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An assessment of filters for classic oversampled audio waveshaping schemes is carried
out in this paper, pursuing aliasing reduction. For this purpose, the quality measure of the A-
weighted noise-to-mask ratio is computed for test tones covering the frequency range from 27.5
Hz to 4.186 kHz, sampled at 44.1 kHz, and processed at eight-times oversampling. All filters
are designed to have their passband contained within a =1 dB range and to display a minimum
stopband attenuation value of 40 dB. Waveshaping of sinusoids via hard clipping is investigated:
the spectral enrichment due to the discontinuities introduced by its nonlinear transfer function
maximizes aliasing distortion. The obtained results suggest that linear interpolation equalized
with a high shelving filter is a sufficiently good method for upsampling. Concerning decimation,
the interpolated FIR, elliptic, and cascaded integrator-comb filters all improve the results with
respect to the trivial case. Regarding performance, the cascaded integrator-comb filter is the
only tested decimation filter that achieves perceptually sufficient aliasing suppression for the
entire frequency range when combined with the linear interpolator.

0 INTRODUCTION

Waveshaping is a classic nonlinear signal processing
technique for audio synthesis and effects application [1-5].
Nonlinear processing enriches the spectrum of a signal by
introducing harmonic distortion, a fact that can be problem-
atic in digital audio. Waveshaping is generally performed
after discretization, thus causing aliasing distortion when
the new harmonics exceed the Nyquist limit, reflecting into
the baseband spectrum. In audio signals, this produces un-
pleasant disturbances mainly due to the inharmonious re-
lation of the mirrored spectrum with the original baseband
content [6, 7].

Oversampling is, in principle, a straightforward approach
for mitigating aliasing distortion [8, 9]. It is traditionally
employed in the process of continuous- to discrete-time
conversion, where raising the sampling frequency allows
using a lower cutoff frequency in the anti-aliasing filter,
as it expands the Nyquist interval and distances the spec-
trum replicas farther away from each other [10]. When
dealing with nonlinear processing, oversampling reduces
the amount of spectral content being reflected (the higher
the oversampling factor, the lower the amount of spectral
content being mirrored) and allows to low-pass filter the re-
maining high-frequency components. Its major drawback
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comes in the form of an increase of the computational load
of the digital signal processing [11], which is directly pro-
portional to the oversampling factor and the order of the
low-pass filters used for interpolation and decimation. This
aspect limits its applicability in computation-sensitive sce-
narios, such as in real-time processing [12].

Extensive research has been carried out aimed at mitigat-
ing the aliasing caused during the discrete-time synthesis of
classic waveforms like those used in analog subtractive syn-
thesis [6, 7, 13, 14]. For the case of nonlinear waveshaping,
recent research has proposed the use of bandlimited correc-
tion functions [15, 16] and the antiderivative antialiasing
method [5, 17]. These techniques outperform oversampling
for waveshaping in terms of efficiency.

The interest in oversampling relies on the ease of its
implementation and widespread recognition as a standard
or baseline method [18, 19]. Additionally, oversampling
is a flexible technique that can be used in connection
with any nonlinear system, as it does not require knowl-
edge of the antiderivative of the nonlinear shaping func-
tion or the location of signal samples affected by the non-
linear mapping, which are some of the requisites for the
new antialiasing methods [5, 15-17]. The classic architec-
ture of aliasing reduction for waveshaping is discussed in
[18-22].
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The theory behind the sampling of bandlimited signals
and the generalized sampling theorems have been well un-
derstood for years [23]. Along these lines, Vaidyanathan
describes the approaches and filter design methods related
to multirate signal processing [10]. Nonetheless, to the au-
thors” knowledge, no previous research has been carried out
with the objective of evaluating filter types in oversampling
schemes and finding the most suited ones for audio appli-
cations. Therefore, this work searches for the most suitable
filter classes for aliasing reduction in oversampled static au-
dio waveshaping. Both finite impulse response (FIR) and
infinite impulse response (IIR) filters are studied.

This paper is organized as follows. Sec. 1 describes the
formulation of waveshaping. Sec. 2 presents the studied
filters, together with their design parameters. Sec. 3 tackles
the evaluation and assessment methodology and gathers the
obtained results. Finally, Sec. 4 concludes this paper.

