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Abstract
A “plastic-strain-gradient” version of an isotropic elastoplastic damage model that depends on the third invariant J3of the stress deviator is developed. The model is based on the “non-local” equivalent plastic strain ep defined byPeerlings et al. (2001) and Engelen et al. (2003) and introduces a “material length” ℓ to the constitutive equations. Itis shown that the non-local equivalent plastic strain ep at a material point P can be identified with the average value ofthe local von Mises equivalent plastic strain ε̄p over a sphere centered at P and of radius approximately equal to 3 ℓ.A methodology for the numerical integration of the constitutive equations is presented. The algorithm is appropriatefor rate-independent as well as rate-dependent (viscoplastic) models. The model is implemented in the ABAQUSgeneral-purpose finite element program and both quasi-static and dynamic problems are solved. Two possible A-BAQUS implementations are discussed. First,“user elements” are developed, which can be used for the solution ofboth quasi-static and dynamic problems. Reduced 1-point Gauss integration is discussed in 8-node hexahedral ele-ments and the “physical stabilization” method of Puso (2000) is used to remove the resulting numerical singularities(hourglass control). Second, the implementation of the model via “user material” subroutines is discussed. Quasi-static problems can be solved with ABAQUS/Standard using a *COUPLED TEMPERATURE-DISPLACEMENT,STEADY STATE analysis together with user subroutine UMAT, in which temperature is identified with the non-localequivalent plastic strain ep; the solution of dynamic problems requires use of ABAQUS/Explicit together with a *DY-NAMIC TEMPERATURE-DISPLACEMENT analysis option and user subroutines VUMAT and DFLUX. Severalexample problems are solved.
Keywords: strain gradient plasticity, J3 dependence, damage mechanics, finite elements, numerical integration ofelastoplastic equations, hourglass control

1. Introduction
Analytical criteria for local ductile failure at a material point P are usually based on the assumption that theaccumulated equivalent plastic strain ε̄p at P reaches a critical value ε̄pf . Ductile failure in metals subjected to tensileloads is the result of void nucleation at inclusions, followed by void growth and coalescence.The pioneering works of McClintock (1968) and Rice and Tracey (1969) established that porosity growth dependsexponentially on stress triaxiality η, defined as the ratio of mean normal stress p to the equivalent von Mises stress σe.These results led to the development of several local criteria for ductile failure, which define the critical equivalentplastic strain ε̄pf as a function of stress triaxiality η; the works of Hancock and Mackenzie (1976) and Johnson andCook (1985) are typical examples. A discussion of several fracture criteria available in the literature has been givenby Bao and Wierzbicki (2004a) and Bai and Wierzbicki (2015). It is now generally accepted that for large triaxialities(η > 0.4), where void growth is the failure mechanism, and for negative triaxialities (η < 0), where shear failureoccurs, the critical strain ε̄pf decreases with increasing η. The situation is not as clear for intermediate values of thetriaxiality in the range 0 < η < 0.4: experimental results of Bao and Wierzbicki (2004a,b) on 2024-T351 aluminum



alloy indicate that ε̄pf increases with η in that intermediate triaxiality range, whereas the experiments of Halton et al.(2013) on Al-6061-T6, of Mohr and Henn (2007) on Al-7Si-Mg gravity die casting alloy, and of Luo et al. (2012) onAl-6260-T6 show the opposite.Wierzbicki and co-workers (Bai and Wierzbicki (2008, 2010); Xue (2007); Xue and Wierzbicki (2008)) carriedout carefully controlled experiments and showed that the critical strain ε̄pf depends on both the hydrostatic stress andthe third principal invariant J3 of the stress deviator. Based on these data, Bai andWierzbicki (2008) proposed a failurecriterion in which the critical strain ε̄pf is function of triaxiality η and the “normalized Lode angle parameter” θ̄, whichdepends on J3 (BW model). Realizing the importance of damage and its effects on strain localization and ductilefracture, Lian et al. (2012) introduced the concept of damage initiation and its evolution induced softening effecton the strength to the BW fracture model, turning it into a hybrid (coupled or uncoupled) approach. The modifiedBai–Wierzbicki (MBW) damage model was applied successfully to the formability prediction of steel sheets (Lianet al. (2014)) and heavy plates (Lian et al. (2015)), as