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A “plastic-strain-gradient” version of an isotropic elastoplastic damage model that depends on the third invariant J3
of the stress deviator is developed. The model is based on the “non-local” equivalent plastic strain e” defined by
Peerlings et al. (2001) and Engelen et al. (2003) and introduces a “material length” ¢ to the constitutive equations. It
is shown that the non-local equivalent plastic strain e” at a material point P can be identified with the average value of
the local von Mises equivalent plastic strain £’ over a sphere centered at P and of radius approximately equal to 3 ¢.
A methodology for the numerical integration of the constitutive equations is presented. The algorithm is appropriate
for rate-independent as well as rate-dependent (viscoplastic) models. The model is implemented in the ABAQUS
general-purpose finite element program and both quasi-static and dynamic problems are solved. Two possible A-
BAQUS implementations are discussed. First,“user elements” are developed, which can be used for the solution of
both quasi-static and dynamic problems. Reduced 1-point Gauss integration is discussed in 8-node hexahedral ele-
ments and the “physical stabilization” method of Puso (2000) is used to remove the resulting numerical singularities
(hourglass control). Second, the implementation of the model via “user material” subroutines is discussed. Quasi-
static problems can be solved with ABAQUS/Standard using a *COUPLED TEMPERATURE-DISPLACEMENT,
STEADY STATE analysis together with user subroutine UMAT, in which temperature is identified with the non-local
equivalent plastic strain e”; the solution of dynamic problems requires use of ABAQUS/Explicit together with a *DY-
NAMIC TEMPERATURE-DISPLACEMENT analysis option and user subroutines VUMAT and DFLUX. Several
example problems are solved.

Keywords: strain gradient plasticity, J3 dependence, damage mechanics, finite elements, numerical integration of
elastoplastic equations, hourglass control

1. Introduction

Analytical criteria for local ductile failure at a material point P are usually based on the assumption that the
accumulated equivalent plastic strain £” at P reaches a critical value é‘; Ductile failure in metals subjected to tensile
loads is the result of void nucleation at inclusions, followed by void growth and coalescence.

The pioneering works of McClintock (1968) and Rice and Tracey (1969) established that porosity growth depends
exponentially on stress triaxiality 17, defined as the ratio of mean normal stress p to the equivalent von Mises stress o.
These results led to the development of several local criteria for ductile failure, which define the critical equivalent
plastic strain é‘; as a function of stress triaxiality n; the works of Hancock and Mackenzie (1976) and Johnson and
Cook (1985) are typical examples. A discussion of several fracture criteria available in the literature has been given
by Bao and Wierzbicki (2004a) and Bai and Wierzbicki (2015). It is now generally accepted that for large triaxialities
(n > 0.4), where void growth is the failure mechanism, and for negative triaxialities ( < 0), where shear failure
occurs, the critical strain &, decreases with increasing 5. The situation is not as clear for intermediate values of the
triaxiality in the range 0 < n < 0.4: experimental results of Bao and Wierzbicki (2004a,b) on 2024-T351 aluminum



alloy indicate that & increases with 7 in that intermediate triaxiality range, whereas the experiments of Halton et al.
(2013) on Al-6061-T6, of Mohr and Henn (2007) on Al-7Si-Mg gravity die casting alloy, and of Luo et al. (2012) on
Al-6260-T6 show the opposite.

Wierzbicki and co-workers (Bai and Wierzbicki (2008, 2010); Xue (2007); Xue and Wierzbicki (2008)) carried
out carefully controlled experiments and showed that the critical strain &, depends on both the hydrostatic stress and
the third principal invariant J3 of the stress deviator. Based on these data, Bai and Wierzbicki (2008) proposed a failure
criterion in which the critical strain éﬁ,’ is function of triaxiality 77 and the “normalized Lode angle parameter” §, which
depends on J3 (BW model). Realizing the importance of damage and its effects on strain localization and ductile
fracture, Lian et al. (2012) introduced the concept of damage initiation and its evolution induced softening effect
on the strength to the BW fracture model, turning it into a hybrid (coupled or uncoupled) approach. The modified
Bai—Wierzbicki (MBW) damage model was applied successfully to the formability prediction of steel sheets (Lian
et al. (2014)) and heavy plates (Lian et al. (2015)), as well as the ductile fracture behaviour under impact loading
(Novokshanov et al. (2015)). To further improve the model performance especially for complex loading history, Wu
et al. (2017b) enhanced the model formulation and successfully applied it to the chip breakage prediction in cutting
(Wu et al. (2017a)). However, the challenge still exists when the model is intended to be used for large-scale structure,
while all the damage/fracture materials parameters are calibrated from lab scale due to its local formulation.

In the present paper we present a non-local (“plastic-strain-gradient”) version of the MBW model. The yield
function is defined in terms of all three principal invariants of the stress tensor: the hydrostatic stress p = /3, the
von Mises equivalent stress o, = /3 5;;5;;/2, and J3 = s;; s 5x:/3, where o is the (true) stress tensor, s the stress
deviator, and the summation convention is used on repeated indices. The flow stress of the material depends on the
equivalent plastic strain £” and a damage parameter D, which evolves during plastic flow. A “non-local” equivalent
plastic strain e” (Peerlings et al. (2001); Engelen et al. (2003)) is introduced and used to define the evolution of the
damage parameter D. The non-local equivalent plastic strain e” at a material point P can be interpreted as the average
value of the local variable £” over a material sphere centered at P with radius R ~ 3 £, where ¢ is a material length
introduced in the definition of e”.

The calibration of the local version of the model is discussed in detail by Novokshanov et al. (2015), Wu et al.
(2017b), and the corresponding calibration of the non-local model is underway and will be reported elsewhere. The
present paper focusses on important issues associated with the numerical implementation of the non-local model in
a finite element code. These include the finite element formulation of the non-local boundary value problem and the
numerical integration of the constitutive equations that account for J3-dependence.

Independent interpolations are used for the displacement field u and the non-local plastic strain e”. For plastically
incompressible materials, the integration of the elastoplastic damage model reduces to the solution of a system of two
non-linear algebraic equations. The algorithm covers the rate-independent as well as the rate-dependent (viscoplastic)
versions of the model.

A three-dimensional 8-node hexahedral isoparametric finite element with one Gauss station for numerical inte-
gration is developed. The element is used to carry out efficiently large scale finite element calculations in implicit
as well as explicit finite element codes, such as ABAQUS/Standard and ABAQUS/Explicit. The element is based
on a “mixed formulation”: incremental displacements, stresses, incremental displacement gradients, non-local plastic
strains, non-local plastic strain gradients, and non-local generalized stresses are treated as independent unknowns and
their relations are enforced in a weighted integral sense. Several such mixed formulations are available in the litera-
ture for standard local plasticity models; e.g., we mention the works of Corradi (1983), Nyssen and Beckers (1984),
Pinsky (1987), Simo et al. (1989), Comi and Perego (1995), Capsoni and Corradi (1997a,b), and Mendes and Castro
(2009). Orthogonal interpolation fields are used (Simo and Hughes (1986); Simo and Rifai (1990)) and the problem is
finally defined only in terms of the nodal values of the displacement field u and the non-local equivalent plastic strain
e?. Also, to overcome the numerical singularities introduced by the reduced one-point integration, the “enhanced
strain method” developed by Simo and co-workers is used (Simo and Rifai (1990); Simo and Armero (1992); Simo et
al. (1993); Freischlidger and Schweizerhof (1996); Kasper and Taylor (2000a,b); Areias et al. (2003)). The enriched
interpolations used for the incremental displacement gradient and the non-local equivalent plastic strain gradient pro-
vide the required “hourglass control”, known as “physical stabilization, that removes the aforementioned numerical
singularities (Belytschko and Bindeman (1991)). The scheme proposed by Puso (2000) is used to derive approximate
but very accurate analytical expressions for the stabilisation terms, thus obviating Gauss quadrature and leading to a
computationally efficient finite element formulation.



We also discuss how such non-local elastoplastic damage models can be used together with the ABAQUS general-
purpose finite element code. The obvious choice is to develop a “user element” (UEL subroutine) in ABAQUS, which
can then be used for the solution of both quasi-static and dynamic problems. For , a simpler
alternative is possible, if a “user material subroutine” UMAT is used together with a coupled temperature-displacement
analysis, in which temperature is identified with the non-local equivalent plastic strain e” and the plastic work-rate
' = o : D? is properly defined and used as a heat source, where D? is the plastic part of the deformation rate tensor;
this minimizes the programming effort and allows for the use of all elements available in the library of ABAQUS/Stan-
dard as discussed in section 6. This approach cannot be used with ABAQUS/Standard in dynamic problems. Dynamic
problems including inertia terms can be solved by using ABAQUS/Explicit together with user material subroutine
VUMAT and a dynamic temperature-displacement analysis option as described in section 7. When the explicit code
is used for the solution of quasi-static problems, care must be taken to eliminate the influence of the inertial terms in
the equations of motion and of the transient terms in the energy equation; these issues are discussed in detail in section
7 and in example problems 8.2 and 8.3.

Standard notation is used throughout. Boldface symbols denote tensors the orders of which are indicated by the
context. All tensor components are written with respect to a fixed Cartesian coordinate system with base vectors
e; (i = 1,2,3), and the summation convention is used for repeated Latin indices. The prefix “det” indicates the
determinant, a superscript 7 the transpose, a superposed dot the material time derivative, and the subscripts s and a
the symmetric and anti-symmetric parts of a second order tensor. Let (a, b) be vectors, (A, B) second-order tensors,
and (C, D) fourth-order tensors; the following products are used in the texta-b = a; b;, (ab);; = a; b;, (A-a); = Ay ax,
(a-A); = ar A, A : B =4;;Bij, (AB)jjis = A;j Bia, (C : A)ij = Cijrt Awi, and (C : D)ijir = Cijpg Dpg- The inverse
C~! of a fourth-order tensor C that has the “minor” symmetries C; k1 = Cjit = Ciji is defined so that C : c'=ct':
C = 1, where 1 is the symmetric fourth-order identity tensor with Cartesian components . ;jz; = %(5,-/c 61+ 06i10jk), 0ij
being the Kronecker delta.

2. Description of constitutive model

An Eulerian formulation is used; the equations of motion and the constitutive equations are all written in the
current deformed configuration of the elastoplastic body.

The elastic and plastic response of the material are treated independently, and combined later to obtain the full
elastic-plastic response. The rate-of-deformation tensor D at every point in the continuum is written as

D = D¢+ D?, (1)
where D¢ and D? are the elastic and plastic parts.

2.1. Elasticity
An isotropic linear hypoelastic form is assumed for the elastic part of the rate-of-deformation tensor:

D= Mo or g’zLE:De, )

where g’ is the Jaumann or co-rotational rate of the stress tensor,
M3=%7(+3LKJ, LE=(M)Y ' =2GK +3kT, jz%éé, K=1-9, 3)
(G, k) denote the elastic shear and bulk moduli respectively, 6 and 7 the second- and fourth-order identity tensors
with Cartesian components ¢;; (the Kronecker delta) and 7, = %((51'1{ Oj1+6i16 jk). The hypoelastic form (2) is

consistent, to leading order, with Ayperelastic behavior, because the elastic strains are small relative to the total strains
(Needleman (1985); Aravas (1992)).



2.2. Rate-independent plasticity
The isotropic yield condition is described by a smooth function of the form

O(p,0,,0,8°,D) =0, 4)
where o is the true (Cauchy) stress tensor, p = % o the hydrostatic stress, s = o — p 6 the stress deviator, o, =

A /% s : s the von Mises equivalent stress, J3 = % tr (53) = dets, 6 the “Lode angle” defined by

2
36 = arcsin(—;g), -

e

<36<

; )

NN
NN

D is a “damage parameter”, and 7 the von Mises equivalent plastic strain, the rate of which is defined as

Ef’zw/%Dp:DP. (6)

The damage parameter D in (4) takes values in the range 0 < D < 1 and is defined in terms of the “non-local”

equivalent plastic strain as described in sections 3.1 and 3.1.1.

The value 6 = 0 corresponds to pure shear, § = —% to uniaxial tension, and § = £ to uniaxial compression. We

also define the “stress triaxiality”  and the “normalized Lode angle” 6:
p - 0
=2, G-t %)

The parameter 6 takes the values of 1 in uniaxial tension, —1 in uniaxial compression, and 0 in pure shear.
The flow rule that defines the plastic part of the deformation rate D? is defined by a “normality rule”:

00
" do’

where A is a non-negative plastic flow parameter. Therefore, in view of (6), we can write

& = AP, P:J%P:P. )

The normal P to the smooth yield surface can be written in the form
P_B@_@é_p 0d oo, 0P 99 16@6 GCDN 1 00

D? = 1P, P )

== —Z - ——M 10
b0 dpoo G000 900c 30p°  dr.  ou 00 " (10)
where P 3 36 |
g
N=—¢=_>_ M=0,— = —sin30N - 2N?). 11
o 20, s o cos30(6 st ) (In
Remarks

1. Equations (8), (10), and (11) show that the principal directions of o, s, N, M, P, and D? coincide i.e., they are
all “co-axial”.

2. The normal P to the yield surface in (10) is defined in terms of the dimensionless “direction tensors” 6, N, and
M, which have constant magnitude and are orthogonal:

3
6:6=3, N:N:M:M:E, N:6=M:6=N:M=0. (12)

Also, both N and M are deviatoric, i.e., Ny = My = 0.

Tensors (8, N, M) are shown as vectors (6", N, M”) in the space of principal stresses (071, 0, 073) in Fig. 1. The
so-called “deviatoric [I—plane” is defined by the equation oy + 0 + 03 = 0 on the (07, 0, 03) space. Vectors
N" and M" lie on the [T-plane, are perpendicular to each other, and §” is normal to the IT-plane.