1 FUNDAMENTALS OF OVERSAMPLED
WAVESHAPING

The transformation waveshaping causes to the waveform
of a signal can be mathematically expressed as

y[nl=wx[n])), (1)

where w() is a nonlinear waveshaping function that trans-
forms the discrete-time input signal x[n] to the discrete-time
output signal y[n] and n is the sample index. This function
can be approximated through a polynomial power series:

N—1
— k_ 2 N-1
w(x)= wrXx" =wo + wix + wrx" 4+ -+ wy_1X ,

k=0

2

where the coefficients with k > 1 are responsible for the
nonlinear distortion, expanding the spectrum. In fact, for
a trivial sinusoidal input, the exponent of the polynomial
accounts for the multiplying factor of the expanded har-
monics (being double the value for the squared-term, thrice
the value for the third-order term, etc.).

When exceeding the Nyquist limit fy, which is half of
the sampling frequency f;, the introduced harmonic compo-
nents reflect, invading the original content in the passband.
This scenario is illustrated in Fig. 1, where X(f) is the spec-
trum of the distorted signal before sampling and X( f)is
the spectrum after sampling, displaying aliasing.

Oversampling is traditionally used to improve this sce-
nario. Fig. 2 shows the block-diagram structure of a wave-
shaping function implemented using oversampling. The
nonlinear function f{) is preceded by interpolation, effec-
tively upsampling the input sequence by a factor of M,
and low-pass filtering it to block components above the
original Nyquist limit f;/2, where f; is the sampling fre-
quency before oversampling. Decimation is featured at the
end stage so as to return to the original sampling frequency
(M-rate downsampling), where a low-pass filter is placed
before it, again suppressing spectral components above f,/2.
The focus of this work is to search for the best filters to be
used with this architecture.
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X(f)
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0 N N
(a) (b)

Fig. 1. Aliasing understood as mirroring alongside the Nyquist
limit (fy): (a) the generation of harmonics in the spectrum of a
signal that exceed the Nyquist limit (dashed line) leads to (b) their
reflection around the Nyquist limit, when sampled.

Interpolationi Decimation |
2 ) = M & n £ (@) 0 2 WMy ]

,,,,,,,,,,,,,,,,,,,

Fig. 2. Discrete-time waveshaping system with oversampling by
factor M. Figure adapted from [20-22].

2 CANDIDATE FILTERS

In what follows, the filter classes subjected to testing are
presented, as well as the optimization criteria that lead to
their characteristic parameters. Additionally, the justifica-
tion of the filters’ choice and their final design values are
gathered in this section.

2.1 Design Criteria

The base sampling frequency used in this study is f; =
44.1 kHz and an oversampling factor of M = 8 is tested,
given that it is generally sufficient for distortion-based audio
processing [24]. All filters are designed according to the
following criteria:

e The ripple of the cascaded interpolation and deci-
mation filter responses is bounded by 41 dB in the
passband, which has been selected to range from
0 Hz to 16 kHz. This is achieved by ensuring that
the ripple in the individual passband of each inter-
polation and decimation filter is contained within a
magnitude range of +0.5 dB.

e The stopband attenuation of the cascaded interpola-
tion and decimation filters has a minimum value of
40 dB. The stopband begins at 28.1 kHz, which is the
frequency that aliases to 16 kHz in the downsampling
phase (as the Nyquist limit is f;/2 = 22.05 kHz).

The choice of the passband’s upper limit is based on
the fact that the sensitivity of human hearing diminishes
steeply at frequencies higher than 16 kHz [25]. Thus, it is
assumed that the tolerance in the filter responses can be
relaxed above that frequency.

2.2 Interpolation Filters

An elementary filter used in digital-to-analog converters
is the zero-order hold (ZOH) [8], which gets its name from
the action of maintaining (holding) a sample value for a
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given time interval. It causes one of the simplest low-pass
filtering actions in the spectrum, as its impulse response
is defined as a discrete-time rectangular pulse of width M
samples.

A first-order high-frequency shelving filter, which is a
common equalization filter [26], can be used when neces-
sary to flatten the passband, as dictated by the first design
criterion. Its transfer function, derived in [26], can be writ-
ten as

b0+b11_1

Hys (Z) = W’ (3)
with the coefficients defined as

Le G

by = % 4)

x/_tan (—)

G L) -G

bl:«/_tan(z) ’ )
VG tan (%) +1
VG tan (2) — 1

a; = ¢, (6)
VG tan (%) +1

where G is the filter’s linear gain, +/G is the linear midpoint
gain (which corresponds to the geometric mean of the gains
at extreme frequencies), and w, = 27f./f; is the crossover
frequency.

