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Abstract

This paper addresses a common challenge with computational cognitive models: identifying

parameter values that are both theoretically plausible and generate predictions that match well

with empirical data. While computational models can offer deep explanations of cognition, they

are computationally complex and often out of reach of traditional parameter fitting methods. Weak

methodology may lead to premature rejection of valid models or to acceptance of models that

might otherwise be falsified. Mathematically robust fitting methods are, therefore, essential to the

progress of computational modeling in cognitive science. In this article, we investigate the capa-

bility and role of modern fitting methods—including Bayesian optimization and approximate

Bayesian computation—and contrast them to some more commonly used methods: grid search

and Nelder–Mead optimization. Our investigation consists of a reanalysis of the fitting of two pre-

vious computational models: an Adaptive Control of Thought—Rational model of skill acquisition

and a computational rationality model of visual search. The results contrast the efficiency and

informativeness of the methods. A key advantage of the Bayesian methods is the ability to esti-

mate the uncertainty of fitted parameter values. We conclude that approximate Bayesian computa-

tion is (a) efficient, (b) informative, and (c) offers a path to reproducible results.
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1. Introduction

Computational cognitive models are computer programs used for theorizing and explain-

ing cognitive processes, and explaining their behavioral consequences (Anderson et al.,

2004; Botvinick, Braver, Barch, Carter, & Cohen, 2001; Busemeyer & Townsend, 1993;

Daw, O’doherty, Dayan, Seymour, & Dolan, 2006; Eliasmith et al., 2012; Geisler, 2011;

Howes, Lewis, & Vera, 2009; Tenenbaum, Kemp, Griffiths, & Goodman, 2011). They take

many forms, including production systems architectures (Anderson et al., 2004; Howes

et al., 2009), reinforcement learning models (Daw et al., 2006), optimal control models

(Geisler, 2011), and neural network and hybrid models (Botvinick et al., 2001; Busemeyer

& Townsend, 1993; Eliasmith et al., 2012). Interest in this class of models is motivated by

the precision and expressiveness that computer programs offer for modeling the human

mind. They permit seeking a strong correspondence between theoretical assumptions and

empirical observations of human behavior, showing promise in being able to model complex

emergent phenomena that may be out of reach for fully analytic models. However, the

increasing complexity of models introduces a new problem: parameter inference. The corre-
spondence between model predictions and real observations, or model fit, is often taken as

an indicator of progress in modeling: A new model is credible, if it predicts important empir-

ical observations more accurately than an existing model, assuming, in addition, that key

assumptions of the model are theoretically plausible.

The model fit is determined jointly by the model structure and by the values of the

model variables. Some variable values have been chosen prior to empirical observations,

and have their place, for example, as theoretical postulates. Others, called here parame-
ters, are determined from empirical data and can take almost any value depending on the

situation. For example, the response criterion parameter b in signal detection theory

(Macmillan, 2002) relates to how conservative a decision-maker is, and it depends on

idiosyncratic and task-specific factors, as well as the experimental task. In addition, there

are parameters that are fairly stable and have well-known limits. For example, the param-

eter value that governs the duration of saccades as a linear function of the visual angle is

well-known in eye movement models (Abel, Troost, & Dell’Osso, 1983; van Beers,

2007). The parameter inference problem is to determine the parameter values for a speci-

fic model, given empirical observations.

When selecting a parameter inference method, a researcher faces multiple decisions

(Myung & Pitt, 2016). The choices affect the quality, efficiency, and reproducibility of

research. First, the size of the parameter search space, taking into account both the num-

ber of parameters and their plausible ranges, must be considered. On one hand, if the

space is too large, searching for the optimal parameter values might require more time

and computational resources than necessary. On the other hand, if the space is too small,

it might exclude the optimal parameter values and thus lead to worse model fit. Second,

once the parameter search space is defined, one needs to choose the method for searching

through this space; that is, the inference method. Different commonly used methods and

their trade-offs are discussed later in this paper. After inference, various analyses can still
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be performed. For example, the model predictions can be validated against hold-out data

to guarantee that the model has not been over-fit to the specific set of training data. Also,

the sensitivity of the model fit to changes in the parameter values can be estimated, to

check that minor changes to the parameter values do not lead to large changes in predic-

tions (Ratcliff, 2013). Some inference methods might provide these analyses as side prod-

ucts of the inference process, while other methods do not. Finally, if the various

decisions made regarding the parameter inference process are not documented appropri-

ately, then there is another reason that the results, and the modeling process, are difficult

to replicate.

Although parameter inference has been a part of cognitive science research for many

years, there are multiple occasions where either the methods have been suspect in terms

of their capability or the reporting of the inference process lacks sufficient detail. Recent

introductions to model comparison, fitting, and parameter selection are part of an effort

to improve the state of affairs (Farrell & Lewandowsky, 2018; Myung & Pitt, 2016;

Turner, Dennis, & Van Zandt, 2013; Turner & Van Zandt, 2012). Especially in the case

of complex simulation models of cognition, where likelihood functions are difficult or

impossible to establish, recent work on likelihood-free methods has shown promise

(Turner, Sederberg, & McClelland, 2016; Turner & Van Zandt, 2018). However, the full

potential of such methods has not been demonstrated with worked and critically assessed

examples of complex cognitive simulation models. To this end, this paper builds and con-

tributes to this work by investigating the use of Bayesian optimization (BO) and approxi-

mate Bayesian computation (ABC) to infer parameters of computational cognitive

models. This is important because the modeling field has not established commonly

agreed standards for parameter inference.

At least four issues related to parameter inference can be identified in the recent com-

putational cognitive science literature. First, parameter values can be set based on exter-

nal sources in the prior literature without considering how changing these parameters

might affect the results. This is often justified in case of parameters that are assumed to

be very general, and that should therefore not vary between tasks. The issue, however, is

that external sources may have involved very different experimental methods, samples,

and modeling aims, all of which may make parameters incompatible for a completely

new model. Thus, although values from external sources can serve as prior information

that indicate probable ranges for model parameter values, the reliability of these prior val-

ues should also be taken into account.

Second, sometimes parameter values are used that are unlikely given prior work, but

that happen to lead to adequate model fits to the new data. This might suggest that these

unlikely parameter values are compensating for inadequacies in the model structure, or it

might be that the model is just very insensitive to the values of those parameters. This

issue is complementary to the first; here, the prior knowledge is ignored, whereas in the

first issue the prior knowledge is adopted blindly. Third, the sensitivity of the model fit,

either to changes in the random seed number or perturbations to parameter values, is not

analyzed, or at least not reported. Fourth, some papers only report that the parameters

“were fit to data,” without reference to the fitting procedure. This makes the research
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challenging to replicate as another inference method might well lead to different parame-

ter values. It is challenging to draw conclusions about the reliability of parameter values

inferred in a previous study without sufficient details of the process that lead to the par-

ticular values being chosen. We hypothesize that these issues might be caused partly by

the unavailability of efficient, critically tested, and openly available methods for perform-

ing parameter inference for computational cognitive models, and partly by the fact that

the researchers are unfamiliar with the full spectrum of methods and practices that are

available.

The main goal of this paper is to demonstrate that principled and well-documented

parameter inference is possible even with some of the most sophisticated simulation mod-

els in cognitive science. The methods that we investigate are applicable to most computa-

tional cognitive models and allow inference of some tens of parameters at a time. The

methods promise efficiency compared to other commonly used methods, and with paral-

lelization may be able to handle computationally very expensive models. The methods

are also designed to provide principled probabilistic estimates of the model fit across the

parameter search space, thus facilitating sensitivity analysis. Also, open-source implemen-

tations of the methods are publicly available (Lintusaari et al., 2017). Our goal, then, is

to investigate these new fitting methods with the aim of helping to lower the barrier of

applying them in cognitive science.

The first of the new methods—a method that is already being adopted in cognitive

science—is BO, which is a sample-efficient algorithm for global optimization of stochas-

tic functions. The second method is BO combined with ABC, which enables the inference

of an approximate posterior distribution for the model parameters, thus providing an intu-

itive quantification of acquired knowledge of the best parameter values given the avail-

able observation data. We restrict the scope of this paper to generally applicable, model-

agnostic, inference methods that are capable of operating with models that generate pre-

dictions but do not have a tractable likelihood function.

We evaluate the models against three criteria. The first criterion is computational effi-

ciency. We quantify efficiency as the amount of computational resource required to

achieve a certain predetermined level of model fit. We measure computational resources

with CPU-hours1 and model fit by prediction error on a separate validation dataset. The

efficiency in parameter inference is crucial in model development, as it enables more iter-

ations of evaluation. It is especially important when working with computationally expen-

sive cognitive models, as each prediction with new parameter values might take hours to

complete.

The second criterion is informativeness: how much information do we gain about the

model fit with different parameter values within the feasible parameter space. Different

methods provide different types of characterizations of the model fit: Some only provide

a point estimate, while others provide probabilistic estimates over the whole parameter

space. The quantification of the model fit over the parameter space is important in many

ways, for instance, allowing a principled estimation of the reliability of the inference

results. In addition, the quantification of fit is informative for subsequent selection of rea-

sonable bounds on the parameter space, thereby supporting a more focused search of the
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feasible parameter regions. Lastly, the quantification provides insight into model develop-

ment, for example, by pointing out that a certain parameter might not meaningfully affect

the model fit. The third criterion is replication. Reproducible results are crucial to the pro-

gress of science. Meeting efficiency and informativeness criterion should, in addition,

support replication. Replication may be supported, for example, by methods that quantify

the model fit.