3. The definition of M in (11b) needs special treatment as § — +%, since in that case cos36 — 0. In the
following section 2.2.1 we show that, on smooth yield surfaces, M approaches unique finite values as 6 — +%.
O



2.2.1. Principal stress directions
Let (nV,n® n® = n) xn?@) be the common unit eigenvectors of o, s, N, M, P, and D”. The triad (n), n®, n®)
forms a right-handed orthonormal basis and we can write

3 3 3
o= Zo'i n n®, s = Z s;in®n@®, N = Z N;n® n®, (13)
i=1 i=1 =1
3 3
M = Z M;n® n®, pP= Z Pn® n®, (14)
i=1 i=1
where oo a0 o
i=0i—p=30eNi i=ro- o Nt ——— M, 15
NTOmPERY 30p "o T o0 (15)

The principal stresses can be written in the form (e.g., Kachanov (1971); Nayak and Zienkiewicz (1972); Jiang and
Pietruszczak (1988))

2
0= Soccosf+p.  with 9,-=9+(5—4i)%, —ses%, (16)

[

where the numbering i = 1,2, 3 in the definition of ; is such that oy > 0 > 03. Using equations (11) we conclude
that the principal components of N, M, and P can be written in the form

dN; 100 90D 1 00 .

= o p=-T % 6, — — — sin6;. 17
o 30p a0, T o 00 a7

N; = cos6;, M; = —sin@; =

A schematic representation of tensors o, s, N, M, and ¢ in the principal coordinate system is shown in Fig. 1, where
the following vectors are defined:

3
N =Nn®, MY =Mn®, 6= a0, (18)

i=1

and N NN
o’ =00 = 0B, s' = s;n?) = 4B. (19)

N is defined uniquely at all points of a smooth yield surface, and the unit vectors (\/gNV, \/g M, \/g 6V) form a

right-handed orthonormal basis. Therefore M" = % 6 X N” and the components M; are related to N; as follows
- - - N,
M1=N3 Nz’ 2:]\]1 N3’ 3:N2 1' (20)
V3 V3 V3
Figure 2 shows the projection of the principal axes on the deviatoric [I-plane and the Lode angle 6.
Equations (14a), (16b), and (17b) yield
lim M = V3 (n®n® — n®n) lim M = V3 (@ —n¥n®) Q1)
0—% 2 ’ 0—--% 2 ’

i.e., the direction tensor M defined in (11b) takes finite values as  — +% (compare to (11b)). It is also known that
isotropic yield surfaces are symmetric with respect to the lines # = +% on Fig. 2 (e.g., Hill (1950), p. 18). Therefore,
when an isotropic yield surface is smooth

00

100 0o
lim — =0, so that (10) yields lim P = (——6 +
6-+Z 06 62

30p oo,

N) , (22)
O=+

§
i.e., the normal P to the smooth isotropic yield surface has no component in the M-direction at 6 = +7%.

5
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Figure 1: Schematic representation of o, s¥, 6", N”, and M" in the principal coordinate system for oy > 0 > 03. When 0] < 0 < 03, M” has
the opposite direction of that shown.

2.3. Rate-dependent plasticity

To simplify the formulation, we assume that the elastic domain of the material is defined by a smooth yield function
of the form
O(p, 0., 0,0,(&"),D) <0, (23)

where 0, (£7) is the yield stress of the material and the function @ is such that @ /do, < 0.
In rate-dependent materials, when the rate-independent yield condition (23) is violated (® > 0), the equivalent
plastic strain £ is determined by the rate-dependent yield function

®(p, 0, 0,%,(87,8°),D) = 0 & g’ =& (p,0.,0,8, D), (24)

where function @ in (24a) is the same as that in (23) with o, replaced by the rate-dependent yield stress X,(&”, £”).
The rate-dependent yield condition (24a) defines essentially the local equivalent plastic strain rate & in terms of
(p, 0., 0, &P, D), as stated in (24D).

The function that determines X,(&”, &) is of the form

—p iy _ O'y(ép) for ép < &,
(&, &) = { F(&,8) for & > &, (25)
with F(&°, &)o,(&”), where & is a material parameter that defines the strain rate below which rate effects are negligi-
ble. In metals, & is of order 107*/s and F/d&P > 0 (so that 0®/JP < 0 in (24a)).

Remark

If the function F in (25) can be inverted to write &” = F "(Ey, &P), then the model can be stated in the following
alternative way:

When the rate-independent yield condition (23) is violated (® > 0), the equivalent plastic strain rate &” is defined by

g =F',8") with F'(0,,8) =&, (26)

where X, satisfies the yield condition (24a), i.e., ®(p, 0,6, %,, D) = 0. In fact, this is the way the rate-dependent
form of the well-known Gurson model for voided metals is usually presented (Tvergaard and Needleman (1986);
Needleman and Tvergaard (1987)). 0



M-plane

Figure 2: Lode angle 6 on the deviatoric IT-plane.

2.4. Damage modeling
2.4.1. Damage model of Bai and Wierzbicki (2008, 2010) (BW)

A detailed discussion of various commonly used local ductile failure criteria for metals has been presented by Bao
and Wierzbicki (2004a). These criteria postulate that fracture occurs at a point in a body when the integral

&P
def

AUND)
0

27

reaches a critical value at that point, where f(, 6) is a dimensionless stress-dependent weighting function. Bai and
Wierzbicki (2008, 2010) suggest to normalize f(n, 6) so that this critical value equals unity (BW model). Then, the
failure criterion can be written in the form
&P
de?f

f(n.0)
0

D@E’) =1, with D@E)=

7 (28)

where éﬁ,’ is the value of &” when fracture occurs. The parameter D defined in (28b) can be thought of as a “damage
indicator”.
If parameters (7, #) remain constant in a loading program (“proportional loading”), equations (28) leads to

&) = fn,0), (29)

i.e., the function f(7, 6) defines essentially the fracture locus on the (7, 6) space.
In the case of non-proportional loading, Bai and Wierzbicki (2008) suggest to define the fracture locus (29) in
terms of average quantities:

& &
1
&= f(lav, Oay),  Where  1ay = = f nde’, by = f 6dzs". (30)
!
0 0

\ch|H

2.4.2. The modified damage model of Bai and Wierzbicki (MBW) (Lian et al. (2012); Wu et al. (2017b))
Physically, damage initiation at a material point is identified with the creation of a micro-defect (e.g., a microcrack)
at that point. According to the definition of damage D in equation (28b), damage starts accumulating when the material

7



deforms plastically, i.e., when £” takes non-zero values. Based on experimental data, the “Aachen group” (Lian et al.
(2012); Wu et al. (2017b)) suggested that damage initiation does not occur at £’ = 0. Instead, Lian et al. (2012) and
Wu et al. (2017b) introduce a “damage initiation indicator” [ defined as

g

&P &

def 1 - 1 -

[= - = v — —_ d_p, 9\/: e Qd_p, 31

f 5{7 (av» Oav) e &P 74e ! ep f ¢ 31
0 0 0

where @ is the normalized Lode angle defined in (7),
éf(naw éav) — (Cl e 2N _ P e ¢ 'Iav) éiv +c3 e G4y (32)

and (c1, ¢y, c3,c4) are dimensionless positive material constants. Damage is assumed to initiate when indicator /
reaches the value of 1. If parameters (77, 6) remain constant in a loading program (“proportional loading”), then
equation (31a) implies that damage initiation occurs when &” = éf (n,9).

Returning to the case of general non-proportional loading, we let o; denote the value of the material flow stress
oy (see equations (161) and (163b) below) at damage initiation, i.e., when the condition / = 1 is satisfied. Once the
value of / = 1 is reached, the dimensionless damage parameter D starts to evolve according to the relation
oy = .

D:{fsp if {—landn>ncr, (33)
0 otherwise,

where G is a material parameter with dimensions of energy per unit volume, 7., is a critical value of stress triaxiality
below which local material failure never occurs (7., ~ —1/3, Bao and Wierzbicki (2005)), and

Dcr(rlaw éav) = min [(CS e O —cre” ']av) éiv +¢7¢ ™ Diax| » (34)

(cs, cg, C7, cg) are dimensionless positive material constants, and Dyax un upper limit to the damage parameter D to
make sure that D, is always < 1 (Dpax S 1).
Wu et al. (2017a) introduce the “failure indicator” /r, which evolves as

LD
4 Dcr(nav, Oav) ’

and local material failure occurs when the failure indicator parameter /r reaches the value of unity, i.e., when Iy = 1.
If parameters (1, #) remain constant in a loading program (“proportional loading”), then equation (33) and (35)
imply that local material failure takes place when D = D(n, 6).

(35)

3. Non-local formulation

A well-known problem in the computational implementation of damage mechanics models is that finite element
solutions depend on the mesh size when the material enters the softening region. The mathematical reason for this is
that the governing equations loose ellipticity and the boundary value problem, as posed originally, becomes ill condi-
tioned. In order to overcome this difficulty, it is common to “regularize” the problem by introducing additional terms
in the constitutive equations that involve spatial gradients of strain. These additional terms restore ellipticity, increase
the order of the governing equations, and in the case of plasticity they may even change the yield condition from
an algebraic non-linear equation of stress to a partial differential equation of plastic strain (Benallal and Tvergaard
(1995)). The additional terms in the constitutive equations involve one or more “material lengths” that are related to
material microstructure. In all cases, the numerical solution of the problem becomes more involved and most standard
finite element codes cannot be used for their numerical solution.

To overcome the aforementioned difficulties we introduce the “non-local equivalent plastic strain” e” and develop
a “strain-gradient” version of the MBW model.



3.1. Non-local equivalent plastic strain — Gradient formulation

We follow Peerlings et al. (2001) and Engelen et al. (2003) and define the “non-local” equivalent plastic strain
field e”(x) in terms of the “local” equivalent plastic strain field £”(x) from the solution of the following boundary
value problem (BVP):

e’ -0Vl =8 in Q (36)
oe’ »
o =n-Ve# =0 on 0Q, 37

where ¢ is a material parameter with dimensions of length, Q is the domain occupied by the elastoplastic body in its
deformed state, 9Q its boundary, and n the unit outward normal vector to 0Q.

The boundary condition (37) guarantees that the “total values” of ¢/ and & in Q coincide. In fact, integration of
(36) over the domain € and use the divergence theorem together with (37), leads to the conclusion

f e’ dQ = f & dQ. (38)

Q Q

The BVP (36)—(37) is solved and the non-local equivalent plastic strain e” is determined in the entire problem
domain Q) and not just inside the plastic zone (Peerlings et al. (2001); Engelen et al. (2003)).

The formulation of the BVP (36)—~(37) and the interpretation of e” as a weighted spatial average of the local
values £” is discussed in detail by Peerlings et al. (2001) and Engelen et al. (2003). Here we give a slightly different
interpretation of the non-local variable e” as follows. At any given material point with current position x, we calculate
the average value &%, of the local equivalent plastic strain ” over a material sphere V of radius R centered at x:

1
&= [#marw. (39)
14

If we now assume that £”(y) is a smooth function of position, write a Taylor series around x, and introduce spherical
coordinates with origin at x, we find after some lengthy but straightforward calculations that

g0 (x) = P(x) + {2 V2EP(X) + O(L* V*&P), (40)
where £ = \% = 0.32 R. Last equation implies that
2 V2D (x) = 02 V2EP(x) + O(L V4EP). (41)
Subtracting (41) from (40) we find
&(x) — 02 V&L (x) = E°(x) + O(£* V*&P). (42)

Comparing last equation to (36), we conclude that we can identify the non-local equivalent plastic strain e”(x) in (36)
with the average value &2,(x) of the local equivalent plastic strain &” over a sphere of radius R = V10 ¢ = 3.16¢
centered at x, to within terms O(£* V4g”). Obviously, the above interpretation breaks down for material points near
the boundary 0Q, where part of the material sphere of radius R centered at the point under consideration lies outside
the domain Q occupied by the elastoplastic body.

Following a similar approach we show that, in two dimensional problems, the non-local equivalent plastic strain
e”(x) in (36) can be identified with the average value &5,(x) of the local equivalent plastic strain & over a circle of
radius R = 2 V2 ¢ = 2.83 ¢ centered at x, to within terms O(£* V4&P).

Finally it should be emphasized that, whereas the local equivalent plastic strain is such that &2 > 0 by definition,
the non-local e” is defined by the solution of the BVP (36)—(37) and the possibility ¢’ < 0 at some material points
cannot be excluded. Therefore, following Peerlings et al. (2001) and Engelen et al. (2003), we define

&/(f) = max{e(1)| 0 < T <#}  (t=time), (43)

which ensures that é7(f) > 0 always. The definition of &” can be written also in a Kuhn-Tucker form (Peerlings et al.
(2001); Engelen et al. (2003)). The non-local parameter 7 is used in the gradient-version of the evolution equation
for damage as described in the following section.



3.1.1. The non-local version of MBW

In the present paper we use a non-local version of the MBW damage model in which the local equivalent plastic
strain £” is replaced by the non-local equivalent plastic strain & in all expressions of section 2.4.2. This means that
the value of damage D at a material point is not determined from the local value of the equivalent plastic strain &”
at that point; instead, D at a point is essentially calculated by using the average value of &” over a material sphere of
radius about 3 ¢ centered at that point.

In particular, we write

er

R
gf(naw Oay) "

|-

él ) | )
f ndet, = f Gde’, (44)
0 0

N Oyig, 1 if I=1 and 1> 1,

D=a G, ‘1o if otherwise, (43)
f

, D

lf= ———, 46

/ Der(Mav, Oav) (46)

where E‘f’ (Mav, éav) and Dcr(nav,éav) are defined by (32) and (34). Local material failure occurs when the damage
indicator /r reaches the value /r = 1.
Figure 3 shows a schematic representation of the stress-strain curve in uniaxial tension.

o

Figure 3: Schematic representation of stress-strain curve in uniaxial tension.