Together with a scaling factor g of value 1.059, the shelv-
ing filter is used with gain G = 1.242 and crossover fre-
quency f. = 16 kHz to accommodate the passband of the
ZOH in the magnitude range of £0.5 dB at frequencies
below 16 kHz. The value of gain G is found using binary
search. The high-frequency shelving filter coefficients are
derivedas by =1.071,b; =0.345,and a; =0.416. The mag-
nitude responses of the ZOH interpolator without and with
the shelving filter being applied are presented in Fig. 3. Note
that when the upsampling factor is M = 8, the nominal pass-
band gain of the interpolator must be 8.0 (i.e., 18.06 dB) in
order for the signal power to be restored after interpolation.

Oversampling schemes with the ZOH perform poorly,
as can be seen in Sec. 3. Hence, the linear interpolator
[8, 9] is considered next, which obtains its name from its
action at the interpolation stage, resulting in the introduction
of values that would lie in a line fitted between consecu-
tive non-zero samples. Its impulse response is defined as a
discrete-time triangular pulse of width 2M — 1 samples:

l—m, if |n| <M
M .

0, otherwise

hin] = (N

Compared to more complex systems, such as cubic or
higher order interpolators, the linear interpolator offers a
compromise between design and complexity: its easy im-
plementation comes at the expense of distortion in the
passband and modest attenuation of the wide sidelobes lo-
cated in the stopband. Despite its constraints, oversampling
schemes yield good results with it (cf., Sec. 3). Given its
performance, simplicity, and low cost of implementation,
more complex systems are not considered.

442

ENGINEERING REPORTS

Magnitude (dB)

40 60 8 100 120 140 160

0 20
Frequency (kHz)
(a)

Magnitude (dB)

120 140 160
Frequency (kHz)
(b)

0 20 40 60 80 100

Fig. 3. Magnitude response of the (a) non-processed and (b) equal-
ized ZOH interpolator for the oversampling factor M = 8, includ-
ing the interpolator gain of 18 dB.

A high shelving filter with gain G = 1.941, crossover
frequency f, = 16 kHz, and a linear gain term g = 1.059 is
used to equalize the linear interpolation filter to bound the
passband in the magnitude range of £0.5 dB at frequencies
below 16 kHz. The filter coefficients are thus by = 1.234,
by = 0.270, and a; = 0.504. The magnitude responses of
the linear interpolator without and with the shelving filter
being applied are shown in Fig. 4.
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Fig. 4. Magnitude response of the (a) non-processed and (b) equal-
ized linear interpolator (M = 8), cf., Fig. 3.
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2.3 Decimation Filters

The choice of decimation filters is carried out by selecting
those with a promising computational efficiency. They are
classified according to the nature of their impulse response
as FIR and IIR filters.

2.3.1 FIR Filters for Decimation

Standard FIR filters are known to be rather inefficient
for implementing narrow low-pass filters. For this reason,
they are not considered in this work. As an alternative,
the Interpolated FIR (IFIR) filter [10, 27] is one of the
candidate methods studied in this work. It is achieved by
cascading an interpolated stretched periodic filter with an
image-suppressor, eventually leading to an efficient approx-
imation of a desired narrowband low-pass filter: stretching
the cut-off frequency of the desired response relaxes the
design specifications.

The IFIR filter is designed with an interpolation factor
¢ = 4, band edge frequencies Af = [16, 28.1] kHz, maxi-
mum ripple AR = [— 19.47, —30] dB, and a scaling factor
g = 1.023 to achieve the passband tunnel of +0.5 dB and
minimum cascaded stopband attenuation of 40 dB. The or-
ders of the periodic filter and image-suppressor are N =
11 and N, = 13, respectively.

The IFIR filter can be implemented as a multistage stuc-
ture in which the image suppressor comes first and runs
at the rate of Mf; and the periodic filter gets downsampled
to reduce the number of operations. We decimate in two
stages so that downsampling by factor 4 takes place first,
which is equal to the interpolation factor of ¢ = 4 used
in the IFIR design. The periodic filter can be then imple-
mented as a polyphase structure: every second output is
computed while for every second input sample, the multi-
plications and additions are not executed, being the samples
only run along the delay line. This polyphase process effec-
tively undertakes the decimation by two without any extra
operations. Thus, only the image suppressor of the IFIR
filter runs at the sample rate Mf;; the periodic filter runs,
in practice, at f;, which leads to significant computational
savings.