The paper is structured as follows. We first outline the scientific quantitative modeling

process and discuss the common practices used for fitting cognitive models. We then dis-

cuss considerations general for inference with simulator models and then explain how BO

and ABC can be applied in this context. Finally, we present case examples using two dif-

ferent simulator model types from recent cognitive science literature. The first is an

Adaptive Control of Thought—Rational (ACT-R) model that predicts how learning

affects the duration of different cognitive stages in solving a mathematical problem. The

ACT-R cognitive architecture contains a large number of parameters, which often need to

be adjusted between experiments. The proposed methods are promising for parameter

estimation in ACT-R, where simulations are often computationally intensive and do not

permit the computation of a likelihood. The second case is a model that predicts eye

movements and task completion time when searching for a target item from a visually

displayed computer drop-down menu (Chen, Bailly, Brumby, Oulasvirta, & Howes,

2015). The model uses reinforcement learning (RL) to compute the optimal, utility-maxi-

mizing policy. The optimal policy depends on the initial parameters of the model, and

because training the model is computationally intensive, it provides an interesting case

study for our approach to parameter inference.

2. Background

Computational cognitive models are used widely throughout the cognitive sciences.

They are built to simulate human cognition through the stepwise execution of a program.

Like other models, cognitive models map model parameters to predictions of cognitive

behavior. Parameters can represent stable aspects such as memory capacities or situation-

ally changing aspects like task goals. It is common that these models include stochastic

elements, which means that they map parameters not to a single prediction, but to a dis-
tribution of predictions. This means that when the model is executed multiple times, the

predictions may be different, even if the parameters are kept fixed.

Computational cognitive modeling is one instance of a class of simulative modeling

methods used across the sciences. The focus in this section is on outlining common meth-

ods that are used for fitting such models to data. Quantitative modeling, a central activity

in science generally, may involve following activities:

• Model design: How should the model be formulated? This consists of writing

down the formulas and algorithms that define a parametric model M with free
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parameters h and possibly also a prior probability distribution P(h) which quantifies

how likely different parameter values are a priori.

• Experiment design: How should one collect the observation data Dobs for evaluat-

ing the quality of one or multiple different models? This consists of estimating the

amount and quality of data that need to be collected and coming up with suitable

data collecting procedures.

• Parameter inference: Given a set of observation data and a model, which parame-

ter values offer the best model fit? This consists of optimizing a function that quan-

tifies the model fit. For example, the expected prediction error, observation

likelihood P(Dobs|h), and posterior probability P(h|Dobs) = P(Dobs|h)P(h)/P(Dobs)

are commonly used.2

• Model evaluation: How well is a model able to reproduce the phenomena of inter-

est? This is generally done by first generating a set of predictions from the model.

Monte Carlo sampling is commonly used: Dpred � P(D|h).3 This sampling can be

done either just using the optimal point estimate, h = h*, or, for example, using

samples from the posterior distribution, h � P(h|Dobs). This set of predictions may

then be compared to a separate set of validation data Dval, which was not used in

any way during the inference.

• Model selection: Which of the multiple models is the most credible explanation

for the phenomena we are interested in? This generally consists of comparing the

fit of multiple distinct models and selecting the best one according to a suitable cri-

terion. For example, average prediction error or the Bayes factor P(D|M1)/P(D|M2)

can be used.

Model construction, for instance, related to higher order cognition, has been discussed

by Cooper (2002), experiments from the point-of-view of model comparison by Myung

and Pitt (2009), and evaluation and comparison of models by Myung, Tang, and Pitt

(2009) and Howes et al. (2009) among others.

This paper focuses specifically on parameter inference for cognitive models, which is a

topic that has received increasing interest recently. Papers have pointed out different

issues with the parameter inference methods used with cognitive models. One issue that

has been raised is the fact that manual parameter tuning is still commonly used instead of

automatic parameter inference methods (Lane & Gobet, 2013; Raymond, Fornberg, Buck-

Gengler, Healy, & Bourne, 2008; Said, Engelhart, Kirches, K€orkel, & Holt, 2016).

Another issue has been the fact that the most basic automatic inference methods might

either not be efficient enough or be unable to visualize the model fit over the parameter

space (Gluck, Stanley, Moore, Reitter, & Halbr€ugge, 2010; Moore, 2011).

Although many of these papers also propose various alternative methods for dealing

with these issues, such as the adaptive mesh refinement approach (Moore, 2011), these

approaches tend to lack rigorous theoretical justification and analysis, and performance

might only be evaluated using a single example case. In general, it would be preferable

to use principled approaches that are well motivated from a theoretical standpoint and

even offer general performance guarantees. Also, some of these approaches, such as
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mathematical programming (Said et al., 2016), require altering or rewriting the model to

match the assumptions of the inference method. It would be preferable to have

approaches that are generally applicable for any computational cognitive model, such that

the inference procedure does not force limitations to the model structure, and that alter-

ations to the model do not necessitate alterations to the inference procedures as well.

There is also currently significant variability in the parameter inference practices used in

the field. While in some cases the parameter inference process is thoroughly documented

and a careful analysis is done of the remaining uncertainty in the parameters (e.g., Bur-

ling & Yoshida, 2017), there are also cases where the precise method used for parameter

inference is not discussed, and the inferred parameters are reported just as a point esti-

mate without any discussion of their uncertainty or sensitivity.

A cognitive model is essentially an algorithm that is computed in discrete steps. Tech-

nically speaking, at every step t, a stochastic function f is used to generate new values for

the model state variables based on the current state: st � f (st�1, t, h). The function f has
free parameters h and may contain complex operations, such as numerical optimization or

Monte Carlo sampling. The state s may also be composed of a large number of variables,

such as a description of a person’s short-term memory content. A benefit of expressing

theories computationally instead of verbally is that the former allow higher representa-

tional power and specificity. A large number of alternative assumptions can be conve-

niently investigated, as often only changes to the model parameters, or minor changes to

the model implementation source code, are required. Additionally, these models can pre-

dict not only behavioral outcomes, but also the intermediate (often unobserved) cognitive

steps.

Parameter inference is often challenging with computational cognitive models. This is

due to the fact that it is often not possible to solve the optimal parameter values directly,

as the models are stepwise executed programs instead of a set of analytic equations. Gen-

erally, the only way to evaluate the model fit of certain parameter values is to execute

the model using these values, and to then evaluate the quality of the resulting predictions

against the observation data. This process is similar to manual fitting, although automatic

methods are able to apply efficient numerical optimization methods and parallelism for

greatly improving the efficiency and reliability of this approach. In the next section,

we discuss different methods for performing this inference for computational cognitive

models.

3. Probabilistic inference for computational cognitive models

3.1. Traditional fitting methods

3.1.1. Manual fitting
Perhaps the most rudimentary way to search for appropriate parameters is to select val-

ues manually and compare the simulation results visually with the observation data. A

benefit of this method is that it requires no additional software implementations except
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for the model itself, and a way to visualize the resulting predictions. For this reason, it is

often one of the first approaches to parameter tuning that is used when developing mod-

els, and it might be useful as a model debugging tool in general.

However, when used as the primary method for parameter inference, this approach has

many drawbacks. First, it is very labor-intensive, requiring the researcher to manually go

through a possibly large number of parameter combinations. Second, the approach has no

guarantees for optimality of the parameters or time it takes for the process to converge.

Third, it brings in multiple possible biases that individual researchers may have, thus

making the inference process difficult to replicate, as researchers may have different opin-

ions on what constitutes a good model fit.

As an example of manual fitting, consider the model of movement planning by Har-

ris and Wolpert (1998). Most of the model parameters were set to values adopted from

the literature, while the rest were set manually. For example, the post-movement fixa-

tion period was set to 50 ms without a stated reason. Also, further manual adjustment

was done case-by-case, as an additional cost of 10 ms was added to eye movements in

some of the model variants but not in others. Samuelson, Smith, Perry, and Spencer

(2011) present a model for word learning where six parameters were tuned manually,

while the rest of the model parameters were adopted directly from an earlier study,

where all of the parameters were tuned manually (Faubel & Sch€oner, 2008). With

many ACT-R models (Altmann & Trafton, 2002; Gonzalez, Lerch, & Lebiere, 2003;

Lewis & Vasishth, 2005) parameters are either set to values adopted directly from ear-

lier literature or set manually. Chen et al. (2015) presented a cognitive model of visual

search that used reinforcement learning to discover bounded optimal strategies of eye

movements. Parameters of the model were set manually based on existing literature.

For example, the duration of eye fixations was fixed to 400 ms based on previous

research on the investigated task. For comparison, Kangasr€a€asi€o et al. (2017) optimized

the value of the same parameter in a later study using automatic methods, ending up

with a smaller fixation duration around 250 ms, which resulted in a better model fit to

observation data.

3.1.2. Grid search
Grid search, also known as brute-force search, works by dividing the parameter space

to a large number of small regions (called cells), often by using an even grid. For each

cell, predictions are generated using parameter values from the corresponding parameter

region. Finally, the parameter values that yielded the best model fit are selected.