3.2. The plastic multiplier and the tangent modulus for rate-independent materials
The elastoplastic constitutive equations are now combined to derive an equation relating the Jaumann derivative
o to the deformation rate D and the rate of the non-local equivalent plastic strain ¢” in a rate-independent material.
The derivation is as follows.
Assuming plastic loading (A > 0), substitution of D* = D—D” = D — A P into the hypoelastic constitutive equation
v .
(2) (o = L : D°) yields
v .
o=/L':(D-AP). 47)
Since @ is an isotropic function, the “consistency condition” ® = 0 can be written in the form (Dafalias (1985))

_0% g 00, 000D,
T do T 0P oD der

10

) (48)



or, in view of (47),

00 .- 9D oD
e _ 7= iy Y J
P:L:(D /lP)+aép/lP+aD6epe =0, (49)
which leads to | P 50
. O 0D -
=—|P:L°: D+ ——¢"], L=P:L°:P+H, H=-P—. 50
1 L( £ +6D6el’e) LP o5 (50)
Substituting the value of A from (50a) into (47) we find
v nl .
o=L:D-A"¢é", (51)
Where 1 1 0® oD
=L~ —(L:P)(L:P A= —— — [°:P. 2
L=L-7(L:P)(L:P), 3D L (52)

Also, using the value of A from (50a) in (9) (&7 = A P), we find

0® oD

.. P
e =—(P: LD+ _—=—¢é")]. 53
¢ L( LD oD e ¢ (53)
The corresponding form of equation (51) for the local model is
v _ loc .
o=L":D, (54)
where
1
L= L0- S (L P)(L: P, (55)
= (0D 00 oD
[=P: L:P+H, H=-Pl—+a=-—], 56
LPr AT (aép +a6D65P) (56)

and « takes on the values of either 0 or 1 according to equation (33).

4. Numerical integration of constitutive model

In this section, we develop an algorithm for the numerical integration of the constitutive equations. In a finite
element environment, the solution is developed incrementally and the constitutive equations are integrated at the
element Gauss integration points. As will be described in section 5, the nodal unknowns are the displacement vector
u and the non-local equivalent plastic strain e”. The history dependent behavior is obtained based on the incremental
displacements and non-local equivalent plastic strains (Au, Ae”) and the state at the start of each increment.

Let F denote the deformation gradient tensor, which is determined in terms of the nodal displacements within
each finite element. At a given Gauss integration point, the solution (Fn, 0., 8,D,, el ) at time ¢, as well as the values

F,.1,€’, ) at time t,.; = t, + At are known, and the problem is to determine (07,41, &, ,, Dur1). In the following,
Cne) € . e nt

quantities with a subscript n are evaluated at the start of the increment (¢ = #,) and subscript n + 1 denotes values at
the end of the increment (¢ = #,11).

The time variation of the deformation gradient F during the time increment [#,, #,+ ] can be written as
F(t) = AF() - F, = R(?) - U(¥) - F,,, th S <ty (57)

where AF () is the deformation gradient relative to the configuration at the start of the increment, and R(¢) and U(?) are
the rotation and right stretch tensors associated with AF(¢). The corresponding deformation rate D(¢) and spin W(z)
tensors are given by

D(t) = [E()- F’l(t)]s = [AF (@) - AR~ (1)] (58)

>
N
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and
W) = [F() - F_l(t)]a = |AF(@) - AF_I(t)]a, (59)

where the subscripts s and a denote the symmetric and anti-symmetric parts, respectively, of a tensor.
The rotation tensor R(¢) introduced in (57) is used to define the so-called “rotation-neutralized quantities” &(¢),
N@(¢), and M(#) (Nagtegaal and Veldpaus (1984)):

() =RI (1) - o(t) - R(), N(?) = RT(#) - N(©) - R(¥), M%) = R7(¢) - M(¢) - R(?). (60)

It is assumed that the Lagrangian triad associated with AF(¥) (i.e., the eigenvectors of U(#)) remains fixed in the time
interval [#,, ¢,+1]. Then it can be shown readily that

D) =R -E0)-RT(). o) =R@)- &) RT(1), (61)

where E(f) = InU(?) is the logarithmic strain relative to the configuration at #,. It is noted that at the start of the
increment (¢ = ¢,)
F,=R,=U, =46, 0y =0, E,=0, (62)

whereas at the end of the increment (¢ = #,4)
AF,.1 = F, -F;] =R,1 - U, =known, and E,.; =InU,;; = known. (63)

Taking into account that the invariants of 6 and o are the same and that P is an isotropic function of its arguments,
we can write the rate-independent elastoplastic equations in the form

E =E°+E”, (64)
&=L E =L°:(E-EP), (65)
O(p,0.,6,8”,D) = 0, (66)

L (10D . 9D . 10D .
E? = AP(6,8",D) = A| 5 — N+ ——M 6
(6,8, D) (3 6p6+a% to M) (67)

i = lng - Ep. (68)

The evolution equation of damage is given by (44)—(45). Equation (67) shows that E? is co-axial with &-.

The above elastoplastic equations are integrated numerically as follows. Recall that the non-local equivalent
plastic strain e” is a nodal variable and, therefore, its value is known at the Gauss integration points. The evolution of
damage is determined first by using a forward Euler scheme in (44) and (45). As the solution develops, we monitor
the evolution of damage indicator / and calculate

AéP

L=l + ———
T (aylas Oavln)

(69)

When the condition 1,11 > 1 is met for the first time, the corresponding value of o); = O'y(éi 1) is stored. The
evolution of damage is also calculated:

AD = { % Ae? if .1,1 >1 and 1, > N and D, < Dy, (70)
0 otherwise,

D,.1 =min[D, + AD, D|,] = known, (71)

Ifl = Ifl + AD = known. (72)

Jln+1 n Dcr|n

When the damage indicator / f|n+1 reaches the critical value / f|n+1 = 1, the material loses its load carrying capacity at
that Gauss point.

12



Equations (64) and (65) are integrated exactly:
AE = AE° + AE?, (73)
2
Gyt = 0°— L°: AEP :6’3—2GAEP—(K—§G)AE1!:/¢67 (74)

where 6° = 0, + L° : AE = known is the “elastic predictor” and the notation A4 = A,,,; — 4, is used.
If the elastic predictor does not violate the yield condition, i.e., ®(6¢, &, D,) < 0, then
g

n+l1

Ope1 = Rn+1 Woalt R;+19 = é/!f:» Dn+| = Dn» (75)
and the integration is completed.
If ®(6%, 8., D,) > 0, plastic deformation takes place over the increment and a backward Euler scheme is used for

the numerical integration of the flow rule (67):

1900 [OJN 1 00 .
d P P ) ' 76)
n+l

AE? = AAP@Goin, & )= M-8+ 2R+ — 2 M
(@1 8000) (3ap g, o, 90

Finally, the increment of the local equivalent plastic strain increment Ag? is determined from the expression

2
A& = wlg AE? : AEP . (77)

The integration algorithm can be summarized as follows. The quantities A1 and AE? are treated as the primary
unknowns and the yield condition (66) and the plastic flow rule (76)

q)(é-n+l’éz+1) = 07 (78)
AE? — AAP(611,E0,,) = 0, (79)

are treated as the basic equations, in which . and éfl ,1 are determined in terms of AE” as follows:

2
6ns1(AEP) = 6° — 2 G AEP — (K -3 G) AE? 8, (80)

g (AEP) =& + w/%AEP : AEP. (81)

Equations (78) and (79) are solved for A1 and AE? by using Newton’s method. In every iteration, for the current
values of Ad and AE?, 6, and 5‘5 . are calculated by using (80) and (81). Once A4 and AE” are found, equations
(80) and (81) define 6,41 and éz +1- Finally, 07,11 is computed from

A T
Opt1 = l(n+1 *Opyl R,,,Jr]y

(82)
which completes the integration process.
or or

As the solution develops, the quantities 4 = f ndeéP and B = f 6deP are calculated and stored. In particular, at
0 0

the end of every increment 7,, and 6, are calculate and stored:

n + n A Ai’l
A = Tl p Apat = A, + M, M, ., = éerl’ (83)
n+l
6, + 6, _ B,
AB = T“Aép, By =B, +AB, Oy = ép” . (84)
n+l
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The computer implementation of the algorithm outlined above is simplified if principal directions are used as de-
scribed in the following (see also Simo (1998); Auricchio and Taylor (1999); Borja et al. (2003)). Equation (76)
shows that AE? is co-axial with 6,,;. Then from (80) we conclude that 6° is also co-axial with 64;. Therefore
the eigenvectors i) of the (as yet unknown) tensors 6, and AE? can be determined from the eigenvectors of the
(known) elastic predictor 6. With known A, we write

3 3
Gps1 = Z o AP2?  and  AEP = Z AE? P70, (85)
i=1 i=1

and the problem reduces to the determination of the principal components AEf and o;. In this case, the quantities A4
and AE? are treated as the primary unknowns and equations (78)—(81) simplify to

‘1)(0'1,0'2,0'3,55”):0, (86)
ASf’—A/lP,'(O'],O'Q,O'j),E‘ZH) =0 (i= 1,2,3), (87)
where
2
oi (AEY, AEY, AEY) = 0% - 2G AEY — (K -3 G) (AEY + AES + AEY), (88)
& (AEP,AE?,AE?) = & + |2 [(AEPY + (AE?Y + (AE?Y 89
2 (AEY,AED AEY) = &) + 3 (AETY +(AED) +(AES)|, (89)
+03 + 3
p= T2 T 0;2 D, si=oi-p. oe= S (st + 55+ 53). ©0)
1 27 J
Js = 515253, 0=§sin_1 (—70—%), 9,-=9+(5—4i)%, o1
100 9D 1 90

N; = cos6;, M; = —siné,, P; M;. (92)

=——+_ —N;+——
30p Odo, o, 00
The system of four non-linear equations (86)—~(87) is solved for the four unknowns (A1, AEY, AEY, AEY).

4.1. Plastic incompressibility
The problem is simplified further if the material is plastically incompressible (g—f =0and DZk = 0). In this case
we set AEY = — (AE‘IU +AEY ), eliminate A2 from (87), and treat (AE}, AE?Y) as the primary unknowns to find

® (0, &,,) =0, 93)
AE} Py (01,80, ) = AES Py (01,30,,) = 0, (94)
where
o1 (AEY) = 0% —2GAE], o2 (AEY) = 0% —2G AES, (95)
o3 (AEY, AEY) = 0 + 2 G (AEY + AEY), (96)
& (AEDAED) = & + \/ g [(AfEf)2 +(AEDY + A AEg’]. ©7)

The problem reduces now to the solution of the two non-linear equations (93) and (94) for (AE‘IU ,AEY )
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4.2. Rate-dependent plasticity
If rate-dependent plasticity is used, equations (78), (86), and (93) above should be replaced by their corresponding
forms of the rate-dependent yield function (23):

O(0, 2,(e", &"),D) = 0, (98)

in which the approximation &° = (55 R &)/ At is used. In other words, equations (78), (86), and (93) are replaced by
&~ &,

(D(é'ml,zy(éiﬂ’ %), Dn+1) =0, (99)

where 0,1 and éz ,1 are defined in terms of the primary unknowns (A4, AEl’.’ ) by (80)—(81) or (88)—(89) or (95)-(97),
and D, is known and determined by (72b). Then, the solution follows the lines described for rate-independent
materials.

Equation (99) can be thought of as a backward Euler scheme of the evolution equation for the equivalent plastic
strain given in (24b).

5. Finite element formulation

Let Q be the domain occupied by the elastoplastic body in its deformed state, JQ its boundary, and n the unit
outward normal vector to dQ. The position of material particles in the deformed configuration is denoted by x, ¢ is
time, p is the current mass density of the material, b the body force per unit mass, and (u, o) are the displacement and
true (Cauchy) stress fields in the body.

Let u be specified on a part ,Q as @ (given) and let the traction vector be specified on 9,Q as o - n = t (given),
where the parts 9,Q and 9,Q are disjoint (9,2 N 0,Q = &) with 9,Q U 3,Q = JQ.

In the following we discuss the finite element implementation of the elastoplastic boundary value problem. In
view of the non-linearity of the problem, the calculations are carried out incrementally. Traditional finite element
formulations use the displacement field u(x) as the primary unknown and the elastoplastic constitutive equations are
integrated locally at the Gauss points of the elements in the mesh; the resulting values of the /local equivalent plastic
strain field &°(x) are, in general, discontinuous across element boundaries. In the present model, the BVP (36)—
(37), that defines the non-local equivalent plastic strain field e”(x), puts additional continuity requirements on e”.
Therefore, we treat the displacements u(x) and the non-local equivalent plastic strain e”(x) as the primary unknowns
and introduce finite element interpolations for both u and e” to obtain the corresponding non-linear discrete problem.

We discuss two possible methods of implementation of the non-local elastoplastic problem in the ABAQUS
general-purpose finite element code. In the first method, “user elements” are developed for the solution of quasi-
static and dynamic problems in ABAQUS/Standard and ABAQUS/Explicit via “user subroutines” UEL and VUEL
respectively. In section 5.1 we present a traditional (u — e”) formulation, in which the displacement u(x) and the
non-local equivalent plastic strain fields are independently interpolated.

Failure analysis of 3D structures is often based on the finite element method with damage mechanics constitutive
models. Such 3D calculations are time consuming because small time increments must be used, especially when the
material enters the softening regime. One commonly used element in such calculations is the 8-node hexahedron
with one Gauss integration point. The use of reduced one Gauss integration station, as opposed to eight, introduces
numerical singularities to the problem and some kind of “hourglass control” is required (e.g., see Flanagan and Be-
lytschko (1981)). In section 5.2 we discuss the development of a 3D isoparametric 8-node hexahedral element with
one Gauss point that is used together with the damage model described in the present paper. We use the “enhanced
strain” method of Simo and Rifai (1990) to avoid the aforementioned singularities. The element is implemented in
ABAQUS/Standard and ABAQUS/Explicit and quasi-static and dynamic problems are solved.