Both subfilters of the IFIR structure are linear-phase FIR
filters, i.e., their coefficient arrays are symmetric with re-
spect to the center point. This property can also be used for
saving more resources by first adding any two delayed input
samples that are multiplied by the same coefficient value
and then multiplying this sum only once. By applying this,
the number of multiplications gets reduced by 50% when
there is an even number of coefficients, or nearly 50% when
the number of coefficients is odd and the center coefficient
does not have an equal pair. Nevertheless, the exploitation
of the symmetry does not affect the number of additions in
the IFIR filter implementation.

2.3.2 Elliptic lIR Decimation Filter

The linear-phase property of digital filters is usually not
required in audio processing [26]. In fact, linear-phase fil-
ters are sometimes even considered harmful as their sym-
metric impulse response can produce pre-ringing and an
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unnecessary delay [26, 28, 29]. Therefore, minimum-phase
IIR filters can be considered for oversampled waveshaping.

The first IIR filter to be studied is the elliptic filter [8, 9],
also known as the Cauer or Zolotarev filter, whose deriva-
tion is carried out by means of polynomial approximation
design, using the elliptic (Cauer) approximation. It offers
a quick rejection with the lowest possible polynomial or-
der at the cost of introducing spectral ripple throughout the
magnitude spectrum.

For the elliptic IIR filter, the cutoff frequency f. is se-
lected to be 16 kHz. The passband peak-to-peak ripple
R, and stopband attenuation R, are chosen to be 1 dB and
28 dB, respectively, and a scaling factor g = 1.059 is used so
as to both accommodate the passband to the £0.5 dB mag-
nitude range and achieve the minimum cascaded stopband
attenuation of 40 dB. These requirements can be fulfilled
with an elliptic IIR filter of order N = 3, which has four
parameters in both the numerator and the denominator of
its transfer function.

2.3.3 CIC IIR Decimation Filter

The Cascaded Integrator-Comb (CIC) filter [30, 31] is
chosen next, which was originally proposed in [30] as an ef-
ficient class of narrowband low-pass filters. Its architecture
consists of a cascaded set of integrators and comb filters,
where the number of integrator and comb sections deter-
mines the order of the filter. Moreover, the arrangement of
the stages regulates the action of the filter: integrator-comb
for decimation, and vice-versa for interpolation. Theoret-
ically, the avoidance of multipliers enables for economic
implementations; nonetheless, in practical scenarios (e.g.,
for stable real-time implementations), two multipliers are
placed at the integrator and comb stages, respectively (leaky
CIC filter), whose values approach 1 (and are equal to 1 —
€, where ¢ has a value close to 0) [13].

The integrator section functions at the oversampled rate
Mf,, where each of the N integrators is implemented as a
one-pole filter with the z-domain transfer function

1
1—(1—e)z !

On the other hand, the comb section’s transfer function
can be described as

Hcomb (2)=1- ((1 — S)MDZ_MD) s )

where each of the N comb filters introduces a differential
delay of MD samples. The total response of the CIC filter
is achieved by cascading the integrator and comb sections’
responses:

H@) = HY @ HY (@) (10)

Hint (2) = ®)

_ (1—(a- S)MDZ’MD))N' an
(1—(1—gz )"

When decimating, the comb filter presented in Eq. (9) can
be placed after downsampling so that it runs at the reduced
sampling rate of f;. This diminishes the computational cost
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Hys (2) >y ]

Integrator

Comb

Fig. 5. Architecture of the decimation block when considering the CIC filter, which consists of a leaky CIC decimation filter cascaded
with a first-order high shelving filter: X [n] is the signal that enters the decimation filter (after having been interpolated and waveshaped)

and y[n] is the resulting output. Figure based on [22, 26, 30, 31].

significantly, as only half of the CIC structure must run at
the oversampled rate of Mf.

The overall frequency response displays a low-pass filter
behavior with nulls at integer multiples of the inverse of
the sampling frequency f;/D, where the differential delay
D controls the position of the narrow rejection bands (nor-
mally taking values of D = 1 or D = 2). The null areas
land at aliasing bands, and as imaging takes place around
them, high mirroring rejection is obtained. In this work,
the differential delay of the CIC filter is set to D = 1 so
that the narrow rejection bands land at exact multiples of
the sampling frequency, and the multiplier subtrahend ¢ is
set to 2713, the smallest number available in 16-bit signed
integer format.

