorithm-produced336

values to be larger than the simulation-based ones.337

The performance of the numerical limit load algorithm is further demonstrated in Figures 11a and338

b, which compare F p data from selected FEM-DEM simulation sets to corresponding algorithm-339

produced F p data sets. Figure 11a shows how the ice thickness h affects the results by showing the340

data related to sets A2, A4, and A6 (and corresponding sets S2, S4, and S6), which all had σp fixed341

to 2 MPa. Further, Figure 11b demonstrates the effect of σp by showing the data related to sets A5,342

A6, and A8 (and corresponding sets S5, S6, and S8), which had h fixed to 1.25 m. The figures show343

a similar non-linear trend for both the data from the simulations and the algorithm. The F p values344

increase with h and σp, but the effect of σp becomes weaker with an increase in its value.345

Figure 10 also shows the root cause of failure for all F p observations generated by the algorithm.346

Triangular and square markers, respectively, indicate whether F p was limited by a local crushing or347

buckling event. It is important to notice that there are more triangular markers for the data from sets348

A1, A3, and A5, which had relatively soft ice (σp = 1 MPa), than for the data from sets A2, A4,349

and A6, which had stronger ice (σp = 2 MPa). In the case of A7 (σp = 8 MPa), all F p values350

were limited by buckling. Clearly, and as already suggested by Figure 8, stronger ice tends to buckle,351

and the maximum peak loads eventually become independent of the value of σp. This explains the352

increasing, but concave downward, trend in the F p data in Figure 11b and, again, highlights the353

importance of describing the local phenomena; in other words, local crushing at the ice-ice contact354

interfaces when modeling ice-structure interaction.355
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Figure 10: Dimensionless a factors (Equation 2) for the algorithm-produced maximum peak ice load F p data sets
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Another prominent feature of Figure 10 has to do with the markers indicating different failure modes,356

or load-limiting mechanisms, which are completely mixed for data sets A1. . . A6. This suggests that357

it is virtually impossible to distinguish between the different failure modes if the only data available358

from a peak ice load event is the load value. Interestingly, this notion would even apply for a hy-359

pothetical case in which all of the ice parameters were known. Instead of the load measurements,360

the detection of the failure mechanisms requires high-quality visual observations or other means to361

achieve detailed data on ice behavior. Unfortunately, ice failure can occur inside a mass of broken362

ice or under the snow cover in many real-world applications, which makes it extremely challenging363

to make direct observations related to the failure mechanisms. However, through careful analysis, ice364

load records may work as a source for detecting traces of them.365

4.3. Validation of the numerical limit load algorithm366

The previous section showed that the numerical limit load algorithm reproduces the peak ice load367

values, and the related parameter effects, in FEM-DEM simulations with good accuracy. Additionally,368

it is interesting to compare the algorithm-predicted peak ice load values to those measured in full-369

scale. Perhaps the best available data set for full-scale ice loads on a wide offshore structure, the370

Molikpaq caisson drilling platform, was that reported in Timco and Johnston [25]. According to371

them, the data originates from the observations made by Gulf Canada Resources, Esso Resources372

Canada, and Dome Petroleum (Canmar). Timco and Johnston [25] present distribution values for373

average ice pressure acting on the structure in cases of different ice failure modes based on the data.374

Furthermore, by using the means from the measured peak ice load distributions, they derived two375
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Figure 11: Maximum peak ice load F p values from the FEM-DEM simulations (data sets S1. . . S7) and from the proba-
bilistic limit load algorithm (A1. . . A7): F p values plotted as a function of (a) the ice thickness h and (b) the plastic limit
σp. Each parameter level has two adjacent sets of observations. Observations from the simulations and observations from
the algorithm have a small offset for clarity. Error bars describe the mean value±one standard deviation of each underlying
data set, with dashed lines connecting the mean values of the FEM-DEM data.

failure mode-dependent equations for the ice loads. They thus concluded that the highest ice loads376

were related to mixed-mode failure (in their case, a combination of local crushing, flexural failure and377

splitting), and to continuous ice crushing. The lowest loads came from the bending failure of ice.378

Figures 12a and b compare the full-scale data from Timco and Johnston [25] with the data produced379

using the numerical limit load algorithm. Figure 12a shows 1000 algorithm-based peak ice load380

observations, produced by varying the ice thickness h and the plastic limit σp, with h ranging from381

0.25 m to 1.5 m and σp from 1 MPa to 2 MPa (the physical maximum, or the ultimate line load in a382

hypothetical case of ice crushing through its whole thickness, would have been F p
lim = 2 h [MN/m],383

where h is in meters). For each observation, we randomly picked unique h and σp values from a384

continuous uniform distribution. Figures 12b shows the normal cumulative probability distributions385

of the peak load observations produced by our algorithm and compares them to the full-scale peak386

load values. The parameters for plotting the three distributions for the full-scale data are given in387