A second possible method for the implementation of non-local constitutive models in ABAQUS is discussed in
sections 6 and 7. In section 6 we show how non-local quasi-static problems (acceleration ii =~ 0) can be solved by
using the so-called *COUPLED TEMPERATURE-DISPLACEMENT analysis option in ABAQUS/Standard together
with user subroutine UMAT. This minimizes the programming effort and allows for the use of all finite elements
available in the library of ABAQUS/Standard. This approach cannot be used with ABAQUS/Standard in dynamic
problems. Non-local dyramic problems can be solved by using ABAQUS/Explicit together with user subroutine
VUMAT as discussed in section 7.
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5.1. Traditional (u — eP) formulation

The displacement field u(x) and the non-local equivalent plastic strain e”(x) are treated as the primary unknowns.
A variational formulation of the problem is:

Find u(x, ) and e”(x, ¢) satisfying “la o = Usuch that

f [(r,-j,j(u, ") + p (b — u,-)]u;f aQ + f [r — 0w, ey lu? ds = 0, (100)
Q 0
2 o2 - * , 0P|
[e” —{°Voe? —sp(u,ep)]e aQ+ | ¢ o © dsS =0, (101)
n
Q oQ

for all variations u* and e¢* with u* = 0 on 9,Q, where a comma followed by a subscript, say i, denotes partial
differentiation with respect to the corresponding spatial coordinate x;, i.e., f; = 0f/0x;. Integration by parts in (100)
and (101) leads to the following weak form:

Find u(x, ) and e”(x, ¢) satisfying u| 00" i such that

fpb,-uf dQ + ffluf ds — fo-,-j(u, e’) D;;(u")dQ = fpil,- u; dQ Yu eU, (102)
Q 8,0 Q Q

f {[ép(u, o) —elet — 2 ej;}dQ 0 Vees, (103)
Q

where D;(u*) = (u} ; + u7;)/2, and
U={wp e Q. ua=0, &=l e H Q). (104)

with H¥ consisting of all functions that possess square-integrable spatial derivatives through order .

Equations (102) and (103) form the basis of the finite element solutions in ABAQUS/Standard and ABAQUS/Ex-
plicit via user subroutines UEL and VUEL respectively. Four-node plane strain quadrilateral elements with 2 X2 Gauss
integration points and 3D 8-node hexahedral elements with 2 X 2 X 2 Gauss stations are developed. The displacement
u(x) and non-local equivalent plastic strain e”(x) fields are interpolated independently, and the nodal degrees of free-
dom are the components of u and the values of e”. Standard bi-linear (2D) or tri-linear (3D) isoparametric interpola-
tions are used for both u and e” within an element. The constitutive equations are integrated numerically by using the
algorithm described in section 4. Both quasi-static and dynamic problems are solved using either ABAQUS/Standard
or ABAQUS/Explicit.

5.2. Enhanced strain formulation

To improve the computational efficiency in 3D problems, we use the so-called “enhanced strain method” of Simo
and Rifai (1990) to develop a 3D 8-node hexahedral isoparametric element with one Gauss integration point. The
enhanced strain method belongs to the category of “mixed finite element methods”, which typically lead to lower-
order continuity requirements on some of the fields. In such methods, static condensation of some variables at the
element level is usually performed when appropriate in order to keep the total number of global degrees of freedom
to a minimum. The solution is developed incrementally and the displacement field u,,.(X), the spatial gradient of the

displacement increment
A
ALy = 220, (105)

n+1

the stress field 0,41(x), and the non-local equivalent plastic strain ef; ,1(x) are treated as independent unknowns and
their relations are enforced in a weighted integral sense. In the weak form of the problem the displacement field
approximation must be H'(€). Approximations for e”, AL, and o need only be in L?(Q2), where L?> = HY is the space
of all square-integrable functions. No interelement continuity is required on (AL, ") and they may be eliminated in
favor of the displacement degrees of freedom by static condensation at the element level.
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The variational formulation of the problem is as follows:
Given (u,(x), €5(x), T,(X), g,(X), q.(x)), find (Au(x), Ae?(x), AL(x), 7(x), Ag(x), Aq(x)), satisfying u s o = Wsuch that

fpb,-u;“dQ+ff,-u;“dS—f‘r,-ju:fdﬁzfpiliufdﬁ Yu' el, (106)
Q 0-Q Q Q
f [tij — 0i; (AL, Ae?) |Lj;dQ =0 VL' e L*(Q), (107)
Q
f (ALij - Auij)oy;d2=0 Vo e LX(Q), (108)
Q
f[ep +qi; — (AL, AeP)]e* dQ — fq,- ne*dS =0 Ve eg, (109)
Q oQ
f(qi+€2g,~)g;“d§2=0 Vgl e LA(Q), (110)
Q
f(Ag,-—Ae{j)q;‘dgzo Vg € LX(Q), (111)
Q

where all quantities are evaluated at the end of the increment (¢ = #,41). In (106) and (107), 7 is the independently
interpolated stress field, whereas o (AL, e”) and &°(AL, Ae?) are the stress field and local equivalent plastic strain
field computed from AL and Ae” by the constitutive equations. Also g is the independently interpolated non-local
equivalent plastic strain gradient and q a generalized stress conjugate to g, and the conditions Ag; = Aef; and ¢; =
-2 e are enforced through the weighted integral statements (110) and (111).

Next, we 1) combine (106) and (107), ii) integrate by parts in (109), and iii) combine (109) and (110), to reach the
alternative formulation:
Find (Au, Ae?, AL, T, Ag, Aq) such that

fpbiu;‘d£2+ffiude—fo'ij(AL,Ael’)L;‘de+

Q 3,Q Q

+fr,-j (Ly; - u;,) dQ = fpiliufdQ Vu'e U L e LX(Q), (112)

tj
Q Q

(AL - Augj)75dQ =0 V1° e LX(Q), (113)

{[ép(AL, AeP) = ePle — £2 gig;f}dg + fq,- (e —g)dQ=0
Q

{O% b%

Ve e§, g e L*(Q), (114)
(Acf - Agi)g;dQ=0 ¥ g} e LX(Q). (115)

b%

Following Simo and Hughes (1986) and Simo and Rifai (1990), we chose the independent stress fields 7(x) to be
orthogonal to the difference between the interpolant AL(x) and the spatial gradient of the displacement increment
0Au(x)/0x, so that (113) is satisfied automatically and the last integral on the left hand side of (112) vanishes. Simi-
larly, we chose q(x) to be orthogonal to the difference Ag(x) — V(Ae?(x)), so that (115) is satisfied automatically and
the last integral on the left hand side of (114) vanishes (see (139) and (140) below).
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In particular, independent interpolations are used for (Au, AL, 7, Ae”, Ag, Aq) within each element:

{Au(x)} = [N(x)]{Ad®}, (116)
3x1 3x32  32x1
{AL(x)} = ([BL] + [Bstab(x)]) {Ad°} + [G(x)]{Aa®}, (117)
9x1 9x32 32x1 9%6 6x1
{r(x)} = {To} = const., (118)
9x1 9x1
and
Ae”(x) = [N.(%)] (Ad°), (119)
1327 32x1
{Ag(x)} = [[ o] + [BS‘ab(x)]] {Ad), (120)
3x1 3x32 332 32x1
{q(x)} = {qo} = const., (121)
3x1 3x1

where {Ad¢} is the vector of the 32 nodal degrees of freedom corresponding to Au and Ae” in the 3D 8-node element
and {Aa‘®} is a vector of six local parameters for each individual element and provide the required additional degrees of
freedom to eliminate locking in incompressible or nearly incompressible materials (Puso (2000)). The local element
internal parameters {Aa®} are eventually eliminated by “static condensation”, i.e., determined in terms of {Ad°} as
described in the following.

The constant matrices [B;] and [B,] are defined as (Flanagan and Belytschko (1981))

1
Bil-7 [Borde  ad B- g [ Bw)do (122)

Qe Qe

where Q, is the domain of element e, V, the volume of element e, and ([B.], [B:]) are the standard “B-matrices”
defined in terms of the spatial derivatives of [N] and [N,] that enter the calculation of the following gradients:

{Au (0} = [BL(X)] Ad°) and (A0} = [Bg(x)] {Ad°}. (123)
9x1 %32 32x1 3;<1 3x32 32x1

The form of the interpolation matrices ([N], [Bsan ], [G], [Ne], [B;tab]) is discussed in detail in Appendix A. Here we
mention that matrices [Bswp(X)], [G(X)], and [Bz‘ab(x)] are defined so that

[Basenae=r01.  [(Genae=(0. wd [ [Bw]do-(o. (124)

Qe Qe Qe

which guarantee the satisfaction of the aforementioned orthogonality conditions (see equations (139) and (140) be-
low). Also, condition (124b) is essential for the finite elements to pass the “patch test” (Taylor et al. (1976); Flanagan
and Belytschko (1981)).

Remarks

1. Analytical expressions for the components of the constant matrices [B;] and [B,] are given in Flanagan and
Belytschko (1981).

2. The enhanced gradient fields in (117) and (120) are richer than the standard gradients in (123). The presence
of the additional matrices [Bgup(X)], [G(X)], and [thab(x)] removes the singularities when reduced one-point
Gauss integration is used. This is also discussed right after equations (149)—(150) below.
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3. The enhanced gradients (117) and (120) can be written in the form

{AL(x)} = (AL} + {ALgap(%)} + {ALiock (%)}, (125)
{Ag(x)} = {Ag} + {Agstan(X)}, (126)
where we took into account (124), an overbar indicates the average value over the element, and
{AL} = [B,]{Ad*}, {Ag} = [B.]{Ad*}, (127)
{ALgab(X)} = [Bauan(¥)] {Ad°} , (Agaan(¥)} = [BE(x)] (Ad¢) , (128)
{ALiock(x)} = [G(x)] {Aa°}. (129)

Le., the enhanced gradients {AL(x)} and {Ag(x)} include a constant part and a stabilization part that removes the
spurious modes when reduced one-point Gauss integration is used; an independent field {ALjqc} is also added
to {AL} to eliminate locking in incompressible or nearly incompressible materials.

4. Conditions (124) imply that

(AL = {Au;;} =[BT (M), (130)

(Agl = {A¢"} = [B.](Ad"}. (131)
5. The gradients (AL, Ag) and the “stresses” (7, q) defined in (117)—(118) and (120)—(121) are, in general, discon-

tinuous across elements.

6. The stresses o (AL, ¢”) that balance the external forces in the “virtual work statement” (112) are determined
from the enhanced incremental displacement gradient AL (as opposed to the gradient Au; ;) and this is what
makes the method successful.

7. The stresses o (AL, e”) are determined using the algorithm described in section 4. The required value of the
deformation gradient F,,,; is determined as

F,.1 = (expAL) - F,, (132)

which results from integration of the equation F = L - F, under the assumption that the velocity gradient
L = D + W is constant over the increment with AL = L Az.

8. In Appendix A we introduce the standard isoparametric transformation that relates the physical coordinates x to
the element “natural coordinates” € and define matrices [Bgp(X)], [G(X)], and [Bijab(x)] so that they all vanish
at the element local origin § = 0, i.e.,

[Buwle-o = [0].  [Gleo =[0].  [BX*]_ =10]. (133)
Using (133) in (117) and (120), and taking into account (124), we conclude that

[AL}gq = 1AL} = {Au; } = [B,](Ad), (134)

(Agleg = Ag) = A} = [BJ(Ad"}. O (135)

The interpolations for the “virtual fields” (u*, L*, 7%, e*, g%, q) are:

{u"} = [N]{d"}, e" = [N.] {d™}, (136)
3x1 3x32 32x1 1x32  32x1

(L} = ([BL] + [Byun]) 1d°} + [G] {2"}, g = [ﬁ + [Bz‘ab]] (d-y, (137)
9x1 3x1 3x32 3x3n ) 32x1

(%) = {TS} = const. {q°} = {qz‘)} = const. (138)
91 gy L 3k

19



Using the definitions (122), the interpolations (116)—(121) and (136)—(138), and the conditions (124), we can read-
ily show that the last integrals on the left hand side of (112) and (114) vanish, and (113) and (115) are satisfied
automatically, i.e.,

fTij (ij - ufj) dQ =0, f(AL,-j - Aui,j) Tfj dQ =0, (139)
Q Q
and
fqi (er—g7)dQ =0, f(Ae{j — Agi)q; dQ = 0. (140)
Q Q

Then, the variational formulation of the problem simplifies to:
Find (Au, AL, Ae”) satisfying u| s o = Usuch that

fpb,-u;“d§2+ff,-u;“dS—fmj(AL,Aep) ijszfpii,-u;“dQ

Q 3,0 Q Q

Vu' eV, L e LX(Q), (141)
f {[éP(AL, AeP) = ePlet — 2" ej;.}dQ 0 Veeg (142)
Q

It is noted that the independently interpolated fields T and q do not enter now the variational formulation (141)—(142);
this is due to conditions (124), which make the independently interpolated piecewise-constant fields 7(x) and q(x),
defined in (118) and (121), orthogonal to the interpolated differences AL — V(Au) and V(Ae”) — Ag respectively (Simo
and Hughes (1986); Simo and Rifai (1990)). The stress field o (AL, Ae?) in (141) is determined in terms of AL and
Ae? by integrating the constitutive equations.

When the interpolations (116)—~(117), (119) and (136)—(137) for (Au, AL, Ae”) and (u*,L*, e*) are used in the
variational statement, we arrive at the following discretized problem, which is a set of non-linear equations for the
global vector of nodal unknowns {Ad} and the local parameters {Aa®} on every element:

Nx1 6x1
NELEM .