A benefit of this method is that it is very simple to implement, often requiring only

few lines of additional code to iterate through the grid and keep track of the best parame-

ters so far. With a sufficiently dense grid, this method also gives some guarantee of glo-

bal optimality, as it literally searches through the entire parameter space for the optimal

values. As the method evaluates the model fit all around the parameter space, it enables

the model fit to be easily visualized as well. This method is also parallelizable, as given

sufficient computational resources we might even simulate at all of the grid cells at the

same time.
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However, a drawback of this method is the generally poor efficiency. First, it does not

use the past simulations to its advantage, which might lead to a large number of simula-

tions with parameters that effectively are already known to be non-optimal. Second, the

number of samples needed is nd, where d is the number of parameters (dimensionality of

search space) and n is the number of grid cells per dimension. This means that inferring

multiple parameters simultaneously (large d) or using a dense grid (large n) might make

this method computationally very expensive.

There are multiple recent examples of grid search being used for optimizing parameter

values and characterizing model fit across the parameter space. We here list few as typi-

cal examples: Blouw, Solodkin, Thagard, and Eliasmith (2016) used grid search for fitting

one parameter of a semantic categorization model. Lee, Betts, and Anderson (2016) used

grid search for fitting two parameters of a memory model. Patil, Hanne, Burchert, De

Bleser, and Vasishth (2016) fit multiple parameters for an ACT-R model for sentence

processing using brute-force search. Stocco (2017) compared two competing action selec-

tion models, both using the ACT-R cognitive architecture, and used a thoroughly reported

grid search to fit the parameters. Honda, Matsuka, and Ueda (2017) modeled binary

choice in terms of attribute substitution in heuristic use, and fitted one parameter with

grid search. There are also examples of heuristic extensions to grid search for improving

the scalability. One such was presented by Godwin, Reichle, and Menneer (2017), who

modeled fixation revisits in visual search, and used successively more constrained grid

searches to fit six model parameters. Each successive grid search centered on the best-fit-

ting parameter values of the previous search, using smaller cell sizes.

3.1.3. Local search
Local search, a widely used approach for finding the minimum of approximately con-

tinuous functions, starts from a random location within the parameter search space and

then moves to the direction that seems to locally lead to a better model fit. Once the

method converges, meaning that no small changes in the parameter values lead to any

further improvement, the method has found a local optimum. When the model fit surface

is unimodal, meaning that it has only one clear optimum, this method is often efficient in

finding that optimum. Another benefit of this method is also generally good scalability to

large parameter spaces, as the method only needs to make evaluations along a path to the

optimum, instead of all across the parameter space.

However, there are certain notable drawbacks as well. If the optimized function might

have multiple local optima, the method generally needs to be restarted multiple times

from different initial locations to increase the probability that the global optimum is even-

tually found, which increases the overall computational cost. Also, local search generally

works less efficiently when the optimized function is stochastic, as this makes it difficult

to estimate the gradient of the model fit.4 Although this may be alleviated by averaging

multiple model evaluations, this will again increase the computational cost. A third draw-

back of this method is that it does not provide any insights about the global model fit sur-

face, which means that further analysis is required to quantify the reliability of the

results. A fourth drawback is the difficulty of parallelization, as the approach specifically
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requires sequential model evaluations. In general, the only viable approach to paralleliza-

tion is to execute multiple independent local optimization processes in parallel.

There are multiple algorithms for local search, designed with different limitations in

mind. With computational cognitive models, four limitations stand out:

1. No easy access to the gradient of the optimized function (often the likelihood func-

tion P(Dobs|h)).
2. Stochastic model evaluations, meaning that repeated evaluations with the same

parameters may lead to different model fits.

3. Non-continuity of the model fit, meaning that in some regions of the parameter

space small changes in the parameter values may lead to large changes in the

model fit.

4. Computationally expensive model evaluations, meaning that one should aim for a

minimal number of predictions to be generated from the model during inference.

These limitations generally imply that derivative-free local optimization methods

(Rios & Sahinidis, 2013) need to be used. Although one could hope that the gra-

dient could be estimated from samples, this is often challenging in practice due

to the combined effect of the second, third, and fourth limitations mentioned

above.

One of the most widely used derivative-free methods is Nelder–Mead simplex opti-

mization (Lagarias, Reeds, Wright, & Wright, 1998).5 One main benefit of Nelder–Mead

over other derivative-free methods is its wide availability; for example, the MATLAB

function fminsearch implements this and uses it as a default, and it is often available in

many other optimization packages as well. There are multiple examples of Nelder–Mead

being used over the years, as well as recently. Bogacz, Brown, Moehlis, Holmes, and

Cohen (2006) optimized the cost function of a choice model to empirical data using sub-

plex (Rowan, 1990), a variant of Nelder–Mead. Vandekerckhove and Tuerlinckx (2007)

optimized the parameters of the Ratcliff diffusion model using Nelder–Mead. Said et al.

(2016) optimized the performance of an ACT-R model with different methods, and

Nelder–Mead was one of the best-performing methods. Loga�cev and Vasishth (2016)

optimized the parameters of a sentence parsing model using Nelder–Mead. Gagliardi,

Feldman, and Lidz (2017) optimized the parameters of a language learning model using

the fminsearch. For situations where the optimized function has multiple optima, a combi-

nation of Nelder–Mead optimization and grid search has been used. For example, Wall-

sten, Pleskac, and Lejuez (2005), as well as Gl€ockner and Pachur (2012), used grid

search to provide starting values as inputs to the Nelder–Mead method, in order to com-

bat the problem of highly irregular surfaces and the subsequent risk of getting stuck in a

local optimum.

3.2. Bayesian optimization

Bayesian optimization (Brochu, Cora, & De Freitas, 2010) is a popular modern

approach to global optimization. One core idea of the method is to use a surrogate model
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for approximating the model fit across the parameter space. Another core idea is to use

an acquisition rule for selecting which parameter values are used for generating predic-

tions, based on the surrogate model. Inference is performed through a sequence of opti-

mization rounds. At the beginning of each round, the acquisition rule is used to select a

set of parameter values that will be used to generate predictions. The locations are bal-

anced such that they cover both unknown regions of the parameter space (exploration)

and regions with high probability to lead to a good model fit (exploitation). After predic-

tions have been generated at each location, the surrogate model is updated based on the

observed model fits, and the next optimization round begins. The final parameter esti-

mates are often chosen to be the parameter values that lead to the best predicted model

fit on average.

Gaussian process (GP) regression models (Rasmussen, 2004) are by far the most com-

monly used family of surrogate models used in BO. This is because of the high flexibility

of the model family, which gives it the capacity to approximate a large subset of model

fit surfaces that are encountered in practice. GP models are also able to model the

stochasticity of model fit, thus allowing a principled estimation of its mean and variance

everywhere in the parameter search space.

Common acquisition rules include the probability of improvement rule (PI), the

expected improvement rule (EI), the entropy search rule (ES), and the upper confidence

bound rule (UCB) (Snoek, Larochelle, & Adams, 2012). They all aim to find the optimal

value, but with slightly different criteria. PI maximizes the probability of finding a value

better than current optimum, EI maximizes the magnitude of improvement over current

optimum, ES maximizes the information about the location of the global optimum, and

UCB optimizes the balance between exploration and exploitation.

Bayesian optimization has been shown to be sample efficient (e.g., Snoek et al., 2012),

which means that good parameter estimates are generally available after relatively few

predictions from the model. Intuitively, this is because the global surrogate allows the

acquisition rule to avoid regions where the optimum is unlikely to be in. An additional

benefit for further analysis of model performance is that the surrogate generated in the

process is a good characterization of the global model fit as a function of the parameter

values. Also, the sampling process for BO is easy to parallelize, allowing large batches to

be computed simultaneously in a computing cluster.

One drawback of BO is the need to specify values for multiple hyperparameters, which

determine how fast the model fit is expected to change and how noisy the evaluations are

expected to be. These values can be chosen either based on our prior knowledge or they

can be estimated based on initial tests. Further, the values can be further adjusted during

the optimization process, based on the observed samples. However, as exhaustive search

over all possible hyperparameter values might not be feasible in practice, it is common

that some “artistry” is required in setting good initial values, based on prior experience

with GP models and BO. Another drawback is that updating the surrogate model and

evaluating the acquisition rule also require computational resources. In many cases, this

inference overhead might not be an issue, but it may become noticeable if the function

being optimized happens to be cheap to evaluate, or if the parameter space is high-
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dimensional and a large number of samples are used. However, there are also extensions

of BO that help with specific issues. For example, it is possible to perform optimization

in high-dimensional spaces when certain general assumptions hold (e.g., Wang et al.,

2013).

Bayesian optimization has not yet been widely used with computational cognitive

models. Turner et al. (2013) used BO to fit parameters to cognitive memory models,

and Turner et al. (2016) used Bayesian analysis to formally compare simulation-based

neurological models. Kangasr€a€asi€o et al. (2017) used BO to find the parameter values

of a cognitive model of visual search in menus. Further, this approach has been used

recently in other fields, for example, for parameter tuning biomedical models (Ghas-

semi, Lehman, Snoek, & Nemati, 2014) and speech recognition models (Watanabe &

Le Roux, 2014). It has also been used for fMRI study design (Lorenz et al., 2016) and

optimization of game engagement (Khajah, Roads, Lindsey, Liu, & Mozer, 2016). Lee

and Wagenmakers (2014) present a guide to Bayesian cognitive modeling with practi-

cal examples such as estimating coefficient of agreement in a decision-making task.