The CIC filter is related to discrete B-splines as they are
based on the same principle of convolving a basis func-
tion by itself [32]. When used for interpolation, discrete
B-splines require, in theory, a recursive anticausal pre-
filter to flatten their magnitude response [33]. However,
in this work, a first-order high shelving filter is used to
flatten the passband of the CIC filter as it suffices to fulfill
the passband constraint. The crossover frequency is set to
J. = 16 kHz, the linear gain value G = 12.710 is selected,
and the scaling factor is chosen to be g = 3.861 x 1079,

both accommodating the passband to the 0.5 dB magni-
tude range and achieving the minimum cascaded stopband
attenuation of 40 dB. The obtained filter coefficients are
by =0.892 x 107, by = —0.216 x 107>, and a; = 0.651.
The decimation architecture using leaky CIC filters and the
shelving filter is shown in Fig. 5.

2.4 Final Compound Structure

The decimation filter orders and operation counts can
be seen in Table 1, where the first-order shelving filtering
that the CIC filter undergoes is already taken into account.
Based on the general oversampling structure presented in
Fig. 2, the pursued overall architecture can be seen in Fig. 6.
The decimation filter comprises either the IFIR filter, the
elliptic filter, or the CIC filter equalized with a high shelving
filter. The last case is further detailed in Fig. 5.

When multiplying the interpolators’ and decimators’ re-
sponses, conceptualizing the waveshaping arrangement as
a linear cascading, the passband tunnel gets restricted to
a range of £1 dB. Fig. 7 shows the combined magnitude
responses obtained when cascading the linear interpolator
with each of the decimation filters. In all cases, the attenu-
ation at frequencies above 28 kHz is at least 40 dB, and it

Table 1 Number of operations of the tested filters, where ADD and MUL stand for the number of additions and multiplications,
respectively, M is the oversampling factor, N represents the filter order of the elliptic and CIC filters, N, is the filter order of the IFIR
periodic filter, and N, is the filter order of the IFIR image suppressor.

Filter type ADD MUL Ops (sum) Total load
IFIR Ny +MN, [+ M[2[+M+1 N +MNo+ [+ M [2|+M+1  177(M =8 N, =11,N, = 13)
Elliptic 2MN M@2N + 1) M@N + 1) 104 (M = 8, N = 3)
CIC MN+N+2 MN + N +3 2MN + 2N + 5 113 (M =8,N=06)
3 Interpolation 3 3 Decimation 3
2] fs, High fé; Ny ]Wf: Linear EJWfS Non- M’f'si . | Decimation Alf: M 3 Js no
- '~ | Shelving o " | Interpolator 3 | Linearity 37 Filter . 3 yin

Fig. 6. Oversampling scheme for waveshaping. The decimation block consists of either a single FIR or IIR filter followed by downsam-
pling, or a CIC filter cascaded with a high shelving filter with downsampling taking place between the integrator and comb stages. For
the latter case, the resulting decimation configuration is specified in more detail in Fig. 5.
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Fig. 7. Cascaded magnitude responses of the linear interpolator
with the (a) IFIR, (b) elliptic, and (c) CIC decimation filters for
the oversampling factor M = 8. The corner of the stopband at
28.1 kHz and at —40 dB is indicated with a cross (+).

is seen that at high frequencies, it is generally much better
than that. Fig. 8 further zooms into their passbands, where
the £1-dB restriction can be appreciated.

3 PERFORMANCE COMPARISON

In order to assess the aliasing suppression achieved with
oversampling using different filters, synthesized sinusoids
covering the full range of fundamental frequencies that a
piano can produce (ranging from 27.5 Hz to 4186 Hz [14])
are passed through a hard clipper. For this work, only satu-
rating nonlinearities are considered. Thus, the hard-clipping
nonlinear shaping function is selected due to its aggressive
spectral-enhancement action on the input signals [15, 16,
34]. The nonlinear transfer function of the hard clipper is
shown in Fig. 9, where the threshold level is set to a fairly
small value of 0.1 to further increase its spectral enriching.

Even though the signal-to-noise ratio (SNR) is a straight-
forward and well-known quality measure, it does not gen-
erally correlate with the perception of aliasing, hence caus-

J. Audio Eng. Soc., Vol. 67, No. 6, 2019 June
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Fig. 8. Passband details of Fig. 7. The +1-dB tolerances are
indicated with dashed lines.

