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ABSTRACT: Strain-stiffening is one of the characteristic
properties of biological hydrogels and extracellular matrices,
where the stiffness increases upon increased deformation.
Whereas strain-stiffening is ubiquitous in protein-based
materials, it has been less observed for polysaccharide and
synthetic polymer gels. Here we show that agarose, that is, a
common linear polysaccharide, forms helical fibrillar bundles
upon cooling from aqueous solution. The hydrogels with these
semiflexible fibrils show pronounced strain-stiffening. However,
to reveal strain-stiffening, suppressing wall slippage turned as
untrivial. Upon exploring different sample preparation techni-
ques and rheological architectures, the cross-hatched parallel
plate geometries and in situ gelation in the rheometer
successfully prevented the slippage and resolved the strain-stiffening behavior. Combining with microscopy, we conclude
that strain-stiffening is due to the semiflexible nature of the agarose fibrils and their geometrical connectivity, which is below the
central-force isostatic critical connectivity. The biocompatibility and the observed strain-stiffening suggest the potential of
agarose hydrogels in biomedical applications.

Hydrogels derived from biopolymers typically exhibit
strain-stiffening, manifested as a sudden increase of the

storage modulus under strain or stress.1 It is characteristically
observed for hydrogels derived from biological tissues, such as
collagen, neurofilaments, fibrin, and actin.1 Strain-stiffening is
expected to be essential for the cell differentiation as well as for
the integrity of tissues and the adaptation of extracellular
matrices under mechanical deformation.1−3 The nonlinear
elasticity originates from the physical and chemical interactions
of the fibrillar networks. Recently it has also been observed that
gels derived from certain polysaccharides like alginate,4

methylcellulose,5,6 and pectin7,8 or even synthetic gels,9−11

can display strain-stiffening. Understanding and reliable
characterization of strain-stiffening is relevant for many aspects
of epithelial biology, stem cell culture, and tissue engineering
applications.2

The strain-stiffening of a semiflexible fibrillar network
depends on the interplay of the persistence length lp, the
contour length Lc, and the topology of the connectivity (Figure
1A). The persistence length signifies the length where the
thermal energy kBT suffices to suppress the directional
correlations of the fibril lp = κ/kBT, where κ is the bending

modulus. In semiflexible fibrils, the persistence length is
comparable to the contour length lp ≈ Lc. Therefore, the
bending rigidity prevents the entropic tendency of fibril to
create loops or random coils, yet allowing some flexibility.
The wormlike chain model describes semiflexible fibrils,

having finite bending stiffness. At small length scales (<lp),
their bending can be described by homogeneous rods in
classical beam theory.12,13 A topological explanation of strain-
stiffening is then the low connectivity of a network (Figure
1A).14 Therein, the so-called central-force isostatic point
(CFIP)15−17 describes the critical connectivity as zCFIP = 2d (d
= dimensionality). Accordingly, if the average number of fibrils
connecting in a node is above zCFIP, the network is stiff, and
below this threshold the network is floppy. For rigid and
semiflexible polymer networks, below the zCFIP, the main
deformation mechanism is bending, whereas above this
threshold it is stretching.18 Moreover, a network consisting
of purely linear springs19 can show strain-stiffening if the
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connectivity is below the CFIP (<6 in 3D). The fibrils might
align upon shearing, which further increases the stiffness.20−22

Agarose23 is a linear polysaccharide extracted from seaweed.
It is one of the main components of agar, a mixture of agarose
and agaropectin. It consists of alternating D-galactose and 3,6-
anhydro-L-galactopyranose units linked by α-(1 → 3) and β-(1
→ 4) glycosidic bonds (Figure 1D). Agarose forms gels when
dispersed in water or mixtures of water and selected
cosolvents.24 The gelation depends on the agarose concen-
tration and molecular weight. Apart from their extensive use in
the food industry, electrophoresis for biopolymer purification,
agarose gels have been studied for cell culturing and tissue
engineering due to the biocompatibility.25 At high temper-
atures, agarose forms random coils in aqueous solutions. Upon
cooling, it forms both single- and double-helices, which bundle
and assemble into fibrillar networks.26 Some studies hint that
agar gels27,28 and agarose gels29 could undergo strain-stiffening,
but direct rheological measurements have generally failed to
display this property.
Here, we describe the strain-stiffening of agarose hydrogels