What is missing are worked examples of using BO and ABC, introduced below, in

parameter inference of complex cognitive simulation models. This is necessary for

introducing these techniques to a larger cognitive scientific audience that works with

complex simulation models.

3.3. Approximate Bayesian computation

Approximate Bayesian computation (Sunn�aker et al., 2013) is a method that allows

estimating posterior probability distributions for the parameters of computational cogni-

tive models. The idea of ABC is that predictions made with various different parameter

values can be used to construct an approximation of the observation likelihood function

for the model, which can then be used to estimate the posterior distribution. ABC has

been used earlier for computational cognitive models. Turner and Van Zandt (2012)

demonstrate the use of ABC for estimating the parameter values of cognitive simulation

models, such as a memory retrieval model. Turner and Sederberg (2014) introduce the

probability density approximation method—a likelihood-free method for posterior estima-

tion—and demonstrate its use with simulations of various tasks, such as signal detection

and decision-making tasks. ABC has been used in various other fields as well, especially

for inference with complex simulator models (Csill�ery, Blum, Gaggiotti, & Franc�ois,
2010). A recent review of various ABC methods was made by Lintusaari, Gutmann,

Dutta, Kaski, and Corander (2017).

The idea of ABC is not very involved, but it requires a short mathematical explana-

tion. First, as a reminder, Bayesian inference is based on the assumption that our knowl-

edge of what parameter values are correct is described by a probability distribution. Our

prior knowledge of likely values is described by the prior distribution P(h). After obser-
vations Dobs are made, the observation likelihood function P(Dobs|h) is combined with the

prior to update our knowledge of the probability of different parameter values. Our

updated state of knowledge is the posterior distribution P(h|Dobs), which is computed
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from the Bayes’ formula P(h|Dobs) = P(Dobs|h) P(h)/P(Dobs). In this inference framework,

the observation likelihood P(D|h) is determined by the structure of the assumed cognitive

model. However, the problem with computational cognitive models is that the model

structure, when expressed as an explicit mathematical formula for P(D|h), can be very

complicated. This means that, in practice, the likelihood function cannot be evaluated

during inference.

The key insight of ABC is that it is possible to avoid evaluating the likelihood, if one

is satisfied with an approximation of the posterior distribution. First, assume a function

for computing the model fit, which in ABC in called the discrepancy function

dðDobs;DpredÞ ! ½0;1Þ:

Using d, one can define a random variable

dh :¼ dðDobs;DpredÞjDpred �PðDjhÞ:

The distribution of dh quantifies precisely the distribution of model fits each h is associ-

ated with. If the discrepancy function d has the property that d(Dobs,

Dpred) = 0 ⇔ Dobs = Dpred, we can write the likelihood as

PðDobsjhÞ ¼ PðDobs ¼ DpredjDpred �PðDjhÞÞ
¼ PðdðDobs;DpredÞ ¼ 0jDpred �PðDjhÞÞ
¼ Pðdh ¼ 0jhÞ:

The first equality is the definition of the likelihood function, the second uses the assumed

property of d, and the third uses the definition of dh. Now the ABC approximation is to

simply relax this strict requirement by

~PeðDobsjhÞ ¼ Pðdh\ejhÞ;

where e 2 [0, ∞) is a chosen approximation threshold. ~PeðDobsjhÞ is called the e-approxi-
mate likelihood, and when combined with the prior, can be used to compute the corre-

sponding e-approximate posterior.

In practice, the e-approximate likelihood is constructed by making a set of predictions

with various different parameter values. This allows one to estimate the distribution of dh
across the parameter space, which then leads directly to the e-approximate likelihood.

Different approaches to ABC generally differ in how they construct the estimate for dh.
The earliest methods used a brute-force approach, where predictions were made densely

all across the parameter space. A recent method proposed by Gutmann and Corander

(2016), which we use in this paper as well, is to use BO for constructing a GP estimate

for dh. Technically, as the marginal distribution of a GP in each point h is a Gaussian dis-

tribution N(l(h), r(h)), we can further approximate
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Pðdh\ejhÞ � UðejlðhÞ; rðhÞÞ;

where Φ is the cumulative distribution function of the Gaussian distribution. The quality

of this approximation is dependent on the quality of the surrogate, which in the case of

BO is often good near the optimal parameter values, but might be worse further away.

However, as we are most interested in estimating the peak of the distribution accurately,

this trade-off is sensible.

There are certain key benefits of computing the posterior, over just performing BO for

optimizing the model fit. First, using probability distributions allows combining evidence

from multiple sources in a principled way. For example, it is easy to use prior distribu-

tions for adding sensible soft constraints to model posterior. In comparison, it is difficult

to prevent a pure optimization algorithm from converging to parameter combinations that

happen to lead to good predictions, but that are scientifically implausible. Second, the

posterior can be used as a prior distribution in a follow-up study, for example, if further

experiments are conducted. In comparison, it is not clear how a plain model fit surface

from a previous study should influence the inference process in a follow-up study. Third,

the probability distribution provides intuitive answers to how likely certain parameter val-

ues are compared to others, as the ratio of corresponding posterior probabilities directly

answers this question. In comparison, a plain model fit surface is only informative of

how much the model fit changes between locations in the parameter space. Fourth, sam-

ples from the probability distribution can be computed in a principled manner, for exam-

ple, with Markov chain Monte Carlo (MCMC) methods. This allows one to estimate, for

example, the posterior predictive distribution6 of the cognitive model. In comparison,

there is no straightforward way to perform this with just a plain model fit surface.

4. General method: Worked examples

In the following two examples, we evaluate the efficiency and informativeness of four

different inference methods. Our goal is to demonstrate the drawbacks and benefits of the

methods, as described in the previous section, as well as provide two worked examples

on how to utilize the methods in parameter inference of cognitive models.

4.1. Inference methods

In addition to grid search and Nelder–Mead optimization, we use the two methods

described in the previous section. The first method is BO. The acquisition function used

for selecting the parameter values for evaluating the model is a UCB rule for model fit

(Srinivas, Krause, Seeger, & Kakade, 2010). When optimizing in parallel batches, we

additionally use a local penalization rule for “spreading out” the parameter values within

each batch (Gonz�alez, Dai, Hennig, & Lawrence, 2016). Finally, when the maximum
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number of model evaluations is reached, the parameter values where the surrogate pre-

dicts the best expected model fit are selected.7

The second additional method is ABC based on the GP model constructed during the

BO process. First, the approximate likelihood is estimated using the GP model. Second,

the approximate posterior of the model parameters is constructed by multiplying the like-

lihood with the prior. Finally, the mean of the approximate posterior is estimated using

MCMC sampling, and selected as the parameter point estimate. For this reason, this

specific method is denoted as ABC PM later on (PM for posterior mean).

4.2. Method comparison

The efficiency of the methods was evaluated by measuring how good model fit each

method was able to produce as a function of the used computational resources. Model fit

quality was measured using predictive error on a separate hold-out dataset, in a small

region around the final parameter estimate.8 As the methods were given equal computa-

tional hardware, the resource use was measured in elapsed wall-clock time. Multiple inde-

pendent replications of the inference processes were conducted with different random

seeds to estimate the average performance as well as the variability. Care was taken to

implement the methods in a computationally efficient manner, and to manually tune the

hyperparameters of each method, so that they each performed as well as one could hope

for.

The informativeness of the methods was evaluated by plotting either the predicted

model fit or posterior distribution as a graph. As the parameter spaces are high-dimen-

sional, 2D and 1D slices centered around the optimal parameter values were used for

visualization. The overall informativeness of these graphs was evaluated visually.

4.3. The example models

As examples we use two popular model families from the cognitive science literature.

We give here a quick overview of the models and the rationale for their selection. Further

details of the models themselves are provided in the introduction of each worked exam-

ple.

The first is an ACT-R model that predicts the cognitive behavior associated with learn-

ing how new mathematical operations work. The ACT-R model family has a long history

in cognitive science, but no best practices for parameter inference have been established

for this model. We are able to demonstrate that principled posterior inference is possible

for this model family, without having to resort to model-specific methods, which has a

potentially high impact to the field. Another reason for choosing this model is that it is a

highly complex simulator model. Hence, it would be highly impractical for most practi-

tioners to try to reverse engineer the implementation, for example, in order to derive a

purely mathematical representation of the model. Thus, in practice, only general-purpose

inference techniques are applicable for this model.
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The second example is a model based on computational rationality, which uses rein-

forcement learning (RL) for modeling the visual search behavior of a computer user

searching through a vertical menu. One compelling reason for selecting this model as an

example is the significantly long runtime. While the ACT-R model takes tens of seconds

to execute, the RL optimization required to find the optimal behavioral policy takes mul-

tiple hours in comparison. This presents a large challenge for parameter inference, as one

can hope to evaluate the model at most with 10 different parameter values per day if

using a single CPU. However, we are able to demonstrate that reliable automated infer-

ence is still possible even for models of this complexity, thanks to the sample-efficiency

of BO.

4.4. Implementation details

For grid search, the implementation was done by authors. For Nelder–Mead, we used

the implementation from the open-source SciPy Python library. For BO and ABC, we

used the open-source ELFI library (Lintusaari et al., 2017), with some additional methods

implemented by the authors. Python 3 was used for all implementation, except for the

ACT-R model, which was implemented in Common LISP and acquired from the ACT-R

website. All code implemented by the authors for this paper are available at https://

github.com/akangasr/cogsciabc.