{Ru}z{Fe’“}—( A {f:;}]—[M] {d} = o), (143)
Nx1 Nx1 e=1 32x1 N><NN><1 Nx1
¥y = | [G] {o}dQ = {0}, e=1,2,--- ,NELEM, (144)
6x1 6x9 9x1 6x1

QE

NELEM
RJ= A (r) =10}, (145)
Nx1 e=1 32x1 Nx1

where N is the total number of nodal degrees of freedom in the problem, NELEM the total number of elements, A
the “assembly operator”, ({F**'}, [M]) the standard global “external load vector” and “mass matrix” of the problem

respectively, {d} the global nodal acceleration vector, and

{f;) = f (ﬁH[me(x)]T]{a}dﬂ, (146)
32x1 32x9 32%x9 9%x1

Qe —
re} = f (AE" — Ae?) {Ng(x)}dsz—{f2 V. [B] " B +[ks™] | (d°), (147)
32x1 S5 32x1 32x3 3x32 32%32 32x1
[kztab] iy f[thab(X)]T [thab(x)] aQ, (148)
32x32 32x3 3x32

QE
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where {0} = {0 (AL, Ae?)} and e” = e (AL, AeP) are determined from the integration of the constitutive equations.

Equations (144) are written for every element in the mesh and provide a set of six non-linear equations per element
that define the local element parameters {Aa®} in terms of the element nodal degrees of freedom {Ad®}. In Appendix
B, we describe a methodology for the solution of (144) at every element.

The global vector of nodal unknowns {Ad} is determined from the solution of the global non-linear system of
equations (143) and (145). The underlined terms in (146) and (147) are due to matrices [Bgp(x)] and [B;‘ab(x)] in
the interpolation of the gradients (117) and (120). The rest (non-underlined) terms in (146) and (147) appear (alone)
when the traditional formulation (102)—(103) is used.

Using reduced one-point Gauss integration for the numerical evaluation of the integrals of the terms that are not
underlined in (146) and (147), we find

{85} = (£} + (£, (149)
{rg) = {rgp) + (), (150)
where
{t2y) = V. B (o), () = [ Bl @ra0. sy
QL
{réo) = 8o (A8] - Ach) (Neo} = € 7. [B.1"TB., () = = [0 ). (152)

[ki‘ab] is defined in (148), a zero subscript indicates that the corresponding quantity is evaluated at the “element local

origin”, i.e., the point where the natural coordinate § = 0 (see Appendix A), and {0} is calculated using {AL} and
F,.1 in (127a) and (132) together with the integration algorithm discussed in section 4.

{f%,} and {rzo} in (151a) and (152a) would result if the “uniform strain formulation”! of Flanagan and Belytschko
(1981) were used in the traditional formulation (102)—(103) and lead to spurious singular modes if used alone. The
additional underlined terms in (146) and (147) correspond to {f3%°} and {r$®®} in (149)—(152), remove the spurious
modes, and stabilize the calculations; these terms are due to the “enhanced interpolations” used for the gradients
in (117) and (120) and provide a “physical stabilization” to the problem (Belytschko and Bindeman (1991); Puso
(2000)).

In Appendix C, we develop approximate, but very accurate, analytical expressions for {f$®°} and [k;‘ab], thus
obviating Gauss quadrature in (151a) and (148). This leads to a computationally efficient strategy that requires the
evaluation of stress {0} only once per element when the non-linear global problem (143) and (145) is solved for
the nodal unknowns {Ad}. In particular, {f/)} and {r{,} are calculated using (149)—(152), and {fjtab} and [k?ab] are
determined using the analytical expressions (274)—(262) and (276)—(279) in Appendix C.

6. Non-local quasi-static problems in ABAQUS/Standard via “UMAT”

In the special case of quasi-static problems, the solution can be also obtained using user material subroutine UMAT
in ABAQUS/Standard together with a *COUPLED TEMPERATURE-DISPLACEMENT, STEADY STATE analysis
option as described in the following. The methodology is similar to that used recently for quasi-static problems by
Seupel et al. (2018), who makes use of the ABAQUS user subroutines UMAT and HETVAL to define the problem.

One version of the steady-state heat transfer problem in an isotropic material, as solved in ABAQUS, is

kV?T +r(Ae,T)=0 in Q (153)
kn-VT' =4 on 0Q, (154)

! The “uniform strain formulation” introduced by Flanagan and Belytschko (1981) is based on the (analytically calculated) average strain over
the element volume and is an alternative to using one-point Gauss integration, in which strains are evaluated at the element local origin & = 0 and
Ve is replaced by 8 Jp in (151a) and (152a). The uniform strain method ensures that the element passes the “patch test” and attains the accuracy of
the numerical solution when elements are skewed (Belytschko et al. (1984)).

21



where 7 is temperature, k the thermal conductivity, » the heat supply per unit volume, § the prescribed boundary heat
flux vector, and Ag a strain increment properly defined in terms of nodal displacements (see ABAQUS manuals and
Hughes and Winget (1980)).

Comparing the BVP (153)-(154) with (36)—(37), we conclude that the non-local equivalent plastic strain can
be identified with the temperature field in the coupled temperature-displacement ABAQUS analysis, provided the
following correspondence is used:

T e, ke (2, r(Ae(n), T) < &°(u,e”) — e, §g—0. (155)

The constitutive equations are integrated numerically in user subroutine UMAT. In UMAT, the value of e” is provided
as “temperature”, & is determined from the numerical integration of the constitutive equations using the algorithm
described in section 4, and r (variable RPL in UMAT) is identified with the difference &’ — ¢”. The derivatives
0Ao/dAe (DDSDDE), do/0T (DDSDDT), dr/0Ae (DRPLDE), and 0»/0T (DRPLDT) are also evaluated in UMAT.
In view of (51) and (53), i.e.,

v . P P oD
=L:D-A"¢ d &#==P:L :D+—-—¢ 1
o=1L é an &=z L i (156)
00 /0Ag, 00 |0T, Or/dAe and Or/dT are approximated as follows?:
AT Jo  Jdo
—_— —_— = — ~ —Anl 1
0Ae ’ oT  OeP ’ (157)
and _ -
or os? P or 0&f P 0D
—=—=~—P: L° —=——]l=—-1. 1
ONe OAe L L oT  OeP L der (158)

Such an approximation of the Jacobian is first-order accurate as the size of the increment A¢ — 0; it should be
emphasized, however, that the aforementioned approximation influences only the rate of convergence of the Newton
loop and not the accuracy of the numerical solution. In the calculations, in order to integrate accurately the constitutive
equations we restrict the increment size so that the magnitude of the strain increment AE does not exceed the value of
50,/E. With such a restriction on the size of the increment, the aforementioned approximation of the Jacobian does
not affect the quadratic rate of asymptotic convergence of the iterative Newton method.

It should be also noted that the coupled temperature-displacement in ABAQUS/Standard can be used for the
solution of quasi-static implicit strain-gradient plasticity problems, but it cannot be used for dynamic problems, in
which inertia effects become important.

7. Non-local dynamic problems in ABAQUS/Explicit via “VUMAT”

In dynamic problems including inertia terms, solutions can be obtained using user material subroutine VUMAT in
ABAQUS/Explicit together with a *DYNAMIC TEMPERATURE-DISPLACEMENT analysis option as described in
the following.

The corresponding transient heat transfer equation in an isotropic material is

kV2T +r(Ae, T) =pecT, (159)

where c is the specific heat. Again, the identifications given in (155) are used in the calculations and c is given a small
value, so that the transient term on the right hand side of (159) becomes negligible.

The constitutive equations are integrated numerically in VUMAT, where the non-local equivalent plastic strain e”
is again identified with temperature in the explicit coupled temperature-displacement calculations. However, » cannot
be defined in VUMAT. Therefore, to define », we use and the following “loading card” in ABAQUS/Explicit:
*DFLUX

2 In rate-dependent models, in view of (99), the value of H in (50c) is replaced by H = —13({% + ﬁ (%) = —P% (% + ﬁ %)
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ALLEL, BFNU
where ALLEL is the set of all finite elements in the mesh, and BFNU signifies a user-defined heat supply per unit
volume » (BFNU = Body Flux Non Uniform). The value of » = &7 — ¢” is defined in user subroutine VDFLUX, in
which the value of e” is provided as “temperature” and the value of &7 is supplied by VUMAT via a user-introduced
COMMON block.

The value of ¢ should be “small” so that the contribution of the transient term on the right hand side of (159)
is negligible. It should be noted though that the numerical stability limit on the time increment of the solution is
proportional to ¢. To avoid the requirement of using an extremely large number of increments, a judicious choice for
the value of ¢ is essential. An estimate for the appropriate value of ¢ can be obtained by considering the case of a
uniform solution in which V7 = V2¢? = 0 and (159) reduces to &” — e = pcéP. The exact solution in this case is
&P = eP and the error &’ — ¢” in the numerical solution is controlled by the magnitude of the dimensionless quantity
pcéP. Let & be a representative strain rate in the problem; e.g., & can be defined as &€ = v2é: é/3, where é is the
deviatoric strain rate. Since the elastic strain rates are small compared to the plastic strain rates, &” is of order &.
Therefore, the value of ¢ to be used in the calculations should be such that

pcé < TOL, (160)

at all integration points in the finite element mesh, where TOL = 10~* is a reasonable value.

The explicit dynamics procedure in ABAQUS/Explicit performs a large number of small time increments ef-
ficiently. An explicit central-difference time integration rule is used together with the use of diagonal (“lumped”)
element mass matrices and each increment is relatively inexpensive (compared to ABAQUS/Standard) because there
is no solution of simultaneous equations. The explicit central-difference operator satisfies the dynamic equilibrium
equations at the start of the increment (¢ = ¢,); the accelerations calculated at ¢ = ¢, are used to advance the velocity
solution to time ¢ = ¢, + A¢/2 and the displacement solution to time #,,; = ¢, + At. No derivatives (Jacobians) such as
0Ao|0Ag, OAT /0T, Or[dAeg, or Or/dT are needed in the explicit calculations.

The central difference operator is conditionally stable and the stability limit depends on the element size and the
dilatational wave speed of the material.

Remark

In cases where ABAQUS/Standard has convergence difficulties, e.g., in problems involving complicated contact con-
ditions, ABAQUS/Explicit can be used also to carry out guasi-static solutions by minimizing the influence of the
dynamic inertia terms in the solution. If there is no damping in the problem, it is not uncommon the stresses in each
element to oscillate with a small amplitude about the static equilibrium stresses. When ABAQUS/Explicit is used for
the solution of quasi-static problems, the user should make sure that the kinetic energy is a small fraction of the strain
energy in the problem. O

8. Applications

In the present paper we use a pressure-independent form of the yield function (4) due to Bai and Wierzbicki (2008)
as modified by Lian et al. (2012):

®(o,6,&",D) = o, — (1 = D)F(y(6)) 0, (") = 0, (161)
where
. , y"1(6) V3 1
=c ax _ oS - 6) = — -1 162

F(y(0)) = ¢y + (Ca ¢ )[7(9) prl B ¥(0) 2~ 3 \cost , (162)

. - —p\1/n
ar _ | ¢y if 620, =) = & _ %0
ce—{cg if §<o, O'y(s)—0'01+80 s So—E, (163)

(¢}, ¢y, ¢y, m, n) are dimensionless material constants, and o,(&7) is the flow stress of the material. This yield surface
has three axes of symmetry on the deviatoric I1-plane and does not have in general a tension/compression symmetry.
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In the special case where ¢§ = ¢}, the yield surface does have tension/compression symmetry and six axes of symmetry
on the I1-plane.
The convexity of the yield surface defined in (161)—(163) is discussed in detail by Lian et al. (2012).

Remark
The yield function (161) can be also written in the form

F(00,0,8, D) = 2,(00, 0, D) — 0 (&) = 0, (164)

where X.(o, 0, D) is an equivalent stress defined in terms of o, 6, and D:

Oe

2(0¢,0,D) = ——. O (165)
(1 - D)F(y(6))
The material properties used in the calculations presented in the following are:
0o -3 t c s
80=E=1.65X10 , v=03, cp=1, ¢;=098, ¢,=095 m=17, (166)

where v is Poisson’s ratio. Typical values are £ = 200 GPa and oo = 330 MPa. The chosen values of ¢, cg, and ¢
guarantee convexity of the yield surface (Lian et al. (2012)).

The calibration of the model and the values of the constants (¢, ¢z, - - - , cg) that enter the damage equations (32)
and (34) are discussed in Buchkremer et al. (2014), Novokshanov et al. (2015), and Wu et al. (2017b). Here, we use
the values

c; = 0.4943, ¢ = 2.2660, c3 = 0.10, cy = 1.1310, (167)
cs = 0.83, ce = 0.5449, c7 = 0.85, cg = 0.3926. (168)

The critical value of stress triaxiality 7 in (33), below which local material failure never occurs, is (Bao and

Wierzbicki (2005))
1
e = -3 (169)

Also the material parameters G in (33) and Dpax in (34) take the values
Gr=0.51509 and Dpmax = 1. (170)

The values of the hardening exponent # in (163b) and the material length scale ¢ are specified separately in each
problem.

The stress-strain curves in uniaxial tension and plane strain tension for the model material described above with
hardening exponent n = 5 are shown in Fig. 3. Recall that n = % and 6 = 1 in uniaxial tension, and 7 ~ \% = 0.577
and 6 ~ 0 in plane strain tension. Points marked “4” on the curves in Fig. 4 indicate the load level at which 7 = 1 (or
equivalently & = & = éf’ ), and damage starts developing; points marked “x” denote material failure, i.e., D = D;.

All calculations are carried out incrementally. In ABAQUS/Standard the discretized nonlinear equations are solved

using Newton’s method. The Jacobian of the global Newton scheme is approximated by the tangent stiffness matrix
derived using the moduli given by (51) (g' =L:D-A" é”) as described in section 6.