Timco and Johnston [25].388

The comparison presented in Figures 12a and b is clearly successful. Figure 12a shows that the389

algorithm-produced F p observations, with only a few exceptions, fall between the continuous lines390

describing the load limits related to full-scale bending and crushing events and are, thus, within the391

expected range. All individual observations from the algorithm are considerably smaller than the392

physical limit F p
lim shown by the dashed line. Further, the cumulative probability distributions for393

our data and for the data for mixed-mode failure presented in Timco and Johnston [25] are strikingly394

similar, as Figure 12b shows. We note that the algorithm-produced data in the figures here was395

generated using n = 4 contact interfaces and a thorough study on the effect of n is needed in the396

future.397
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Figure 12: Comparison of numerical limit load algorithm and full-scale data: (a) 1000 algorithm-produced peak load
observations (blue and red markers) and graphs for the loads from predictive equations for bending and crushing forces in
full-scale [25] and (b) cumulative probabilities for the average pressure F p/h. The physical limit F p

lim for the loads (dashed
line) is additionally shown in (a). The graph in (b) also shows cumulative probabilities for full-scale average pressures
from bending, mixed-mode (in [25] local crushing, flexural failure, and splitting), and crushing events. Constants for the
algorithm were em = 0.8 and n = 4.

4.4. Remarks on the limit load model and algorithm398

The probabilistic limit load model and the related numerical limit load algorithm give new insights399

into the mechanics of ice loads. They can be applied to cases where the ice-structure interaction400

process exhibits a mixed-mode failure process, including force chain buckling and local ice crushing.401

This is not true for scenarios where ice does not transmit loads through force chains. Such scenarios402

could involve interaction processes with very warm ice or with soft model-scale ice in laboratory-scale403

experiments (given that the buckling occurs in a full-scale interaction process, this type of experiment404

would not then exhibit all significant features of a full-scale process). The assumption of 2D ice405

loading scenario limits the applicability of the model, and future work is required to extend it to a 3D406

scenario. The ice in a 2D scenario does not clear around the structure, but keeps on piling up (and407

down) in front of the structure. The results should anyhow, with fair accuracy, apply to wide structures408

in deep waters. We acknowledge, that even for this case, more measurements on the effect of non-409

simultaneous failure on global and local ice loads would be useful to fully justify the applicability of410

our model.411

Future parametric studies using the limit load model are required. It is challenging to choose values412

for ice loading process-dependent parameters, the maximum contact offset and the number of contact413

interfaces, em and n, respectively. It is clear that em must not have a value very close to one, as then our414

model would yield very low peak load predictions (it is not of engineering interest to study ice loading415

processes yielding very low peak ice load values). Related to this, choosing the distribution for e416

should be also addressed. For example, a uniform distribution would lead to lower peak loads than417

the triangular one as the expected value of e would increase. On the other hand, n will attain several418

different values during any realistic ice-structure interaction process, whereas it is on the level of the419

whole process that the model is intended to work. Picking a unique value for n is thus impossible,420
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even if its maximum value must be limited due to the highly compressed force-chains having finite421

lengths, which may depend on, for example, the amount of rubble in front of the structure. It is worth422

noting, however, that the model yields important findings independent of em and n, since for example,423

the lower limit needed for the crushing strength of ice of a given ice thickness to exhibit a mixed-424

mode failure process does not depend on them (Figure 8). We also note that we did not yet do any425

parameter optimization, but still obtained reasonable results using our model and algorithm.426

The limit load model and the numerical limit load algorithm are both rather simple tools for the427

analysis of peak ice load events, and they show the potential for predicting maximum peak ice load428

values on wide, inclined structures. We are unaware of any other approaches that have such a solid429

basis in the mechanics of ice behavior, while simultaneously accounting for the statistics of the loads.430

This is the strength of the algorithm: Its mechanical basis may allow for more reliable analysis and431

load predictions than empirical ice load models or simple analytical calculation models [22, 66],432

which do not account for the effects of the complex failure process. The predictive power of the433

model was demonstrated by our successful comparison of the algorithm-produced and full-scale data.434

This comparison gives confidence to the ice load analysis based on the limit load model and to the435

predictive power of the algorithm.436

5. Conclusions437

This paper introduced a probabilistic limit load model for the analysis of peak ice load events on an438

inclined offshore structure during an ice-structure interaction process. The model is based on simple439

mechanical principles and it accounts for a mixed-mode ice failure process that includes ice buckling440

and local crushing. The paper also presented a numerical limit load algorithm, which is an extension441

of the probabilistic limit load model and can be used to generate a very large number of stochastic442

peak ice load observations. Some of the most important findings presented above are as follows:443