The methods were executed on a computing cluster with Intel Xeon 2.7 GHz 6-core

processors. The inference for the ACT-R model was not parallelized, and the inference

was limited to 3 GB of memory. The RL model was parallelized using 20 worker pro-

cesses, each limited to 6 GB of memory. However, Nelder–Mead was executed in a sin-

gle process as the method does not parallelize as such. As the same computing

environment was used for both experiments, the CPU-hours reported later are compara-

ble.

5. Example 1: ACT-R

ACT-R is a cognitive architecture that consists of interconnected modules simulating

cognitive and behavioral processes. ACT-R has a long history, and its modules and mod-

ule interactions have been extensively tested and validated in both laboratory (Anderson,

2007; Anderson & Betz, 2001; Gunzelmann & Lyon, 2011) and real-life tasks (Bellamy,

John, & Kogan, 2011; Ehret, 2002; John, Prevas, Salvucci, & Koedinger, 2004).

The foundational assumption in all ACT-R models is that cognition and behavior are a

consequence of interaction between the architecture’s modules, such as declarative and

procedural memory, vision, and manual control. This enables modeling of complex cogni-

tive phenomena, for instance, skill acquisition and multitasking. The module-based

approach also makes it possible to test the model predictions using neuroimaging, under

the assumption that processing in different modules activates different regions in the

brain.

16 of 40 A. Kangasr€a€asi€o et al. / Cognitive Science 43 (2019)



Each of ACT-R’s modules has a number of parameters which can be freely set by the

modeler. Many of the parameters are used to scale time-based predictions by the model.

The associative long-term memory module, for example, predicts memory retrieval, and

its speed and accuracy can be shaped with parameters, such as noise and latency factor.

Similarly, the vision module simulates visual search and encoding of objects, and it can

be governed by parameters which affect the speed of eye movements and encoding.

5.1. Traditional parameter inference

The inference of ACT-R model parameters has not always been documented in detail.

It is not uncommon to see casual descriptions of the procedure, such as “control and vary

[parameter values] to fit [model] to data” (Servan-Schreiber & Anderson, 1990, p. 604),

“[estimating parameter values] without carefully optimizing our [model] fit” (Anderson,

Bothell, Lebiere, & Matessa, 1998, p. 356), or plainly stating that the parameter values

were estimated without explication of the procedure (Anderson & Matessa, 1998; Ander-

son & Reder, 1999; Lovett, Daily, & Reder, 2000). Sometimes the parameters and their

inference are not explicitly mentioned at all (Corbett & Anderson, 1994). The ACT-R ref-

erence implementation (Bothell, 2017) specifies a default, empirically established value

for each parameter, and often models retain these values as long as they produce an

acceptable model fit (Altmann & Gray, 1998; Lovett et al., 2000).

However, there are also ACT-R modeling studies with more focus on parameter infer-

ence. For example, Anderson, Reder, and Lebiere (1996) investigated the effect of vari-

ous parameter values on the overall model fit by performing sensitivity analysis, where

they manipulated the model parameters one by one and demonstrated how the model fit

changes. There is also a recent line of research focused on constructing fully analytic

ACT-R models (Said et al., 2016), which could allow more efficient parameter inference

using, for example, gradient-based methods. Some recent ACT-R studies have also used

neuroimaging data to isolate active mental stages during task completion and used these

measurements to infer specific model parameters (Anderson & Fincham, 2014a; Zhang,

Walsh, & Anderson, 2016).

5.2. Skill acquisition model

Tenison and colleagues (Tenison & Anderson, 2016; Tenison, Fincham, & Anderson,

2016) constructed an ACT-R model to simulate the distinct phases of skill acquisition.

Their skill model is based on the three phases suggested by Fitts and Posner (1967): cog-

nitive, associative, and autonomous, which the authors connect to different modules of

the ACT-R architecture. The authors modeled numerical problem solving and predicted

how humans gradually get better at solving the problem, first by arithmetic computation,

then by retrieval of the correct answer, and finally, by automatic manual response to a

recognized problem. By modeling transitions between these stages, the authors are able to

predict both behavioral and neural responses of human participants. The model had three

distinct phases of problem solving: encode the problem, solve the problem, and respond
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to the problem. The authors measured how long the participants took in each of these

stages, given the difficulty of the problem and the cognitive stage of learning, and fitted

their model predictions to these observations.

The authors based most of the model parameters on an earlier model, where the

authors had fitted eight parameters of the problem-solving model to human data using an

unmentioned inference method (Anderson & Fincham, 2014b). The parameters dictated

the behavior of different modules of ACT-R, such as metacognition processing time or

the time it takes for the manual module to type in an answer. This skill phase adopted

the eight parameter values from the earlier study and fit the values of the two new param-

eters manually (Tenison et al., 2016).

5.3. Methods

We set out to infer the values of four selected parameters which we estimated to have

the largest effect on model fit. The parameters and their plausible ranges were as follows:

retrieval threshold RT 2 [�4.5, �2.5], retrieval latency factor LF 2 [0.001, 0.15], base-

level constant activation BLC 2 [0, 20], and activation noise ANS 2 [0.001, 0.15]. The

ranges were estimated manually, taking into account their plausibility and avoiding

regions where the model occasionally crashed during evaluation. The values inferred in

the original paper were: RT �2.6, LF 0.1, BLC 2.0, and ANS 0.0.

We quantified the model fit using the root mean square error (RMSE) in the means of

the learning stage durations:

RMSE :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

9

X
phase2½1;2;3�

X
stage2½1;2;3�

ðdobs;phase;stage � dpred;phase;stageÞ2
s

:

As we only had access to the aggregate observation data, we were not able to divide

the observations into separate training and test sets. For that reason, the same dataset was

used for both training and testing. This unfortunately prevents us from evaluating the

extent of overfitting to the training data in this case.

For posterior estimation, we used a prior which was constructed such that values

commonly used in ACT-R models had higher prior probability. These values were

estimated based on the extensive library of example models provided along the ACT-

R software library (Bothell, 2017). For RT, we used a uniform prior, as there is large

variability in the values, from �1,000 up to 5. For LF, we used a normal distribution

with mean 0.2 and standard deviation 0.2, which is based on most values being

between 0 and 0.4. For BLC, we used a normal distribution with mean 10 and stan-

dard deviation 10. As the only value encountered was 10, we assume that 10 is a

reasonable mean and that similarly reasonable values are between 0 and 20. For ANS,

we used a normal distribution with mean 0.3 and standard deviation 0.2, which is

based on most values being between 0.1 and 0.5.
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5.4. Results

Given around 6 h of CPU-time for each method, the results were as follows. With grid

search, we obtained parameter values RT �3.0, ANS 0.06, LF 0.07, and BLC 14.3. With

Nelder–Mead, we obtained values RT �2.9, ANS 0.03, LF 0.070, and BLC 16.9. The

BO-based values were RT �2.9, ANS 0.001, LF 0.07, and BLC 6.9. The ABC-based val-

ues were RT �2.9, ANS 0.08, LF 0.07, and BLC 12.2. Comparing the results, we

observe that all methods tend to agree with the optimal value of RT, which was around

�2.9, and LF, which was around 0.07. This is also close to the values or RT �2.6 and

LF 0.1 used in the original paper. For ANS and BLC, the methods tend to disagree with

the optimal values. This is explained by the fact that the model seems to be much less

sensitive to the values of these two parameters, as will become clear in later analysis

(Figs. 2–4).

5.4.1. Efficiency
The efficiency of different inference methods, quantified by the model fits achievable

with given computational resources, is visualized in Fig. 1. For all methods, we observe

a clear improvement in the model fit as we use more computational resources. However,

the rate of improvement depends on the method.

Nelder–Mead is the most efficient in this case, achieving approximate convergence

after roughly one CPU-hour. This efficiency is explained by the fact that the model fit

surface is unimodal in this case, which makes local optimization an efficient heuristic, as

Fig. 1. Average model fit and confidence bounds for different point estimation methods as a function of the

number of total CPU-hours used. The shaded region indicates the area between the 5th and 95th percentiles.

ABC PM is the ABC posterior mean; BO is Bayesian optimization. Left: Overall behavior. Right: Detail of

lower left corner. Each point is estimated using 40 independent experiments.
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simply following the surface gradient generally always improves the estimate. However,

it can also be seen that Nelder–Mead does not achieve perfect convergence in this case,

illustrated by the fact that the confidence bounds do not shrink to zero. This is explained

by the fact that the method does not take the slight stochasticity of the model fit into

account, and thus may not always converge exactly to the true optimum.

Bayesian optimization and ABC PM are the second most efficient, achieving conver-

gence after roughly 3 CPU-hours. The slower convergence speed is explained by the use

of global optimization in both cases: The methods need to explore the parameter space

sufficiently at the beginning, in order to guarantee that they find the global optimum. BO

achieves the best final model fit after around 6 CPU-hours. After around 4 hours of CPU-

time, the result given by BO is essentially better or equally good compared to the esti-

mate of any of the other methods.