8.1. Localization in plane strain tension

We consider the quasi-static problem of plastic flow localization in a tension specimen under plane strain condi-
tions. We consider one quarter of the specimen and doubly symmetric solutions are found. Figure 5 shows a schematic
representation of one quarter of the specimen together with the geometric boundary conditions. The right side of the
specimen is traction free and the upper side is subjected to a prescribed displacement 6. The height of the specimen
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Figure 4: True stress versus axial logarithmic strain €1; for (a) uniaxial tension and (b) plane strain tension. In plane strain, o7j; is the axial stress
and o33 the stress normal to the plane of deformation (033 =~ 0711/2).

is & = 1.5 w and the material length in the constitutive equations is £ = 0.08 w, where w is the width of the specimen.
The hardening exponent is n = 5.

We obtain first an estimate of the localization strain by using the methodology of Rice and co-workers (Rudnicki
and Rice (1975); Rice (1976); Needleman and Rice (1978)). The condition for plastic flow localization in a shear
band is that there exists a unit vector n on the x;-x, plane in the deformed configuration such that (Needleman and
Rice (1978))

1
det[nkLZZan+A,~j]=0, where A:_E [c-0c-nn—-m-0c-n)d+nn-o]. (171)

If such an n exists, then the direction of the shear band is perpendicular to n.
Aravas and Ponte Castafieda (2004) have shown that the localization condition (171) can be written in the form

B = By Byn — By B =0, (172)
where?
ag o
Bii= L% 2+ (G - %)ng Biy = (ﬁﬁgz 1G4 71);11 . (173)
o o
By = (1:1;;*"'22 +G- 71);11 . Bay = L%, 12 + (G + 71)71% (174)

L°¢ is the fourth-order elastoplastic tangent modulus tensor defined in (55), 0| is the normal stress in the direction of
stretching, and index 1 corresponds to the direction of stretching, and index 2 denotes the transverse direction in the
plane of deformation. The calculation of the stage at which localization of plastic flow is determined by deforming a
single 4-node element in plane strain tension and using a UMAT based on the local version of the algorithm described
in section 4. Within UMAT, the localization calculations are carried out as described in Aravas and Ponte Castaneda
(2004). It is found that the conditions for plastic flow localization are satisfied for

§=005155h and  y =45° (175)

3 One typo in Aravas and Ponte Castafieda (2004) is corrected in the expression for By; in (173a) and two typos are corrected in the expression
for By in (174b). The results reported in Aravas and Ponte Castafieda (2004) are based on the correct expressions for By and By;.
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Figure 5: Schematic representation of one quarter of the plane strain tension specimen.

where (e}, e;) are unit vectors along the coordinate axes on the plane of deformation.

We turn now to the numerical solution of the problem. To trigger the initiation of non-uniform deformation in the
specimen, an imperfection in the material properties is introduced over a small square region of side d = 0.05 w at the
center of the specimen, as shown in Fig. 5. In particular, the stress o in (163b) is replaced by 0.98 o in the imperfect
region.

Calculations are carried out for the local (£ = 0) and the non-local (£ # 0) versions of the model. Two different
finite element formulations were used for the non-local material and all gave the same results reported in the following.
The particular formulations are: i) a 4-node isoparametric plane strain element via UEL in ABAQUS/Standard with
2 % 2 Gauss integration and a uniform volumetric part for the deformation gradient (equal to its average value over the
element) and ii) a 4-node plane strain coupled temperature-displacement element (CPE4HT) in ABAQUS/Standard
with 2 x 2 Gauss integration and a UMAT.

Three different meshes are used, namely 20 x 30, 30 x 45, and 40 x 60 initially square elements, where the first
and second numbers denote the number of elements in the w and /4 directions respectively.

Figure 6 shows the normalized “load-extension” curves as calculated using the three different meshes. The dash
lines correspond to the local solutions and the solid lines to the non-local ones. It is evident that the local solutions
exhibit a strong mesh-dependence after the deformation ceases to be uniform. The corresponding non-local numerical
solutions converge to the exact one as the mesh is refined at all levels of extension ¢.

Figure 7 shows contour plots of the damage parameter D for the local model (¢ = 0) as calculated using the three
different meshes at an extension level 6 = 0.057 4. The width of the shear band tends to zero as the mesh is refined
and the strong mesh dependence of the solution is again evident. This is due to the loss of ellipticity of the governing
equations, which allows for discontinuous solutions.

Figures 6 and 7 show that the local model predicts very well the onset of localization and the orientation of the
shear band, but it cannot be used in the post bifurcation regime when the BVP looses ellipticity.

Figure 8 shows contour plots of the damage parameter D for the non-local model (¢ = 0.08 w) as calculated using
the three different meshes at an extension level 6 = 0.08 4. The width of the shear band is now independent of the
mesh size as the mesh is refined sufficiently. The equations remain elliptic at all deformation levels (Benallal and
Tvergaard (1995)) and this excludes the possibility of discontinuous solutions.

8.2. Impact of a steel rod on a rigid surface

We consider the dynamic problem of a L = 32.4 mm long cylindrical steel rod of square cross section of 2 ax2 a =
6.4 mm X 6.4 mm, impacting a rigid wall with an initial velocity of ¥V, = 250 m/sec. The initial mass density of the
rod is pg = 7850 kg/m>. This is a standard benchmark problem used by many general-purpose finite element codes.
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Figure 6: Normalized-load-deflection curves in plane strain tension for local and non-local model.

The high velocity impact causes large plastic deformation at the front end of the rod that is in contact with the rigid
surface and is the area of interest.

Because of symmetry, one quarter of the specimen is analysed and appropriate symmetry conditions are imposed.
To simulate the impact of the rod on the frictionless rigid wall, zero axial displacements are prescribed at the nodes
on the front end of the rod, while all other nodes are subjected to a 250 m/sec initial velocity in the direction of the
impact (perpendicular to the rigid wall). While this technique is appropriate for modeling the crushing of the front end
of the rod in the absence of friction or rebound, a contact pair should be used if there are significant friction effects or
if separation between the rod and the rigid wall is of interest.

A rate-dependent version of the plasticity model is used and o,(£”) in (161) is replaced by

s (30 5Py = L O if & <&, 176
(8, &%) = (1+dimn &)o@ if & > &, (176)
where d; = 0.035 and &y = 10~ s7!. A hardening exponent n» = 10 and a material length £ = 1 mm are used in the
calculations. This value of £ is chosen arbitrarily to be a fraction of a. It is emphasized though that the value of ¢ does
not influence the calculations, since, as discussed in the following, the very negative triaxialities in the rod prevent
damage. The main purpose of this example is to check the enhanced formulation and the associated hourglass control.

The dynamic analysis is carried out for a time period of ¢ = 40 us using both ABAQUS/ Standard and ABA-
QUS/Explicit and the results are identical. In all analyses discussed below, a 20 x 20 x 72 finite element mesh of eight-
node hexahedral elements is used. In ABAQUS/Standard we use a UEL with an 8-node isoparametric hexahedral
element and 2 X 2 X 2 Gauss integration points based on the standard (u — e”) formulation described in section 5.1.
Another set of calculations is also carried out with ABAQUS/Standard using a UEL with an 8-node isoparametric
hexahedral element and one Gauss integration point based on the enhanced strain formulation described in section
5.2. Equal time increments are used in both sets of calculations. It is found that at least 5000 time increments are
required for accurate (convergent) solutions. The enhanced (reduced integration) formulation reduces the required
computer time about 70%. It should be mentioned that in the early stages of the solution strain rates of the order of
10° s~! develop at the center of the area of the rod that is in contact with the rigid wall.

In ABAQUS/Explicit the dynamic analysis is carried out using a VUMAT as described in section 7. Eight-node
isoparametric hexahedral ABAQUS elements with one Gauss integration point (C3D8RT in ABAQUS library) and
the ABAQUS “enhanced hourglass control” are used. A value of ¢ = 3 x 1013 s/(kg/m?) is used in (159) so that, for
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Figure 7: Contour plots of damage parameter D for the local model at § = 0.057 ~. Whole specimen is shown.
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Figure 8: Contour plots of damage parameter D for the non-local model at §/4 = 0.08. Whole specimen is shown.

=105,
pcé=236x107" (177)

Numerical experiments indicate that smaller values of ¢ do not change the results, whereas values of ¢ one order of
magnitude larger do alter the solution. At least 4 million increments are required for accurate solutions. The required
computer time is more than twice (216% higher) the time required for the solution obtained by ABAQUS/Standard
with UEL and one Gauss integration point. A comparison of implicit and explicit ABAQUS calculations has been
given by Nagtegaal and co-workers (Nagtegaal and Taylor (1991); Rebelo et al. (1992)).

Figure 9(a) shows the variation of the normalized force F' exerted by the rod on the rigid wall with time and Fig.

t

f(fo- : Dpdt]inn
Q\o
the rod normalized by the initial kinetic energy Ky = % 00 vg a* L. Dynamic effects are important at the early stages of
the impact; the kinetic energy reduces with time and is dissipated in the form of plastic work in the rod, as expected.
It should be noted also that the force on the rigid wall takes negative values for a short period of time, indicating that
separation is actually occurring.

Contour plots of the equivalent plastic strain &’ and the non-local equivalent plastic strain e” are shown in Fig.

28

9(b) shows the time variation of the kinetic energy K = f % pV? dQ and total plastic work W? =
Q
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Figure 9: Time variation of normalized a) force on the plate and b) kinetic energy and plastic work (energies normalized by the initial kinetic energy
Ky = %pov%azl,).

10 at the end of the calculations # = 40us. At the front end of the rod near the rigid wall the non-local values e” are
smaller than the local values &7, since e” represents local spatial averages of £” as discussed in section 3.1. It should
be also noted that the non-local values e” are calculated but they do not affect the solution in this problem since no
damage is developing. The reason is that e” takes large values in the part of the rod where very negative triaxialities
develop (7 < ner = —1/3) and this suppresses damage evolution according to (33).

rad
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+0.000e+00
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Figure 10: Contour plots at ¢ = 30 us of: (a) equivalent plastic strain £” and (b) the non-local equivalent plastic strain e”.

8.3. Ductile fracture

We consider the quasi-static problem of a plane strain mode-I blunt crack in a homogeneous rate-independent
isotropic elastoplastic material under small scale yielding conditions. Crack-tip plasticity is accounted for in the
manner of a boundary layer formulation described by Rice (1967, 1968) and used by McMeeking (1977) in his
pioneering large strain crack-tip finite element calculations. Traction free boundary conditions are used on the crack
face and displacement boundary conditions remote from the tip are applied incrementally to impose an asymptotic
dependence on the mode-I plane strain elastic solution, i.e., the following displacement field is applied on a circular
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arc at a distance » = R from the crack tip:

uy K | cos ¢
) 178
{ 2}_2G (3-4v cos@){mg}, (178)

where (u, uy) are Cartesian displacement components, x; and x; are crack-tip Cartesian coordinates, x; being the axis
of symmetry and x; the direction of mode-I loading, K; is the mode-I stress intensity factor, and (#, 8) are crack-tip
polar coordinates.

Let by be the initial radius of the semicircular notch at the tip of the blunt crack. The outermost radius of the
finite element mesh, where the elastic asymptotic displacement field (178) is imposed, is R = 1200 by. Because of
symmetry, only half of the region 0 < 6 < & is analyzed. The finite element mesh in the region near the crack tip is
shown in Fig. 11. A total of 1658 4-node plane strain coupled temperature-displacement elements with one Gauss
integration (CPE4RT in ABAQUS) and hourglass control are used in the calculations.
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Figure 11: Finite element mesh in the region near the blunt crack tip.

A hardening exponent » = 5 and a material length £ = by = 1 mm are used in the computations.

The problem is solved using both ABAQUS/Standard with a user subroutine UMAT and ABAQUS/Explicit with
a VUMAT. The material is rate-independent and time enters only as a “loading parameter” in the quasi-static problem.
However, when ABAQUS/Explicit is used, the dynamic problem is solved and time enters the formulation explicitly.
The values of mass density p and the time scale used influence the magnitude of the inertia terms and the strain rates
that develop. Let K = K;/ (0o Vbo) be the normalized appl_ied load and & = +/2é: /3 the norm of the strain rate
tensor. The material parameters p, ¢, and the loading rate K; are chosen so that the kinetic energy is less than 1%
of the total plastic work in the problem and condition (160) is satisfied, i.e., pc& = O(107%) or less at all integration
points in the finite element mesh.

A load of K; = 40 is applied. The maximum extent of the plastic zone at this load level is 7 ~ 0.17 R. ABA-
QUS/Standard requires about 5000 increments for this first step, whereas ABAQUS/Explicit requires about 1 million
increments and comparable computer time. Both codes give identical solutions up to the load K; = 40.

Figure 12 shows the variation of the local and non-local equivalent plastic strain ahead of the crack, plotted on the
same scale, at various load levels; in Fig. 12 and in the following figures of this section, x is the distance of a material
point in the undeformed configuration from the root of the semicircular notch. Clearly, at each material point, the
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non-local value e” is smaller than the corresponding local value &”; this is due to the fact that e¢” can be viewed as
the spatial average value of £”, as discussed in section 3.1. As £ — 0, the non-local value e” at every material point
approaches the corresponding local value £” at that point. The maximum values of both €7 and e? appear on the notch
surface.
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Figure 12: Distribution of the equivalent plastic strain £” (a) and the non-local equivalent plastic strain e” (b) ahead of the crack tip at different load
levels.

Figures 13 and 14 show the distribution of the opening stress 07,, the von Mises equivalent stress o, the hydro-
static stress p = o /3, and the triaxiality = p/o, ahead of the crack tip. The maximum value of the opening stress
o, appears ahead of the notch whereas the maximum von Mises equivalent stress o, occurs on the notch surface. As
shown in Fig. 14a the traction-free boundary condition reduces the value of the hydrostatic stress on the notch surface
and causes the maximum of 0, to occur ahead of the crack (McMeeking (1977)). At low load levels, both 0, and
o, increase with increasing K;; however, as damage develops ahead of the crack, the load carrying capacity of the
material decreases and leads to lower local stresses in that region.