using oscillatory rheology. We will describe the crucial role of
the sample preparation and rheological measurement setup to
prevent the wall slippage, which can hinder the observation of
strain-stiffening. Furthermore, combined atomic force micros-
copy (AFM), cryogenic transmission electron microscopy
(cryo-TEM), and scanning electron microscopy (SEM) reveals
the helical bundling to semiflexible fibrils and their
connectivity in the nodal points.
We selected mainly low-gelling temperature (Tgel = 25 °C)

agarose with number-average molar mass Mn ≈ 109000 g/mol,
weight-average molar mass Mw ≈ 139000 g/mol, and
polydispersity index of 1.28 (Figure S2). Hydrogels were
prepared by first dispersing the agarose powder in phosphate-
buffered saline (PBS, relevant for biological applications) to
obtain a clear solution upon heating, followed by cooling to the
room temperature. The rheological measurements were
conducted at 20 °C and 37 °C considering the prospective
biomedical applications. Data were acquired in triplicate and
reported as average unless otherwise stated.
Sample preparation and different geometries influence the

results in the nonlinear viscoelastic regime.30 Therefore, three
different geometries were used for rheology: (i) a smooth

parallel plate, (ii) cross-hatched parallel plate, and (iii) cone
and plate (smooth). We used 5.0 mg/mL aq. (PBS) agarose
gels using two different sample preparation methods, namely,
ex situ and in situ methods. For the ex situ approach,
preprepared disc-shape (molded) samples were used either
with a smooth or a cross-hatched parallel plate geometry. For
the in situ gelation, the hot sols were allowed to gel on the
rheometer and measured with a normal force control setup due
to the volume contraction of the gels during the gelling.31 The
normal force was kept as a constant (FN = 0.0 ± 0.1 N),
allowing the gap to vary according to the volume contraction
during the gelation. Besides, a cone and plate geometry was
also used for the rheological measurements of in situ gelation.
More detailed sample preparation methods and geometries are
described in the Supporting Information (Figure S1, Table
S1).
To compare the data extracted using different geometries,

the storage moduli (G′) from the strain amplitude sweeps were
normalized with the corresponding linear viscoelastic moduli
G′LVR (Figure 2A). Among all cases, strain-stiffening was
observed only with in situ samples using the cross-hatched
geometry. In situ prepared samples with a smooth parallel plate
or cone and plate geometry did not consistently show strain-
stiffening. The ex situ samples indicated strain-softening
behavior, irrespective of the geometry. In conclusion, the
geometry and sample preparation methods control the wall
slip. This is relevant, as the wall slip results in an incomplete
force transfer to the sample, leading to erroneous and
unreliable data. Wall slip can be revealed from the raw
waveform data or normalized Lissajous figures.30,32 This is not,
however, unambiguous, because yielding has a similar effect on
the stress waveform.33,34 Slippage can also be observed in the
maximum of loss modulus (G′′) upon increasing strain/stress.
At this point the stress waveform deviates from a sinusoidal
response with the two “additional peaks”.35 Our rheological
studies revealed a typical stress waveform (Figure S4B) and a
distinct strain-stiffening Lissajous figure for in situ prepared
hydrogel sample with cross-hatched geometry (Figure S4E, see
SI for a detailed analysis). Further, for in situ samples with the
cross-hatched geometry, the strain-stiffening was retained for
the gaps between 250 μm and 1.0 mm (Figure S5).