Regarding ABC PM, at the beginning, the estimates it makes are very noisy, as the GP

surrogate is not yet a good approximation of the model fit surface. This is clearly shown

in Fig. 1, left-hand side. However, after the GP approximation is sufficient, the model fit

starts converging rapidly. The estimate also converges nearly to the optimum solution

when measured just by the model fit; this difference is explained by the effect of the

prior distribution, which balances the model fit and parameter credibility given prior

knowledge. The slight variability in the final estimate is explained by the fact that a finite

sample (20k MCMC samples) is used to estimate the posterior mean.

Grid search is the least efficient to converge, and it would likely require many orders

of magnitude more CPU-hours to converge to the same quality of parameters as the other

methods. Although the method is able to converge relatively quickly at the beginning, the

final convergence is very slow and there is significant amount of variation in the results,

caused by the variation in the precise locations of the grid cells.

5.4.2. Informativeness
The ability of the different methods to quantify the model fit in different parts of the

parameter space is visualized in Figs. 2–4. As Nelder–Mead only provides a point esti-

mate, no such visualization is possible for it.

Grid search provides the roughest characterization of the model fit across the parameter

space, as shown in Fig. 2. As the samples are spread out evenly all across the parameter

space, the optimum is not identified very accurately. Furthermore, as no statistical model

is used to interpolate the surface and filter out noise, it is not easy to accurately visualize

the shape of the surface.

In comparison to the grid visualization, the GP regression model constructed during

BO is able to provide a better characterization of the model surface with fewer resources,

as shown in Fig. 3. As the sample locations have been optimized by BO, the optimum of

the function is estimated with significantly higher precision. Furthermore, the general

shape of the model fit function is much easier to interpret from the visualizations, thanks

to the statistical interpolation. However, as the optimum is relatively flat in this case, it is

still challenging to identify which precise regions of the parameter space are the most

likely.
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In comparison to the visualized GP model, the ABC posterior, shown in Fig. 4, pro-

vides a more intuitive characterization of the likely parameter regions. The overall resolu-

tion of the visualization is the same as for the GP model, but the posterior better

visualizes the parameter regions that both lead to a good model fit and are probable given

our prior understanding of reasonable parameter values. Thus, for example, although dif-

ferent values of the ANS parameter seem to lead to equally good predictions, the poste-

rior shows that based on our prior understanding larger values of ANS should be more

likely.

Fig. 2. Estimated model fit (2D and 1D slices) near the optimum value (RT �3.0, ANS 0.06, LF 0.07, BLC

14.3) using grid search and 6 CPU-hours of computation (625 model evaluations). Linear interpolation and

constant extrapolation is used between sampled values. The color map is such that black is 3.0 and white is

0.4; lighter shades indicate better model fit. Contours are superimposed for additional clarity.

Fig. 3. Estimated model fit (2D and 1D slices) near the optimum value (RT �2.9, ANS 0.001, LF 0.07, BLC

6.9) using Bayesian optimization and 5 CPU-hours of computation (450 model evaluations). The color map

is such that black is 3.0 and white is 0.4; lighter shades indicate better model fit. Contours are superimposed

for additional clarity.
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5.5. Comparison to manual fitting

We compared the predictions made with an automatic inference method to those manually

tuned in the original paper (Tenison et al., 2016). As ground truth, we use the observation data

collected in Tenison et al. (2016). The difference to ground truth is visualized in Fig. 5.

In this experiment, the automatic parameter inference leads to 16% reduction in predic-

tion error. This improvement is most notable in learning phase 1. With the manually

tuned parameter values, the durations of the solving stages with heights 4 and 5 were

over 1 standard deviation away from the observed means, visible in the top left panel of

Fig. 5. By automatically tuning the parameter values, these durations are visibly closer to

the observation data, as shown in the bottom left panel. For height 3, the predictions are

not yet close to the observation data. However, through extensive searching, it is certain

that the model is unable to replicate this behavior just by tuning these four parameters

within sensible limits. Thus, if one was to continue development of this model, there is

now clear evidence of a particular type of behavior that is not reproduced by this model.

This would allow one to focus their efforts better, as it is clear that the issue cannot be

remedied simply by further tuning of these four parameters.

There is also a slight trade-off the automatic method makes, visible in the durations of

the encoding stages in learning phase 2. However, as there is significant variability in the

observation data as well at this point, the predictions are still credible.

6. Example 2: Computational rationality

Computational rationality is a framework for cognitive modeling that is based on the

idea that cognitive behaviors are generated by behavioral policies9 that are optimally

Fig. 4. Approximate unnormalized posterior density (2D and 1D slices) near the optimum value (RT �2.9,

ANS 0.08, LF 0.07, BLC 12.2) using approximate Bayesian computation and 5 CPU-hours of computation

(450 model evaluations). The ABC threshold e was 0.48, which is 0.01 above the estimated minimum of the

GP surrogate. The color map is such that black is 0.0 and white is 4.0; lighter shades indicate higher poste-

rior probability.
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adapted to the processing limits of a cognitive architecture (Gershman, Horvitz, & Tenen-

baum, 2015; Griffiths, Lieder, & Goodman, 2015; Howes et al., 2009; Lewis, Howes, &

Singh, 2014). In contrast to frameworks such as ACT-R, which encourage hand-coding of

behavioral policies, computational rationality assumes that these policies emerge from the

limitations of the specified cognitive architecture.

As a framework for modeling cognition, computational rationality has been heavily

influenced by rational analysis, a method for explaining behavior in terms of utility

(Anderson, 1991; Chater & Oaksford, 1999; Oaksford & Chater, 1994), an idea used, for

example, in information foraging theory and economic models of search (Azzopardi,

2014; Pirolli & Card, 1999). Computational rational agents have been used to model a

number of phenomena in HCI (Payne & Howes, 2013). Applications relevant to this

paper include menu interaction (Chen et al., 2015), visual search (Hayhoe & Ballard,

2014; Myers, Lewis, & Howes, 2013; Nunez-Varela & Wyatt, 2013; Tseng & Howes,

2015), and decision-making (Chen, Starke, Baber, & Howes, 2017).

A key problem in computational rationality is finding the optimal behavioral policy.

One popular approach is to write the optimization problem as a Markov decision problem

(MDP) and then use a suitable reinforcement learning algorithm for solving the optimal

Fig. 5. A comparison of observation data and model predictions. ABC PM is ABC posterior mean. Top: Pre-

dictions based on manually tuned parameters compared to observation data. Bottom: Predictions based on

parameters fit with an automatic inference method (here posterior mean from approximate Bayesian computa-

tion) compared to observation data. “Height” refers to the difficulty of the mental task in the experiment that

was originally modeled.
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policy (Sutton & Barto, 1998). The definition of an MPD consists of a set of cognitive

states S, a set of cognitive actions A, the transition dynamics between states based on

actions st = T (st�1, at�1), a reward function R(st), and a temporal discount factor for

rewards c. The behavioral policy is then denoted as at = p(st, /), where / are the param-

eters solved by the reinforcement learning algorithm to maximize the expected sum of

discounted rewards:

E
X
t

RðstÞct
" #

: ð1Þ

The resulting policy—and thus the predicted behavior—naturally depends on the parame-

ters of the MDP, such as the magnitudes of rewards and the stochasticity of state transi-

tions. The MDP is often designed in such a way that these parameters correspond to

interesting psychometric quantities, such as the level of motivation or alertness of the

subject.

An interesting property of computational rationality, that is, pertinent to the current

paper, is that it effectively reduces the number of free parameters in the model. Although

in other modeling frameworks the parameters of the behavioral policy can be adjusted

freely, computational rationality demands that these parameter values are derived through

optimization, given the limits imposed by the cognitive architecture. In models based on

computational rationality, the free parameters generally relate to these cognitive limits

only. Thus, the number of free parameters that remain to be inferred is often much smal-

ler compared to the number of parameters needed to fully define the behavioral policy.

6.1. Traditional parameter inference

While the parameters of the behavioral policy are derived through optimization and

are, therefore, not fitted to data, the parameters that define the limitations of the cognitive

architecture remain to be inferred. However, a key challenge with this inference process

is the fact that evaluating the model fit using new parameter values takes significant time,

as the parameters of the behavioral policy need to be solved before predictions can be

made. Likely for this reason, the majority of parameters in existing models have been set

manually. For example, both Lewis et al. (2014) and Acharya, Chen, Myers, Lewis, and

Howes (2017) used grid search for inferring the value of only a single model parameter.

It is also not uncommon for the authors to have chosen all of the parameters manually

(Chen et al., 2015, 2017).

6.2. Menu search model

The model used in this example was introduced recently by Chen et al. (2015) and

later extended by Kangasr€a€asi€o et al. (2017). This model predicts the visual search behav-

ior (how eyes fixate and move) and task completion times of a person searching for an
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item from a computer drop-down menu. We use here a slightly simplified version of the

model, in order to somewhat reduce the time required for solving the optimal policy. This

allowed us to run studies with more model evaluations for better demonstrating the con-

vergence properties of the algorithms.