0.2
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-0.2 -0.1 0 0.1 0.2

X

Fig. 9. Hard-clipping waveshaper transfer function with the
threshold parameter set to 0.1.

ing the need for more accurate methods [35-37]. As an
alternative, the noise-to-mask ratio (NMR) takes into ac-
count psychoacoustic masking as present in human hearing
[35]: it is defined as the energy ratio between a filtered
version of the distorted signal, containing only the aliased
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40 r— w
—+—No Oversampling (trivial case)
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Fig. 10. Performance results in terms of ANMR for audio waveshaping (hard clipping) with the ZOH and an oversampling factor of

M=238.

components (i.e., noise), and the simplified masking thresh-
old of the distorted sequence without aliasing [7, 35-37].
In order to obtain a signal containing only the aliased
spectral content, a one-second fragment of the distorted se-
quence is windowed with a Chebyshev window with 120 dB
of attenuation [14]. The magnitude and phase values at the
integer multiples of the fundamental frequency are used
to additively synthesize an ideal sequence, containing only
the desired harmonic content; the squared sum of its sample

values is equal to its energy (Parseval’s theorem):

| N
E:NZ|X [n]>. (12)

n=0

The aliased spectral content is isolated by subtracting the
harmonically synthesized ideal-spectrum signal from the
distorted signal, scaling the former so as to ensure an equal
magnitude of the first harmonic in both sequences [14].

30 — \ . ‘
—+—No Oversampling (trivial case)
20 —©-Interpolated FIR (IFIR)
——Elliptic

10 —6—Cascaded Integrator-Comb (CIC)

ANMR (dB)

Frequency (Hz)

Fig. 11.
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Performance in terms of ANMR for oversampled waveshaping (hard clipping) with linear interpolation (M = 8).
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The residual energy value is then obtained via Parseval’s
theorem.

The NMR was initially designed to flag audible distur-
bances with positive values and signal inaudibility with
negative values, but further listening tests confirmed that a
more accurate threshold for separating the regions of au-
dible and inaudible aliasing should be set at —10 dB. In
order to fine-tune the results and fit them better to human
hearing, A-weighting of the signals can take place before
computing the NMR, which leads to the A-weighted NMR
(ANMR) [7].

The ANMR outcome with hard clipping for eight-times
oversampling with the ZOH and linear interpolator is gath-
ered in Figs. 10 and 11, respectively. From the obtained
results, one can see how the linear interpolator outperforms
the ZOH given that the latter does not improve the ANMR
values with respect to the trivial case, whereas the former
does: it is seen in Fig. 10 that the ZOH prevents the over-
sampling technique from performing well. With a ZOH,
aliasing distortion starts becoming audible at fundamental
frequencies higher than 554 Hz.

Regarding decimation, all tested filters (IFIR, elliptic IIR,
and CIC) improve the results with respect to the trivial case
when combined with linear interpolation. When analyzing
performance and computational cost in decimation, the CIC
filter is the only tested filter that achieves perceptually suf-
ficient aliasing suppression for the whole frequency range
(cf., Fig. 11).

4 CONCLUSION

In this work, oversampling has been studied for audio
waveshaping via hard clipping, selected due to its vulnera-
bility to aliasing, given that it constitutes an aggressive case
of spectral-enriching nonlinear waveshaping. The classic
topologies featuring upsampling and decimation for wave-
shaping have been evaluated for the whole fundamental
frequency range of the piano (27.5 Hz to 4186 Hz) at eight-
times oversampling, studying a collection of optimized dig-
ital filters.

When interpolating, the linear interpolator combined
with a high shelving filter improves the trivial case and
provides good results, discouraging the use of more com-
plex options. In contrast, the ZOH generates unsatisfactory
ANMR values, similar to the ones obtained when apply-
ing waveshaping without oversampling, hence causing its
dismissal.

Regarding decimation, the results show that all tested
decimation filters reduce aliasing when compared to the
trivial case (when combined with equalized linear inter-
polation). In terms of performance, the CIC filter is the
best choice among the tested filter structures: it is the only
tested decimation filter that achieves perceptually sufficient
aliasing suppression for the whole frequency range of the
piano.

Oversampling by a factor of M = 8 was studied in this
work given that it ensures sufficient antialiasing, even when
tackling the most aggressive nonlinear waveshapers. With
less distorting nonlinearities, it may be perceptually accept-
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able to use a lower oversampling factor, such as M = 2 or
M = 4. In such cases, the linear interpolation filter com-
bined with a high shelf will probably remain a good choice
for upsampling; nonetheless, the order selection, parameter
tuning, and comparison of decimation filters will need to
be re-evaluated, and thus, its design is left for future work.
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