Figure 1. (A) The strain-stiffening of a network originates from the low connectivity z < 6 (in 3D) and the semiflexible nature of the fibrils with lp≈
Lc. (B) Schematic representation of gel networks. Lx (red arrow) indicates the length between connecting points, i.e., the end-to-end distance of the
fibrils in the network, and ξ (black arrow) shows the mesh size. (C) Atomic force microscopy phase image of an agarose fibrillar network showing
the helically twisted bundles. (D) Chemical structure showing the repeat units of agarose.
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After having screened the proper conditions to resolve the
strain-stiffening, agarose gels were systematically studied under
in situ conditions with the cross-hatched parallel plate
geometry. Accordingly, hydrogels with six different aq.
concentrations (1.6, 2.6, 3.6, 5.2, 7.6, and 10.2 mg/mL) at
20 °C and four different concentrations (2.6, 5.1, 7.7, 10.2 mg/
mL) at 37 °C in PBS were studied (see Figures 2B and S6−
S12). Strain-stiffening is observed as an increase of storage
modulus (G′) above a threshold strain in all concentrations
and also in the loss modulus (G′′). A further increase in the
amplitude strain results in a drop in the moduli either due to
initiation of wall-slippage or due to gel breaking or a
combination of both. Strain-stiffening was also confirmed for
agarose gels prepared in pure water (Figure S13). Also,
hydrogels derived from agaroses of different gelling temper-
ature (Tgel = 36 °C and Tgel = 8−17 °C) showed strain-
stiffening (Figure S14). Therefore, we suggest that strain-
stiffening is universal for agarose gels.
The network structures of the agarose gels were analyzed

with different microscopies (Figures 3, S7, S17, and S18).
Cryo-TEM images of the freshly prepared agarose gels revealed

long shape-persistent fibrils of a diameter of ∼10 nm (Figures
3B and S18). AFM images revealed that the agarose fibrils have
helical twisting (Figures 1B, 3C, and S17) and persistence
length, lp, of 1278 ± 449 nm estimated via Easyworm
software36 (Figure S20). The overall morphology was analyzed
using SEM images of aerogels prepared from agarose gels from
different concentrations by freezing in liquid propane followed
by lyophilization (Figures 3D, S7, and S19). The liquid
propane freezing step allows a quick cooling in comparison to
liquid nitrogen freezing due to absence of the Leidenfrost
effect.37 This reduces the tendency for fibril aggregation. The
fibril diameter (6.3−19.7 nm, see Table S3 and Figures S15−
S18) and the network structures were qualitatively similar in
this concentration range. All agarose gels appear to contain a
range of different mesh sizes 10−1000 nm (see Figures S7,
S18, and S19). Therefore, a single mesh size (pore-size) value
cannot be given. Moreover, an unambiguous characterization
of the network pore-size in agarose hydrogels using AFM or
SEM micrograph analysis is challenging due to the possible
artifacts arising from the specimen preparation. Therefore,
previously the determination of the fibril radii and pore-sizes
have been carried out using multiple complementary
techniques, including NMR spectroscopy, electrophoresis,
light scattering, and turbidity measurements.38 It has been
shown that the lateral dimension of the fibrils is independent of
the agarose concentration. On the other hand, the pore-size
depends on agarose type, concentration, and gelation kinetics,
leading to values ranging from 80 to 500 nm.38 Our results on
the fiber diameter and pore-size are consistent with the earlier
literature reports. The agarose gels contain fibril rich (dense
network) and fibril poor (sparse network) areas, which are a

Figure 2. Oscillatory rheology of the agarose gels in PBS buffer at 20
°C. (A) Strain sweeps with normalized G′ for different sample
preparation methods and geometries showing strain-stiffening only
using an in situ sample preparation method with a cross-hatched
parallel plate geometry, leading to reduced wall slip. (B)
Representative strain amplitude sweeps of agarose gels using in situ
prepared cross-hatched parallel plate geometries with different
concentrations in aq. PBS showing the strain-stiffening response (G′
= black filled symbols, G′′ = orange open symbols).

