A!

Aalto University
School of Science

Overview of the post-hoc framework

brain data behavioral data

Take your favorite linear machine learning model
(OLS, logistic regression, ISVM, ...) and fit it to the
data. This yields the initial weight matrix W.
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9 Decompose the weight matrix

A weight matrix is ditficult to interpret. Hence, we use
the "Hautfe trick" [1] to decompose it into three
components that are easier to work with.
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e Modify the components at will

output, Y

Freely modity the components to inject domain
information. See the example to the right for some
ideas.

IThe ~ means "modified"I I
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e Reassemble the weight matrix

We perform the "inverse Haufe trick" to reassemble
the components back into a weight matrix. This yields
a new linear model that incorporates the changes we
made to the components.
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Post-hoc modification of linear models

Combining machine learning with domain information to make solid inferences from noisy data

| covariance of model
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® EEG was recorded from 22 participants, reading
200 sequentially presented word-pairs (BEAR-HONEY)

® Each word-pair has a forward association strength (FAS),
which is a measure of relatedness, derived from a huge
norm study [2].

® Decoding task: infer FAS from the EEG cue for participant to press button:

J oo "are the two words related?"
® Evaluation metric: correlation between leave-one-out T
D0 ms
model output and ground-truth FAS
W__associatively related

® We started with a ridge regression model [3], then injected in varying degree

domain information using the post-hoc framework.

Meet the three components!

Instead of thinking about a linear model in terms of the
weight matrix, we invite you to think about it in terms of
three matrices:

P: the pattern matrix
Models the signal part of the data

Initial pattern for each participant (N=22)

the covariance, the pattern and the normalizer.

The three components each model a different aspect
of the data.

2.x : the data covariance matrix
Models the relationship between the inputs
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in our example, a single number
0 indicating the scaling of the output

Modifying the data covariance

idea: "Kronecker shrinkage"

Modifying the normalizer

idea: apply "weight normalization" idea from
LCMV beamformers

When we modity the covariance and/or the pattern,
the scaling of the output of the model will change.
The normalizer can be used to impose a standardized
scaling. For example, by setting the normalizer to the
following:

Looking at the figure above, the full covariance matrix can
be approximated using the Kronecker product between
the spatial and temporal covariance matrices:
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we ensure that the pattern always passes through our
model with unit gain.

This is because our data is spatio-temporal in nature. We
can leverage this domain information when applying
shrinkage (a common way of regularizing the model) by
applying shrinkage to each component separately.

Modifying the pattern matrix

Informing the model of the n400 ERP component

The pattern matrix offers an intuitive way to inform the model about the signal of interest.
In our example study on semantic priming, we bias our model to home in on the N400 potential [4].

. . . . Optimized pattern for each participant
idea 1: restrict pattern In time

We multiply the pattern with a Gaussian kernel to
emphasize the region around 400 ms. after stimulus
onset. Width of the kernel becomes a hyperparameter.
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idea 2: bias the pattern towards the grand average
P=pP+(1-p)P
grand-average pattern how much to bias

towards the average
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