• The probabilistic limit load model and algorithm explain the effect of ice thickness and crushing444

strength of ice on peak ice loads in FEM-DEM simulations (Section 4.2). They also produce445

peak ice load values that compare well with the full-scale data (Section 4.3).446

• Local ice crushing at ice-block-to-ice-block contact interfaces is an important factor affecting447

the maximum peak ice load events in an ice-structure interaction process (Section 3.2). This448

highlights the importance of accounting for local crushing in the modeling.449

• Algorithm-produced peak load data sets (Figure 10) are collections of overlapping load obser-450

vations related to both buckling and local crushing. It may, thus, be impossible to detect the451

root cause of ice failure without observations focusing on this in a real-world experiment.452

Analyzing the peak ice load events in an ice-structure interaction process is challenging due to the453

complex ice failure process. We believe the probabilistic limit load model and algorithm have the454

potential to offer new insights for this type of analysis, which in turn will lead to improved and safer455

design of offshore structures.456
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Appendix A: Buckling model465

Figure 13 shows the buckling model extended in this paper in its unloaded and loaded states. The466

model considers a rigid system consisting of an ice floe, or a few ice floes compressed together,467

having total length L f resting on an elastic foundation having a modulus of k and discrete springs468

having spring constants K1 and K2. The modulus k of the elastic foundation was k = ρwg, where ρw469

is the mass density of the water and g is the gravitational acceleration. The axial compressive load470

P results from an interaction with an adjacent ice floe or from an interaction with an ice rubble pile.471

The critical buckling load of the system is [6]472

Pcr =
k2L3

f + 4k(K1 + K2)L2
f + 12K1K2L f

12(kL f + K1 + K2)
(13)473

Spring constants K1 = C1kLc − C2P/Lc and K2 = C3kLc − C4P/Lc, where Lc =
4√4EI/k is the474

characteristic length [67], account for different boundary conditions depending on the choice of values475

for positive constants C1 . . .C4. By plugging these spring constants into Equation 13, and further by476

substitutions L f = χLc and P = Pcr, the critical load may be written concisely as477

Pcr = a
√

kEI, (14)478

where a = a(C1,C2,C3,C4, χ) is a dimensionless buckling load factor and χ is a dimensionless buck-479

ling length factor. Equation 14 is valid, irrespective of the choice of values for C1 . . .C4, and Table480

3 demonstrates four different buckling modes associated with different combinations of them. These481

buckling modes were presented in Ranta et al. [6]. In modes 1 and 2, the system of length L f buck-482

les alone, whereas in modes 3 and 4 the system of length L f is affected on the left-hand side by an483

intact semi-infinite ice sheet. Buckling in the ice load models by Coon [10] and McKenna et al. [11]484

occurred in mode 1. Mode 2 was used by Carter [12] to describe level ice failure against a vertical485

structure. The applicability of different buckling modes in the analysis of peak ice loads on inclined486

structures was discussed in detail by Ranta [6].487

21



Ice floe(s)

Figure 13: The buckling model in its initial (left) and buckled (right) states. The model consists of an ice floe or several
ice floes having total length L f resting on an elastic foundation with modulus k presenting water. Springs with spring
constants K1 and K2 modeled the boundary conditions for the buckling modes shown in Table 3. Compressive force P is
due to the other floes or the structure.

Table 3: Four buckling modes considered in our study, together with the corresponding spring constants K1 and K2
(Figure 13). The buckling load is P = a

√
kEI, where a = a(χ) is a dimensionless multiplier that has a mode-dependent

expression. Factor χ gives the buckling length L f as described in the text.
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[19] Kärnä, T., Jochmann, P. Field observations on ice failure modes. In: Proceedings of the 17th529

International Conference on Port and Ocean Engineering under Arctic Conditions, POAC’03.530

Trondheim, Norway; 2003.531

[20] Hendrikse, H., Metrikine, A. Ice-induced vibrations and ice buckling. Cold Regions Science532

and Technology 2016;131:129–141.533

[21] Croasdale, K. Ice forces on fixed, rigid structures. Special Report 80–26; Cold Regions Re-534

search and Engineering Laboratory; 1980.535

[22] Croasdale, K., Cammaert, A., Metge, M. A method for the calculation of sheet ice loads536

on sloping structures. In: Proceedings of the 12th International Symposium on Ice IAHR.537

Trondheim, Norway; 1994, p. 874–885.538
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