Figure 3. Network structure of the agarose gels. (A) Photograph of
1.6 and 10.2 mg/mL agarose aqueous gels in water. (B) Cryo-TEM
image of 0.83 mg/mL gel. (C) AFM height image of 5.11 mg/mL gel.
The inset shows the AFM phase image of a helically twisted bundle.
(D) SEM image of 1.6 mg/mL gel. (E) Connectivity (z ≈ 3) obtained
from SEM images of different concentrations.
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result of the gelling kinetics at this concentration range.39 Yet,
Lc, lp, and ξ are at the same length scale (also seen as slightly
bent fibrils in micrographs), indicating that the network
consists of semiflexible fibrils. Connectivity z at the nodal
points for different concentrations was analyzed from SEM
images. Note that the exact values for z are challenging to
estimate from SEM as the sample preparation and drying can
affect the final network structure and as the fibrils overlap. Still,
z ≈ 3 in all concentrations, with a few exceptions, which is
definitely below the central-force isostatic point zCFIP = 6
(Figures 3E and S19).
To gain more insight, the differential modulus K = ∂σ/∂γ

(Figure 4A, inset) is calculated from the strain sweep data at 20
°C (Figure 2B) and 37 °C (Figure S9D), plotted as a function
of the shear stress σ in Figure 4A, see also Figure S10A as a
function of strain. Near the zero shear stress or strain, K is
close to the zero stress storage modulus G0. As the

concentration increases, the slopes of the strain-stiffening
regions decrease; however, it is likely that the decrease of the
slope comes at least partly from the slippage, as the slippage is
hard to prevent completely, especially at high concentrations
with the current setup. Moreover, agarose gels release water
between the gel and rheometer plates with time (syneresis),23

which further promotes the slippage. Yet the curves collapse
into the same threshold point when data is normalized (Figure
S10C). Therefore, the strain-stiffening is stress controlled
following power law dependency K ∼ σ0.80.
Biopolymer networks like actin, neurofilaments, fibrin, and

synthetic polyisocyanopeptide hydrogels show universal scaling
of K ∼ σ3/2 at the strain-stiffening regime, which originates
from the force−extension relation of individual fibrils.1 This
universal behavior holds only if the main deformation
mechanism is entropic and the fibrils are inextensible.12

Polymers inherently have some purely enthalpic extension as
opposed to entropic, that might affect the strain-stiffening
behavior at high stress, resulting in a deviation from the
universal behavior. Here, the lower exponent (0.80) observed
for agarose hydrogels indicate that the networks can be
considered as athermal showing enthalpic elasticity. However,
we cannot exclude the possible slippage, which might as well
result in lower scaling. A comparison of effective entropic and
enthalpic spring constants show that the dominant mechanical
response to stretching is enthalpic only if Lx

3 < r2lp, where Lx is
the distance between the two connecting points and r is the
radius of the fibril.12 Here, r = 3.15−9.85 nm and lp = 1278 ±
449 nm (Figure S20). If Lx is less than 20−55 nm, the primary
mechanical response is expected to be enthalpic. In agarose
hydrogels, the mesh size varies from tens of nanometers up to
several hundred nanometers or micrometer scale (see Figures
3, S7, S18, and S19), suggesting that the response of sparse
areas is entropic, while denser parts mainly show enthalpic
elasticity.
Figure 4B shows the scaling behavior of the critical stress σc

and zero stress storage modulus G0. In this work, the critical
stress refers to the stress at which the stiffening sets in. Here
the zero-stress storage modulus is presented as a plateau
modulus G0, which is calculated as an average storage modulus
from the frequency sweeps with 1% strain amplitude between
0.1194−4.755 rad/s after the gelling time sweep step. Both G0
and σc follow roughly the same power law relationship as a
function of concentration at 20 °C: G0 ∼ c3.18±0.31 and σc ∼
c3.14±0.41, showing the standard errors. Though it is surprising
to get a similar scaling with plateau modulus G0 and critical
stress σc, such observations have also been made earlier. For
polyisocyanopeptide hydrogel networks, the G0 and σc had the
same scaling (in their case, ∼c2).40 Simulations for an affine
thermal model for cross-linked networks have suggested that
the plateau modulus G0 and critical stress σc scale almost with
same exponents (G0 ∼ c11/5 and σc ∼ c9/5).12 Computational
models of subisostatic athermal fiber networks suggest that the
linear dependency between the modulus and the critical stress
follows naturally from the hypothesis of normal stress-induced
stiffening.41 At 37 °C the present scaling relations slightly
change to G0 ∼ c3.06±0.28 and σc ∼ c2.55±0.31. There, the scaling
exponent is slightly lower than observed for gels at 20 °C.
However, taking into account the standard error and the fact
that the gels at higher concentrations (c > 5 mg/mL) tend to
slip more easily at 37 °C (Figures S11 and S12), the scaling is
more likely to be the same or at least close to 3, like those
obtained for gels at 20 °C. Our results are consistent with a