Figure 15 shows the distribution of damage D ahead of the crack at different load levels. The evolution of damage
depends on the non-local equivalent plastic strain e”, the triaxiality 7, and the Lode angle 6, as described in equations
(31)—(34). Damage is initiated ahead of the crack at a load level of K; = 17.8. As shown in Fig. 15, the maximum
value of D appears initially ahead of the crack and moves to the notch surface at higher loads.

ABAQUS/Standard has convergence difficulties beyond K; = 40, when material starts to fail locally; the calcula-
tions are terminated at this load level. A separate set of calculations is carried out using ABAQUS/Explicit and the
solution can be continued for values of K; larger than 40.

The material is assumed to fail locally when the normalized damage indicator /; reaches the value of I, = 1.
When the value of /r = 1 is reached at the Gauss point of an element, the material is assumed to lose its load carrying
capacity and the element is removed. Material failure starts on the root of the notch. Figure 16 shows contours of the
damage parameter D at K; = 40.1 and K; = 45; deleted elements are shown “empty” in Fig. 16. For K; = 45, the
maximum extent of the plastic zone is 77 ~ 0.21 R, i.e., the plastic zone is well inside the region of dominance of the
applied asymptotic elastic solution.

9. Closure

In the present paper we have developed a methodology for the numerical implementation of a family of isotropic
non-local elastoplastic damage models that include the effects of the third invariant J3 of the stress deviator. The
implementation in the ABAQUS general-purpose finite element code is discussed and several example problems are
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Figure 13: Distribution of (a) normalized stress 02, /0 and (b) normalised von Mises equivalent stress 0. /0 ahead of the crack tip at different
load levels.

solved. The methodology is quite general and can be extended to anisotropic damage models for porous metals, such
as those developed by Gurson (1977) and Ponte Castafieda and co-workers (Danas and Ponte Castafieda (2009a,b)).
Such work is now underway.
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load levels.

Appendix A: Finite element matrices

The following convention is used in all Appendices:

i) lower case Latin subscripts have a range of three, representing spatial coordinate directions (i = 1, 2, 3),

i) upper case Latin subscripts or superscripts have a range of eight, corresponding to element nodes (4 = 1,2,--- ,8),
and

iii) lower case Greek subscripts have a range of four (o = 1,2, 3, 4).

In the physical domain we consider a global fixed Cartesian coordinate system with coordinates x = (x1, X2, x3) =
(x,,z). We also introduce a bi-unit cube O, sometimes called the “parent domain” or “master element”, with “natural
coordinates” & = (£1,&2,&3) = (€,n, ) intherange -1 <& <1 (i=1,2,3).

Each 3D 8-node hexahedral isoparametric finite element Q¢ in the physical domain is mapped onto the master
element O with an invertible transformation of the form

8
x(@) =Yy NM@x  (=1,23), (179)
4=1
where xf is the i-th coordinate of node A4 in the physical domain, N“(£) are the element “shape functions”

1
NEnO =g+ +n' 1+ (A=1.2--.8), (180)

and (&1, , {*) = (&, &, &) are the values of the natural coordinates at the nodal points.
The components J;; of the Jacobian matrix [J] and the Jacobian J of the transformation (179) are defined as

6x,~(§

Jij(€) = 2%,
J

and  J(€) = det[J(©)]. (181)

Remark
Sometimes the point & = 0 is referred to in the literature as the “centroid” of the element Q°. Using equation (179)
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Figure 15: Distribution of the damage parameter D ahead of the crack tip at different load levels.
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Figure 16: Contours of damage D and deleted elements at (a) K; = 40.1 and (b) K; = 45 (b). Solutions are obtained using ABAQUS/Explicit.

When the value of I = 1 is reached at the Gauss point of an element, the material is assumed to lose its load carrying capacity and the element is
removed. Deleted elements are shown “empty””.

we can readily show that

8
x(0) = 1 Zx/‘. (182)

A=1

|

It is emphasized though that the point x(0) on the physical domain is not in general the geometric center of Q°, unless
¢ is a rectangular parallelepiped. Therefore, we avoid the term “centroid” and refer to the material point at & = 0 as
the “element local origin”. (|

9999

The “constant Jacobian matrix”” and “constant Jacobian” are obtained by evaluation at the element local origin

E=0:
[Jol = [J@)],  Jo=J(0). (183)
We also define
Ji= ("), = g—i o (184)
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We recall that

and, following Simo and Rifai (1990) (see also Puso (2000)), we introduce the transformed quantities

J(f)

ALi{(€) = == (J0)i (§0)j ALun(€),  so that  AL;(€) =
Equations (186) can be written in matrix form as
J(&)
{AL®) = Tl AL@) or (AL} =
ox1 9%9 9x1 9x1
where
AL = | Ay Ay Auss Awy Auny Aws Aus
X!
[Tol = [Kol ™",
9%9 9%9
) ) o) . . . . . .
]%1 Jo1 131 JiiJj2r o JirJj21 J11Jj31
112 J ]'%2 Ji2jn Jjujn Jji2jxn
i Jn J33 o J13Jas J13jas J13 3
Jujiz Jajz Jaijz2 Juja2 jizja jiij3n
[Kol =1 juujiz Jarjo2 Jastjs2 Jizju Jjujn Jjizji
%9 Ju iz Jarja 3z Jijsa Jizja JjiJjs
JuJjiz Jaja sz Jizja Juj2s ji3 g
J12J13 J2j23 J32j3 Jizj2z J13j2 J12J33
L J12J13  J22j23 J32 33 J13J2 J12J23 J13 )32

ALy =

6Aul'
6Xj ’

J(lf.,:) jmz jn/ ALmn(f)
(71 {AL ),

J (f ) o -

Auyz  Auzp J ,
Ju 3 Jar gzt Jjajst |
Ji2jn2 Jajn jnjn
J13J33  J23J33  J23 J33
Ji2Jjst Jarjz2 J22j31
Jijs2 Janja Jjaujn
J13 731 J21J33  J23 J31
JuJj3s  Ja3jzat Jja1Jj33
Ji3Jj2 J2Jj3 jnjn
J12Jj33  Ja3jz2 jnjs3 |l

(185)

(186)

(187)

(188)

(189)

(190)

Equation (186b) shows that, given AL in the natural space (¢, 7, ), the enhanced gradient AL in the physical space
(x,y,z) is obtained by convecting AL by the Jacobian of the isoparametric map according to (186b) or, equivalently,
(187b).

If we use the approximation J(£€) ~ Jy in (186a), we can show that the components AL; ; can be written in the form

. OAl - ONA
AL;; = = ——Air! Ait; = (Jo); Aug, (191)
TS ; 0 k
where A#; (i = 1,2, 3) are the components of the convected incremental displacement and Aﬁf 4=1,2,---,8) the

corresponding nodal values. Equation (191a) shows that we can interpret AL as an incremental displacement gradient
in the natural space (¢, 77, {), where the appropriate convected displacement increment is defined by (191b) above.

Using the transformation (191b) we can show that the transformed nodal displacements can be written in matrix
form as

{ad?} = [6] Ay, (192)
Ix32 32x32 1x32
where
LAdqz{ lAd;]  [Ady] L Ads] J (193)
32x1 4x1 4x1 4x1
L%S]AJ=|_Auf Auj Aul A | A=12--8, (194)
; (L]
[JO] 0 4x4
M]"=| > M| [g]= : (195)
4x4 32%32 T
1x1 1x1 [IO]
4x4
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with (Auf, Ae") being the increments of the components of displacement and of the non-local equivalent plastic strain
atnode A4.

The idea now is to define the finite element interpolation of the enhanced field transformed AL(€) in the nat-
ural space (&,7,z) and then to convect it in accordance with (186a) to determine the corresponding enhanced AL
in the physical space (x,y,z). The resulting interpolation for AL is automatically frame invariant provided that the
interpolation of AL(£) is {£, 7, /}-invariant. We recall the enhanced gradient fields (117) and (120):

(AL()) = ([BL] + [me(x)]) (Ad°)+ [G(0)] {Aa), (196)
9x1 9%32 9x32 32x1 9%6 6x1

(Ag(x) = [[ o]+ [B“a%x)]) (Ad€). (197)
3x1 3x32 Ix32 32x1

The constant matrices [B;] and [B,] in (196) and (197) are defined in (122). Following Puso (2000), we define
[Bstab(x)], [G(x)], and [B;‘ab(x)] by convecting appropriately defined matrices on the natural space (¢, 7,z). We start

by writing
where

with

[BA € )] =

9Ix4

WhereyA is the A-th component of {y,} (¢ = 1,2,3,4, 4=1,2,---
;} can be found in Flanagan and Belytschko (1981).

of{

{bi}=—fi{N}dQ

{ALgab(®)] = [Baan(@)] {Ad]),

—
I
><
NMw

(I.th

)T} ¢ =1,2734,
1x8 8><I 8x1

i=1,2,3,
0x; 8x1
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9Ix1 9%32 32x1
[Buao 0] :[ [Bl (f)] B©] - [B:s @) ]
9%32 I%x4 9Ix4
[ vin+yid+yving 0 0 0]
0 viE+y)i+yicé 0 0
0 0 Vin+vyiE+vyién 0
yi¢ 0 0 0
0 yig 0 0
yin 0 0 0
0 0 yin 0
0 yig 0 0
0 0 yié
A4=1,2,

90

(198)

(199)

(200)

(201)

(202)
(203)
(204)

(205)

(206)

, 8). Analytical expressions for the components



Next, we combine equation (200) with {ALg,(€)} = [Bswn(€)] {Ad?} and the transformation (187b) to find the
expression

[Byar(@)] = 2 1Kol [Bun(@)] 6] (207)

9%32 J(f) 9%32 32x32
which defines the [Bg,p [-matrix in the physical space (x, y, z).
The form of []~3A (f)] in (200) is discussed in detail by Puso (2000). Here we mention that the last six rows
of [EA (.f)] in (200) are chosen so that shear locking is eliminated when the element is a rectangular parallelepiped

(Freischldger and Schweizerhof (1996)). We also note that the expression for [ﬁstab(f)] in (199) can be written in the

following alternative form:
4

EGIEDN a@] (208)
9x32 a=1 X32
where
(7 0 0 0] [0 0 0 0] [ 0 0 0]
0 & 00 07 00 00 00
00 0 0 0 0 n O 0 0 ¢ 0
00 0 O 0 0 0 0 0 0 O
[Bi@®]=] 0 0 0 0 |[B&)]=| 0 0 0 0|[Bs@]=|0 ¢ 0 0} (209)
x4 00 0 0 9x4 n 0 0 O 9x4 0 0 0O
0 0 n O 0 0 0 O 0 0 0 O
00 0 0 0 0 0 O 0 & 00
L0 0 & 0 | L0 0 0 O] L0 0 0 0|
'npl 0 0 0]
0 & 0 0 |
)
0 0 &7 0 Ve 0] |
0 0 0 0 Y2 [6] .
[B:@]=| 0 0 0 ol [LJ=| | (4= . (210)
x4 0 0 0 0 32x4 4x4
0 0 0 0 ¥ 18], :
0 0 0 0 e
L 0O 0 0 0|
We also note the following identity
[6]" [T.] = [T.] o] @11
32x32 32x4 32x4 4x4
or
= ) 6] = AL ) 11
[M,] = [L,]" [6] = L] [[,)" =| Yallol" Yalko Yo llo]™ |, (212)

4x32 4x32 32x32 4x4  4x32

When we replace the left-hand-side of (211) with the right-hand-side in a computer code, we reduce significantly the
number of arithmetic operations involved.

Similarly, the [G(£]-matrix in the physical space (x,y,z) is formed by convecting an appropriately defined [G({f)]—
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matrix in the natural plane (¢, 77, {) (Puso (2000)):

né ¢n L&
né 4{n €
né {n ¢

[G©®)] = mﬂ%ﬂ |G| = 213)

o6 J (‘f) ox6

SO OO o OoO3I O

0
0
¢
0
0
0
0
0
0

S OO OO O

SO O OO OO OUYN
S OO OO O
(=l e e e N =N

The last three columns in [(} (f)] provide the bilinear terms in interpolation (117) of AL necessary to avoid incom-
pressibility locking.

Finally, the stabilization matrix [Bitab({;‘)] that enters the enhanced gradient g of the non-local equivalent plastic e”
in (120) is defined as

BY*°(£) []BWQ (214)
[ 3x32 ] J(f) [ 3x32 ]
where
B (g)]:[ [ﬁé (f)] [ﬁﬁ(f)] [E§ (f)] } (215)
3%32 3x4 3x4 3x4
: 0 0 0 7‘1417+y‘34§+yf17§
[Bﬁ(g)]: 0 0 0 yle+ylc+ylce (4=1,2,...,8). (216)
3x4 0 0 0 ygn+y‘34§+yf§n

An alternative expression for [fi?ab(f)], as defined in (215), is

4
W%)ZMWM 217)
3x32 P 432
where
[0 0 0 7] [0 0 0 0
[Bi©]=|0 0 0 ¢ |, %@:0004} (218)
3x4 |0 0 0 0] 3x4 |0 0 0 7
[0 0 0 ] [0 0 0 p¢
[BX®]=|0 0 0 0|, [Bi®]=]|0 0 0 gg}. (219)
3x4 |0 0 0 & | 3x4 | 0 0 0 &p
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Appendix B: Calculation of {Aa°} in terms of {Ad°}

Equations (144) are written for every element in the finite element mesh and provide a set of six non-linear equations
per element that define the local element parameters {Aa°} in terms of the element nodal degrees of freedom {Ad€}.
We recall that (144) has the form

f (GO (0,01(€) 16145 = (01 220)

6X9 6x1
O

for all elements, where J(£) is the Jacobian of the transformation of the mapping from the master element to domain
Q¢ in physical space (see equation (181b) in Appendix A). We also note that (144) is also satisfied at the start of the
increment, i.e,

f (G 10,(©) Ju(@)dD = (221)

6x9 9x1
]

In plastically incompressible materials, J,4; =~ J, to first order, since the elastic strains are small. Then, last two
equations imply that

f (GO {A0(€)) 42 = {0}, (222)
6x9 9x1 6x1
QE
on all elements in the problem.