The model structure is as follows. The model contains a menu composed of eight

items. The user has a target item in mind, which is either present in (90% of the cases)

or absent from (10% of the cases) the menu. The agent has multiple possible actions at

each step. She can either fixate on any of the eight items or declare that the item is not

present in the menu (i.e., to quit). If the agent fixates on the target item, it is automati-

cally selected. (In the original model, the agent had to manually choose to select the item,

which now happens automatically as it is clearly the optimal option at that point.) Fixat-

ing on a non-target item reveals its semantic relevance to the agent, as well as with some

probability the length of the item and the semantic relevances and lengths of nearby items

as well. Fixating on the target item or quitting ends the episode. The cognitive state s
consists of the semantic relevances and lengths of the observed menu items. (In the origi-

nal model, the state also included the location of the previous fixation, but this was deter-

mined to have little effect on the policy and was thus left out.) The agent receives a

reward after each action. If the agent found the target item, or quit when the target was

absent from the menu, a large reward is given. If the agent quits when the target is pre-

sent, an equally large penalty is given. Otherwise, the agent receives a small penalty,

which is equal to the time spent for the action (sum of the durations of the saccade and

the fixation).

The optimal behavioral policy is learned using a RL algorithm known as Q-learning

(Watkins & Dayan, 1992). Execution of the Q-learning algorithm is the main reason for

the long runtime of the model. After choosing values for the free model parameters, it

takes roughly 2 hours to estimate a policy which is close to optimal.

In the original paper by Chen et al. (2015), the values of the parameters were set man-

ually to values obtained from earlier literature. For example, the parameters that deter-

mine the duration of saccades were set based on a study by Baloh, Sills, Kumley, and

Honrubia (1975), and the duration of eye fixations was set based on a study by Brumby,

Cox, Chung, and Fernandes (2014). The sensitivity of the model predictions to variation

in parameter values was not reported.

Later Kangasr€a€asi€o et al. (2017) used BO and ABC for estimating the maximum of

the posterior distribution (MAP estimate) of the parameter values, which improved the

model fit. The inference used a dataset collected by Bailly, Oulasvirta, Brumby, and

Howes (2014). Our study extends their analysis in multiple ways. First, the full posterior

distribution of the model is estimated, instead of just the maximum of the posterior. This

provides a rigorous characterization of the remaining uncertainty in the parameter values,

which was not discussed in the earlier study. Second, the mean of the posterior is esti-

mated, which is often a more robust point estimate compared to the maximum. Third, the

efficiency of the method is rigorously compared to alternative methods, which was not

done previously.
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6.3. Methods

We focus on inferring the values for three model parameters: the duration of fixations

fdur 2 [0 ms, 500 ms], the duration of the selection of the target item dsel 2 [0 s, 1 s],

and the probability of recalling the menu layout from memory prec 2 [0, 1]. These

parameters were selected as they were judged to have the largest effect to the predicted

behavior. Further, it would be very challenging to estimate the selection delay or recall

probability based only on earlier literature, as they may be largely affected by the precise

setup used to collect the data.

The original model by Chen et al. (2015) had set fdur manually to 400 ms, and it did

not yet include the model features related to dsel or prec. The corresponding MAP parame-

ter estimates inferred by Kangasr€a€asi€o et al. (2017) were fdur 280 ms, dsel 290 ms, and

prec 0.69. In addition to these parameters, the probability of observing the semantic simi-

larity of neighboring items with peripheral vision was inferred to be 0.93. In this study,

we use this constant value for this parameter as we assumed it would have the smallest

effect on the performance, and as the model is expensive to evaluate, using fewer param-

eters allowed us to run more a extensive comparison study.

We quantify the model fit by the natural (base e) logarithm of the following error E,
which is based on the task completion time means l and standard deviations r, when the

target was present (pre) and absent (abs) from the menu:

E :¼
X

c2fpre;absg
lc;abs � lc;sim
� �2þjrc;abs � rc;simj

� �
:

Both l and r are in units of 1 ms.

The users in the dataset collected by Bailly et al. (2014) were divided randomly into

two groups. The data from the first group (user IDs 4, 18, 19, 21, 23, 37, 38, 39, 40, and

42) were used only for parameter inference, while the data from the second group (user

IDs 5, 6, 7, 8, 20, 22, 24, 36, and 41) were used only for estimating the prediction error.

For posterior estimation, we used a prior very similar to that used by Kangasr€a€asi€o
et al. (2017). For fdur, the prior is a normal distribution with mean 300 ms and standard

deviation 100 ms, as we believe plausible fixation durations are between 200 ms and

400 ms. For dsel, the prior is a normal distribution with mean 300 ms and standard devia-

tion 300 ms, as we believe plausible fixation durations are between 0 ms and 600 ms.

For prec, the prior is a beta distribution with a = 3.0 and b = 1.35, which roughly corre-

sponds to a normal distribution with mean 0.69 and standard deviation 0.2.

As each model evaluation took multiple hours, we used 20 parallel computers to

reduce the used wall-clock time. Although Nelder–Mead is not a parallelizable method, it

is possible to run multiple instances of the optimization algorithm in parallel, and select

the best overall result. In our experiment, we report both the performance of non-paral-

lelized Nelder–Mead, as well as a simulation of the parallelized performance, which is

computed using the results from the non-parallelized experiments. In the simulations, for
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each datapoint, we sampled five experiments without replacement from the corresponding

10 independent experiments and selected the parameter location with smallest error on

training data. Five samples were used as this resulted in comparable amount of total

CPU-hours being spent as with the other parallelized methods for the RL model, without

sacrificing too much of the mutual independence of the simulated results.

6.4. Results

Given around 700 h of CPU-time for each method, the results were as follows. With

grid search, we obtained values fdur 260 ms, dsel 150 ms, and prec 0.61. The Nelder–Mead

optimized values were fdur 220 ms, dsel 290 ms, and prec 0.51. With BO, the values were

fdur 150 ms, dsel 430 ms, and prec 0.22; and for ABC, they were fdur 220 ms, dsel 290 ms,

and prec 0.58. Comparing the results, we observe that here is more overall disagreement

regarding the optimal parameters between the methods than in Example 1. One contribut-

ing factor is likely the fact that none of the methods has properly converged within the

available computation time caused by the expensive model evaluations. This means that

there is likely considerable remaining uncertainty about the location of the best possible

parameter values with all of these methods. Out of the compared methods, ABC has the

most visually intuitive quantification of this uncertainty (Fig. 9).

6.4.1. Efficiency
The efficiency of different inference methods, quantified by the model fits achievable

with given computational resources, is visualized in Fig. 6. Nelder–Mead is the most effi-

cient to converge, although it is also the most susceptible for over-fitting the parameters

to the training data. This is demonstrated by the fact that prediction error starts increasing

after a certain amount of optimization has been performed. This behavior can be

expected, as the model evaluations are very stochastic while the method assumes non-

stochastic evaluations. This leads to the method making overly optimistic assumptions

about the model fit, based on chance occurrences where the model fit happened to be

lower than the average fit achieved with those parameter values. This over-fitting could

be alleviated by analyzing the prediction error on test data, and stopping the optimization

when the prediction error on test data starts increasing.

Bayesian optimization is also efficient to converge, being slightly faster at start com-

pared to parallelized Nelder–Mead, but slower to fine-tune the parameter estimates later

on. However, as the method takes the stochasticity of the model evaluations in account, it

is also more robust against stochasticity-related over-fitting. ABC PM behaves roughly in

a similar fashion as BO. In this case, as the prior is more restrictive, the method is able

to achieve good model fit even at the beginning of the inference process. As the method

optimizes a balance between model fit and credibility of parameter values, the final model

fit is higher compared to BO or Nelder–Mead. Grid search is the least efficient to con-

verge and would likely require many orders of magnitude more CPU-hours to converge

to the same quality of parameters as the other methods.
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6.4.2. Informativeness
The ability of the methods to quantify model fit in different parts of the parameter

space is visualized in Figs. 7–9. As Nelder–Mead only provides a point estimate, no such

visualization is possible with it.

Similarly as with the ACT-R model, grid search provides the roughest characterization

of the model fit across the parameter space, as shown in Fig. 7, while the GP regression

model from BO is able to provide a much better characterization of the model surface

using fewer simulations from the model, as shown in Fig. 8. And again, the ABC poste-

rior, shown in Fig. 9, provides an intuitive characterization of the likely parameter

regions.

In this example, we notice a clear difference between the optima of the BO model fit

surface and the ABC posterior. This is explained by the more restrictive prior distribution

used. In this case, the feature that is most restricted by the prior is the fixation duration.

While the minimum of the model fit surface predicts a mean fixation duration of 150 ms,

this is a low value compared to existing knowledge about fixation durations, which place

the mean around 225–400 ms (Rayner, 1998). As this information is encoded in the prior,

the ABC posterior automatically makes a principled trade-off to balance the plausibility

of the parameter values with the accuracy of the predictions. In this case, this leads to a

slight increase in the fixation duration (from 150 ms to 220 ms), a reduction in selection

Fig. 6. Average model fit and confidence bounds for different point estimation methods as a function of the

number of total CPU-hours used. The shaded region indicates the area between the 25th and 75th percentiles.

ABC PM is the ABC posterior mean; BO is Bayesian optimization. Each point is estimated using 10 indepen-

dent experiments, except for parallel Nelder–Mead, which is simulated using the non-parallel experiments.
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delay (from 430 ms to 290 ms), and an increase in the probability of recalling the menu

(from 22% to 58%).