Figure 4. Strain-stiffening of the agarose gels at 20 °C (filled symbols
and solid lines) and 37 °C (open symbols and dashed lines). (A)
Differential modulus K as a function of shear stress σ at 20 °C (six
different concentrations) and 37 °C (four different concentrations).
Here we show only representative measurements per each
concentration−temperature combination. (B) Critical stress and the
plateau modulus as a function of agarose concentration (main) at 20
°C and (lower inset) at 37 °C. *Two specimens at 7.7 mg/mL
showed very little stiffening because of the slippage, excluded from the
σc fit. The upper inset shows how critical stress is obtained.
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recent report,42 where the storage modulus of agarose gels
follows the power law G′ ∼ c3 for 0.1−0.35 wt %. Such scaling
exponent is larger than that observed earlier for agarose43 and
those of the biopolymer gels showing the scaling exponent 2−
2.5.44,45 Stronger scaling with concentration could hint that the
connectivity of the network might increase slightly upon
increasing the agarose concentration.45 However, here we do
not detect differences in connectivity (Figure 3E).
If the connectivity increases as a function of concentration, it

should decrease the critical strain γc for the onset of strain-
stiffening.17,46 Here γc increases gradually upon concentration
at 20 °C, and a slight rise is also seen at 37 °C (Figure S10B).
This suggests that the elasticity of agarose networks could be
covered with athermal models of disordered fiber networks
showing enthalpic elasticity.41 To address in future whether the
agarose networks are truly in the regime of entropic or
enthalpic elasticity, the anisotropy of the network structure and
nonaffinity of the deformation should be inspected, for
example, by studying carefully the normal stresses47 or using
visualizing technique coupled to rheometer.48

In conclusion, significant strain-stiffening was observed for
agarose gels taken that wall slippage in rheometry could be
minimized by in situ gelation within cross-hatched parallel
plate geometry. Moreover, the sample preparation turned
critical: strain-stiffening was not observed if (i) ex situ ready-
made gels were inserted to smooth or cross-hatched parallel
plate geometries, (ii) if the gel is prepared in situ with smooth
parallel plate or cone and plate geometries, all of such cases
promoting slippage. Strain-stiffening was obtained using
various agarose concentrations (between 1.6 to 10.2 mg/
mL), two different temperature (20 °C and 37 °C) and two
solvents (1× PBS and water) with three different commercial
agaroses. Therefore, the strain-stiffening is generic for agarose
gels. We show that the strain-stiffening is strain induced,
having a gradual dependency on agarose concentration. The
network structure dictates the critical strain. The fibril
diameter, fibril persistence length, and network connectivity
remain practically the same between the concentrations 1.5−
10 mg/mL. An increase in agarose concentration results in a
slight decrease in average mesh size and raise in the bending
modulus of fibril segments between the cross-linking points,
which causes the observed increase of critical strain.41 In
contrast, the critical stress σc, where the strain-stiffening starts,
depends directly on the original storage modulus G0 of the gel
and the strain-stiffening regime is stress controlled following
power law K ∼ σ0.80. Both G0 and σc follow roughly the same
power law as a function of concentration, that is, G0 ∼ c3.18 and
σc ∼ c3.14 at 20 °C G0 ∼ c3.06 and σc ∼ c2.55 at 37 °C,
respectively. Our results imply that the agarose gels are
athermal fibril networks and the strain-stiffening is covered by
semiflexible nature of the agarose fibrils and due to the low
connectivity (z ≈ 3), which is below the central-force isostatic
point. This work suggests to explore new application potential
for agarose gels and refreshed rheological explorations of other
polysaccharide gels to reveal strain-stiffening.
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