In the following we use the constitutive equation (51) g’ = £ : D — A" ¢, to linearize (222) and then introduce
standard approximations used in physical stabilization methods to determine analytically {Aa®} in terms of {Ad€}.

We start by writing the constitutive equation (51) o= L :D - A" ¢?, in the form
o=C:L-A"¢, (223)
where .
Cijpg = Lijpg + 5 (O'iq Ojp + 0 jgOip = Tip Ojg = T jp 6iq) . (224)
Equation (223) leads to the following approximate expression for Ao
Ao = C: AL — A" Ae?, (225)

where C and A™ are evaluated at the start of the increment at # = #,. We introduce next the finite element interpolations
for AL and Ae” from (117) and (119) to find

(Ao (6)) = ([C(-f)] (@ + [Bstab(fﬂ) (A" LNg(f)J] (Ady+

9%x9 9%x32 ox1 1x32
+[CE)][G(E)] {Aa%}, (226)
9%x9 9%6 6x1
where
Ac]={Ad)" =| Aoy Aon Aoy Ao Aca Aoy Ay Aoy Aoy |, (227)
1x9
A= (A = | g o al A ad aloa). 22%)
1x9
Note that {Ac(€)} in (226) is linear in {Ad°} and {Aa®}.
Evaluation of (226) at § = 0 yields
(Ao} = (Aa()) = | [Col [Br] - {AT} [Neo | (A4, (229)
9x1 9%9 9x32 ox]  1x32 32x1

where we took into account (133) and a zero subscript indicates that the corresponding quantity is evaluated at & = 0.
Next, we introduce two fundamental approximations used in physical stabilization methods (Puso (2000)):
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(i) the values of the constitutive matrices [C(£)] and [Anl({;‘)] over the whole element domain are approximated
with their values at the corresponding local origin, i.e., we set [C(€)] = [Co] and [A“l(.f)] = [Agl],

(i1) the value of the Jacobian J(€) over the whole element domain is approximated with its value at the correspond-
ing local origin, i.e., we set J(§) = J(0) = Jp.

Then, (226) can be written in the form

{Ao(€)} = Ao-o + {AT a0 (€)}, (230)
9Ix1 x1 9Ix1
where {Ao} is defined in (229) and
(Acgub(€)) = | [Col [Buan(@)] - AT} | Ne(@) | [{Ad°) + [Co] [G(&)] {4a°), (231)
9x1 9x9  9x32 ol 1x32 0J 32x1 0 9x9  9x6  6xI

with |N.(€) | = [N(£)] - IN:(0) .
Finally, we substitute (230)—(231) into (222) to find

[Ko ] 1A} + [Ko ]{Aa%} = {0} or (A2} = — [Kg,] ™' [Ky]1AdY), (232)
6x32  32x1 6X6 6x1 6x1 6x1 6X6 6x32  32x1
where
[Kil = | [G]"[Co][G]dQ,  [Ku]= f [GJT([COJ [Byao] - {A5'} [N ] |42 (233)
6x6 6x9  9x9 9x6 6x32 6%x9 9x9  9x32 ox1 1x32

Qe Qe

Matrix [G(£)] is chosen in Appendix A such that [K,,] is diagonal and the inversion required in (232b) is trivial. Also,

analytical expressions can be obtained for [K,,] and [K,,] as described in the following. Therefore, the calculation of
{Aa®} in (232b) is very efficient computationally.

The analytical evaluation of [K,,] and [K,,] is as follows. We use the transformations (207) and (213a) for [Byap]
and [G], and introduce the transformed matrices

[Co] = 170) 1Co1 %) {A] = %) (A7) (234)

9%9 9%9  9x9 9Ix9 9x1 9%9 9x1

where [K] is defined in (190), so that equations (233) can be written in the form

1= [6] [@[6len. - [16)

6x9  9x9 9x6 O 6x9

([CO] |Baao | — A3} [N ] |22 (235)

9%x9  9x32 Ix1  1x32

Let C‘,-j and A; be the elements of [Co] and {Agl} and use the approximation dQ = J(§)dO = JydO. Then, using

(235a) and equation (213b) for [G], we find the following analytical expressions for the elements of the diagonal
matrix [K,,] (see also Puso (2000))

8Jo 5

(Kua)ii = =3 Cii i=1,2,3 (nosummation on i), (236)
(Kua)aa = Kaa)ss = Kaa)ss =
_8J
= 0(011+022 +C33+012+Czl+023 +C32+Cl3 +C31) (237)

Also, taking into account that

8 .
0 if J#41, I=1,2,-,8,
;;S’f) —Z 1) 101}, {61}J—{1 if J=4l  J=102....32 (238)
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and using (235b), we conclude that we can write [K,,] in the form

where

with

8

DKL 161,

=1 ex1 132

¥ L] ] ,
4x4

©]do

9x4

AY} N @) do,

[Kau] = [Kaul] - [Ka142]7
6x32 6x32 6x32
4
[Kay] = Z; o [Ma), [Kyo] =
2 T
M,] = [ ve ol 7 [N
[Kgul] =Jo f [G (f)]r [60] [Ba
6x4 6x9 9%9
(ko) = [[ec@] (A
6x1 6x9 9x1

(239)

(240)

(241)

(242)

(243)

¥ is defined in (201), and [Io] in (195a).
~ 4 A
The integrals in (242) and (243) can be evaluated analytically. Substituting [Byub(é)] = ¥ [Ba(€)|[Ia]” from
=1
(208) and using (213b) for |G| together with (209)~(210) for |B, (£)|, we find the following analytical expressions

for the elements of matrices [K" 1] and { Wz}

0 Cn Cy 0 0 0 0 0
Cu O 7 0 Cx 0 Cxn O
8 J 0 0 0 0 8J| C C 0 0
1 S Jo 2 1_ %Y 34 Cx
[Iijzl] 3]0 0o o0 o} [szl] 310 0 0 0 (244)
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 Cs Ci 0
0 0 0 0
8Jo| G C 0 0
3 SJo 31 35
[I:;gl 300 0 0 of (245)
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
8Jy 0 0 0 0
4 1_9%Y% N ~ ~
[K“”']_ 9 0 0 C3+Cu+Csz 0| (246)
6x4 ~ ~ ~
Cii+Cn+Cs o 0 0
0 Ci2+Cn+Cxn 0 0
and N
_3/]1 3A~1
—3/‘]2 _3{12
Ji -34 Ji =343
1 __0 3 2 _ Y0 - - -
{Igzllﬂ} 9| A +4,+4; [ {Iiillﬂ} 9 —(A1+A2+A3) ’ (247)
A1+A2+A3 Ay + Ay + A
A]+A2+A3 —(1‘]14—/]2-}-/]3)
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34,
34,
Ji -3 43
3 _J0 ~ ~ ~
{KauZ} o 1+ A + A3
61 —(/I] +/72 +/I3
—(/L+/Iz+/]3
-3 4,
-3 4,
Jo 34;
5 _ ~ ~ ~
{KauZ} - 3 1+ Ay + A3
61 —(/I] +/72 +/I3
—(/I]+/Iz+/13
34,
34,
Jo 34
7 \_J0) 343
{IEZITZ}_ 9 A] +A2+A3
1‘]1+1‘Iz+/~13
1‘]1+1‘Iz+/~13

-3 4,
34,

J() _31213

— 4 +A2 +A3

- /11 +1‘Iz +1‘I3
Ay +z‘]2+z‘]3

(248)

34,

34>

Jo 3/]3

- 1‘]1 +1‘Iz +1‘I3

- 1‘]1 +1‘Iz +1‘I3
Ay +1‘]2+1‘I3

(249)

-3 4,
34,
34,
—(:‘L +1‘Iz +/I3)
A1 +1‘Iz +1‘I3
—(/L +1‘Iz +/I3)

(250)

Summarizing we note that the elements of [K,,] are determined in (236)—(237) and [K_,] is defined by (239)—(240)

and (242)~(250).
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Appendix C: Analytical expressions for stabilization terms

In this Appendix we derive analytical expressions for matrices {f$1*°} and [k;‘ab] introduced in (151b) and (148).

We recall the definition of {f$#°}:

() = [ Bas@ w@) s@ 0 (251)
O

where all quantities are evaluated at the end of the increment.
Next, we use (230) to write {o7(§)} ~ {00} + {0 b (&)} and take into account (124a) to conclude that

(6]~ [ Bas(® (@) 1@ 4 0. (252)

O

Using the definition of [Bgp | in (207), together with (208) and (212), we find

4
fstab 253
32X] ; 32%4 4><1 (233)
where
(6 =0 [ [0 1) l0wn@1dD. @ =1.2.3.4 (254)
4x1 4%9
o
In plastically incompressible materials, Jy =~ Joln to first order. We also use the approximation [Ky] = [K],, to find
{fw}:{fw}n-i—{Afaf}’ a = 172’374’ (255)
where
(88 =0 [ [Bu@)] (5] 120 ) d 0. (256)
4x1 40 9x 9x1
Using (231) for {Ao b}, we find
{Afs) = K] 1Ad°) + [KE, 1] {Aa°} B=1,2.34, (257)
4x1” axzy 3 4xe O

where {Aa‘°} is found from the solution of the local problem in the element as described in Appendix B, [K{j ul] as
defined in (242)—(246),

K] = [Kf]-[KE],  B=1.234 (258)
4x32 4x32 4x32
4
18] = o[ ] [k =0 [ [Bao)] (o] B ao, (259)
4><32 vy=1 4><4 4><32 4x4 O 4x9 9%9 9Ix4
K= SR (K = o [ [Buo]" (3] sucerao (260)
4x32 =1 4><1 1x32 4x1 4x9 9x1

O

and [0;] is defined in (238). R
We use the expressions (209)—(210) for [Bﬁ(f)] and evaluate analytically the integrals in (259b) and (260b) to find:

(%) = 1] = 1] = |1 = 2] = K] = o] @61)
4x4 4x4 4x4 4x4 4x4 4x4
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and

[ Cii 0 Cj17 0 Cis
0 Cn Co O [Klz] 8Jo 0
Cn Co Cr7+Cy 07 L . 3 | Crs

| 0 0 0 0 0

0 0 0 0 Co
0 Cx Cpn 0 8Jo| 0
0 C’Z: C‘i ([ [Ifj:] 3 Csi

L0 O 0 0 0

[ 644~+ Css Cj42 Css O [ Cj4|

Co Cn 0 0 [K23] 8Jo| Ca
Cs6 0 C;3 0F i ) 0

L 0 0 0 0 .| 0

[0 0 0 0 [ Cua
0 C C 0 8J| C
0 Gn G 0| []=5

O] 0 0 0

[ lel } C~‘15~ 0 0 S
Cs1 Css+Css Cs3 0 [K44] _8J4| 0
0 Cis Cys 0| i 9 0
0 0 0 0 0

i

fiv) = 2] = b = - ) = -0 T

4x1 4x1 4x1 4x1 0
2

)=l ]« 21

4x1 4x1 4x1 4x1 0
1‘14 T 1‘]6

)= i) = (k)= - i) = -4

4x1 4x1 4x1 4x1 03
—1‘14 T 1216

)= fia) = -} =)= 3

4x1 4x1 4x1 4x1 03
~ /ZI ~

)= fi) = - ) = = -y 0
4x1 4x1 4x1 4x1 0

~_g1 ~

i) = i) = - ¥} = e = ) T
4x1 4x1 4x1 4x1 0
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wn W

S
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Cs

coooo @O0 oo

SO OO oo oo
SO OO oo oo

oS O

e

(98]

o
cooc o !

(262)

(263)

(264)

(265)

(266)

(267)

(268)

(269)

(270)

Q71)

(272)



(K3} = (K37} = % ﬁj R SR L E % :ﬁj : (273)
4x1 4x1 0 4x1 4x1 0
_/z] _:51
(K3} = {K3°) = - _/ﬁz o k3= (K = Jo _Ai : (274)
4x1 4x1 0 4x1 4x1 0

where C;; and 4; are the elements of [Co] and {Ag'}.

Summarizing we note that {f$%} is determined analytically from (253), (255), (257), (242)-(246), and (258)-
(274).

Next we consider the calculation of [kijab] defined in (148):

] = ¢ [ o] (B @ ao. @79)

32x32 O 32x3 3x32

where all quantities are evaluated at the end of the increment. Using the definition of [Bijab] in (214), together with

(217), we conclude that
K| = € Jo Z Z [Fa] Hop [Fﬁ] (276)

32x32 a=1 p=1 324 Taxa ax32
where
f [B26)]" (o] [B4®)] d (Do) = [Ko]" (Kol @.f=1,2.3,4 (277)
4><4 43 3 3 33 3x3

O

We use the expressions (218)—(219) for [ﬁg (.f)] and evaluate analytically the integrals in (277a) to find:

(Haﬁ)yﬁ = E(X,B 647 645, a,IB,'y,(S = 1’2’3’4’ (278)
D11+ Dpy Dy, Do3 0
_8 D3 Dy + Ds3 Dy, 0
[4:f] 3 Do3 Dy, Dy + D33 0 , (279)
0 0 0 (D11 + Dy + D33)

where D;; are the elements of [Dy].
Summarizing we note that [k¢, | is determined analytically from (276), (278), and (279).
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