6.4.3. Posteriors of individual users
With this model, we also inferred the approximate posteriors of individual subjects

from the study by Bailly et al. (2014). We omitted users that had a low number of obser-

vations from either menu condition. For the selected users, the lowest number of observa-

tions from the “target present” condition was 175 and for the “target absent” condition 21

observations. We were left with seven subjects (subject IDs 5, 18, 19, 24, 37, 39, and

40). We repeated the above inference procedure for the data collected of each of these

subjects individually, with the restriction of 400 model evaluations (in batches of 20).

The estimated posterior distributions are visualized in Fig. 10. We observe that most

posteriors are similar in nature as was the population level posterior estimated before,

shown in Fig. 9. Especially, subjects 18, 19, and 37 have posteriors that are very similar

to the population mean, indicating that a model fit with population level data would be a

good approximation for these individuals. However, we also observe clear individual vari-

ation in the posteriors, which indicates that the model offers different explanations for the

Fig. 7. Estimated model fit (2D and 1D slices) near the optimum value (fdur 260 ms, dsel 150 ms, prec 0.61)
using grid search and 660 CPU-hours of computation (512 model evaluations, 33 h of wall-clock time). Lin-

ear interpolation and constant extrapolation are used between sampled values. The color map is such that

black is 15 and white is 6; lighter shades indicate better model fit. Contours are superimposed for additional

clarity.
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behavior of each individual subject. For example, subjects 5 and 39 had a relatively low

selection delay, but in contrast, a slightly longer fixation duration compared to other sub-

jects. We are also able to identify anomalous subjects, such as subject 24, for whom a

very long selection delay was inferred, and on the other hand a very short fixation dura-

tion, and subject 40, for whom the posterior appears to be more complex and have a

heavy tail, which places the posterior mean further away from the posterior maximum.

By examining the behavior of such anomalous users more carefully, it would be possible

to either spot oddities in data collection procedures, identify completely new types of user

strategies, or point out behaviors that the model is unable to reproduce.

7. Discussion

Computational cognitive models generally seek to explain aspects of human cognition.

However, arguably, the quality of these explanations has too often been undermined by

misgivings regarding the parameter inference process. Many models have been published

with parameter values that are difficult to justify; sometimes because the inference

Fig. 8. Estimated model fit (2D and 1D slices) near the optimum value (fdur 150 ms, dsel 430 ms, prec 0.22)
using Bayesian optimization and 560 CPU-hours of computation (420 model evaluations, 28 h of wall-clock

time). The color map is such that black is 15 and white is 6; lighter shades indicate better model fit. Contours

are superimposed for additional clarity.
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method is ad hoc or not reported, sometimes because no alternative parameter values

have even been considered. Possible reasons for this include the inherent complexity and

long run-times of modern computational models, which prevent the use of certain stan-

dard inference methods, such as gradient descent, and make other methods, such as grid

search, computationally infeasible. Another reason might be that while a lot of progress

has happened in computational statistics in terms of readily applicable inference methods,

these have not yet been fully discovered in mainstream cognitive scientific computational

modeling. To remedy this situation, we reported an exploration of how principled and rig-

orous parameter inference can be performed for some of the most complex computational

cognitive model families. We compared two relatively recent methods, BO and ABC, to

two traditional methods, grid search and Nelder–Mead optimization.

The worked examples presented in this paper illustrate the benefits of both BO and

ABC. One major benefit is that estimates of parameter values, along with their uncer-

tainty, can be inferred efficiently for various types of computational cognitive models.

We found this for both for an ACT-R model and a reinforcement learning-based compu-

tationally rational model. We note that neither of these models has a tractable likelihood

function, which renders many traditional inference methods, such as gradient descent,

Fig. 9. Approximate unnormalized posterior density (2D and 1D slices) near the optimum value (fdur 220 ms,

dsel 290 ms, prec 0.58) using approximate Bayesian computation and 560 CPU-hours of computation (420

model evaluations, 28 h of wall-clock time). The ABC threshold e was 7.45, which is 0.01 above the esti-

mated minimum of the Gaussian process surrogate. The color map is such that black is 0.0 and white is 0.2;

lighter shades indicate higher posterior probability.
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Fig. 10. Approximate unnormalized posterior densities (2D slices) near the individual optimum values. One

posterior is shown per row, with subject ID on the left. The color map is such that black is 0.0 and white is

maximum for each function; lighter shades indicate higher posterior probability.
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infeasible. However, we observe that efficient general-purpose inference techniques such

as BO and ABC are able to solve the parameter inference problem reliably regardless of

this limitation.

Our results also confirm the common observation that automated parameter estimation

methods improve model fit over manual fitting. We demonstrated significant improvements

in model fit over a result obtained with manual fitting of the parameters of an ACT-R model

in a previous paper. We also note that the use of automated methods in general insists on

explication of model fit functions, search methods, and search spaces, subjecting them to

transparency and opening up the potential for scrutiny by the community.

Based on comparisons of different inference methods in two worked examples, we

observe that there appears to be a fundamental trade-off between efficiency and informa-

tiveness of different inference methods. In order to get estimates quickly, it is not possi-

ble to estimate the model fit over the entire parameter space at the same time, and vice

versa. We observed that different methods are able to make this trade-off more efficiently

than others; for example, BO was in both cases more efficient and more informative com-

pared to grid search.

We give two suggestions for selecting inference methods, depending on the situation.

While they are based on the two case studies presented herein, they are in line with pre-

vious applications.

• If the goal is to obtain reasonable parameter estimates quickly and there is no rea-

son to believe that the parameter space has multiple optima, local optimization-

based methods such as Nelder–Mead are sufficient. Local optimization appears to

be able to give reliably good parameter estimates in these cases, although stochas-

tic model evaluations may take the estimates off-track, and no estimate of parame-

ter uncertainty is given. Example use cases include initial hypothesis testing and

early model development.

• If the goal is to obtain robust parameter estimates accompanied by estimates of the

sensitivity of parameters, we suggest that methods based on efficient global opti-

mization should be used. These methods are able to estimate model fit across the

entire parameter space, while also facilitating the search of optimal values. Based

on our experiments, we observed that ABC is an efficient and informative inference

method. The method also allows prior information of reasonable parameter values

to be taken into account in a principled way.

There are multiple reasons why it is important to estimate the posterior distribution of

parameters over just the point estimates. The posterior probability distribution over the

parameter values is a rigorously defined quantitative measure of our knowledge about the

true parameter values. It grants proper, quantified estimates of uncertainties associated

with parameter values, which is inherently valuable for understanding the models and the

behavior that they describe. The posterior distribution is also a valuable diagnostic tool in

modeling. For example, the shape of the posterior can be informative of insignificant or

poorly identified parameters. If the posterior of a certain parameter is flat, this means that

either this parameter has no effect on the model predictions, or that there are insufficient
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observation data to infer the value of this parameter. The posterior shape can also inform

alternative explanations; if there are multiple modes in the posterior distribution, this indi-

cates the existence of multiple alternative explanations to the data. Finally, accounting for

the stochasticity of the predictions allows comparing their variance to the data using

specific parameter values. A complete check of model fit also takes the uncertainty from

model fitting into account when estimating the quality of the predictions.

Therefore, parameter inference plays a more decisive role in scientific modeling than

just the determination of reasonable parameter values. It is via parameter inference that

theories and models gain contact with reality, quantified by the observation data. In gen-

eral, a good explanatory model should be such that given observation data, the model

explicitly informs us about what we can and cannot tell about the unobserved quantities

of the cognitive system based on the data, and how reliable these estimates are. However,

being able to access such information is only possible through principled parameter infer-

ence methods, such as those based on Bayesian statistics. While various point estimation

methods, like Nelder–Mead, may quickly find parameters that allow replicating the obser-

vation data, probabilistic methods that consider the parameter space as a whole, like

ABC, allow answering the above questions more robustly. Such an inspection of the

parameter space could also be useful for assessing how the model constrains possible pre-

dictions (Roberts & Pashler, 2000).

In conclusion, modern solutions to the parameter inference problem have the potential

to transform the rigor, transparency, and efficiency of computational cognitive modeling.

Recent statistical inference methods, such as BO and ABC, can be used for inferring the

parameter values for some of the most complex simulation models developed in the field

of cognitive science. As argued here, these methods have important advantages compared

to the traditional methods. In the future, we hope that these inference methods make it

feasible for researchers in the field to work on even more ambitious computational cogni-

tive models.

Notes

1. Assuming comparable hardware between methods.

2. The term P(Dobs) is the marginal likelihood of observing Dobs considering all possi-

ble parameter values.

3. The notation x � P(x) indicates values of x are drawn independent and identically

distributed from probability distribution P(x).
4. The gradient is the direction in the parameter space which provides largest

improvement in the model fit, assuming small changes in parameter values.

5. Nelder–Mead further belongs to the subclass of “direct search” methods (Kolda,

Lewis, & Torczon, 2003), meaning that it only requires ordinal comparisons

between function values.

6. The posterior predictive distribution estimates the distribution of plausible behav-

iors, taking into account the uncertainty in the model parameters.
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7. Restricted to locations in the parameter space where we actually have evaluated the

model during inference, to reduce errors from extra- and interpolation.

8. Ten estimation locations were drawn from a uniform distribution that was centered

at the point estimate and had a width of 2% of the respective bound width. For

example, if the point estimate was 0.5 and the bounds were [0, 1], we would sam-

ple 10 locations from Uniform(0.49, 0.51).

9. By behavioral policy, we mean a decision rule which chooses what cognitive action

is to be executed in each possible cognitive state.
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