well as the ductile fracture behaviour under impact loading(Novokshanov et al. (2015)). To further improve the model performance especially for complex loading history, Wuet al. (2017b) enhanced the model formulation and successfully applied it to the chip breakage prediction in cutting(Wu et al. (2017a)). However, the challenge still exists when the model is intended to be used for large-scale structure,while all the damage/fracture materials parameters are calibrated from lab scale due to its local formulation.In the present paper we present a non-local (“plastic-strain-gradient”) version of the MBW model. The yieldfunction is defined in terms of all three principal invariants of the stress tensor: the hydrostatic stress p = σkk/3, thevon Mises equivalent stress σe = √3 si j si j/2, and J3 = si j s jk ski/3, where σ is the (true) stress tensor, s the stressdeviator, and the summation convention is used on repeated indices. The flow stress of the material depends on theequivalent plastic strain ε̄p and a damage parameter D, which evolves during plastic flow. A “non-local” equivalentplastic strain ep (Peerlings et al. (2001); Engelen et al. (2003)) is introduced and used to define the evolution of thedamage parameter D. The non-local equivalent plastic strain ep at a material point P can be interpreted as the averagevalue of the local variable ε̄p over a material sphere centered at P with radius R ≃ 3 ℓ, where ℓ is a material lengthintroduced in the definition of ep.The calibration of the local version of the model is discussed in detail by Novokshanov et al. (2015), Wu et al.(2017b), and the corresponding calibration of the non-local model is underway and will be reported elsewhere. Thepresent paper focusses on important issues associated with the numerical implementation of the non-local model ina finite element code. These include the finite element formulation of the non-local boundary value problem and thenumerical integration of the constitutive equations that account for J3-dependence.Independent interpolations are used for the displacement field u and the non-local plastic strain ep. For plasticallyincompressible materials, the integration of the elastoplastic damage model reduces to the solution of a system of twonon-linear algebraic equations. The algorithm covers the rate-independent as well as the rate-dependent (viscoplastic)versions of the model.A three-dimensional 8-node hexahedral isoparametric finite element with one Gauss station for numerical inte-gration is developed. The element is used to carry out efficiently large scale finite element calculations in implicitas well as explicit finite element codes, such as ABAQUS/Standard and ABAQUS/Explicit. The element is basedon a “mixed formulation”: incremental displacements, stresses, incremental displacement gradients, non-local plasticstrains, non-local plastic strain gradients, and non-local generalized stresses are treated as independent unknowns andtheir relations are enforced in a weighted integral sense. Several such mixed formulations are available in the litera-ture for standard local plasticity models; e.g., we mention the works of Corradi (1983), Nyssen and Beckers (1984),Pinsky (1987), Simo et al. (1989), Comi and Perego (1995), Capsoni and Corradi (1997a,b), and Mendes and Castro(2009). Orthogonal interpolation fields are used (Simo and Hughes (1986); Simo and Rifai (1990)) and the problem isfinally defined only in terms of the nodal values of the displacement field u and the non-local equivalent plastic strainep. Also, to overcome the numerical singularities introduced by the reduced one-point integration, the “enhancedstrain method” developed by Simo and co-workers is used (Simo and Rifai (1990); Simo and Armero (1992); Simo etal. (1993); Freischläger and Schweizerhof (1996); Kasper and Taylor (2000a,b); Areias et al. (2003)). The enrichedinterpolations used for the incremental displacement gradient and the non-local equivalent plastic strain gradient pro-vide the required “hourglass control”, known as “physical stabilization, that removes the aforementioned numericalsingularities (Belytschko and Bindeman (1991)). The scheme proposed by Puso (2000) is used to derive approximatebut very accurate analytical expressions for the stabilisation terms, thus obviating Gauss quadrature and leading to acomputationally efficient finite element formulation.
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We also discuss how such non-local elastoplastic damage models can be used together with the ABAQUS general-purpose finite element code. The obvious choice is to develop a “user element” (UEL subroutine) in ABAQUS, whichcan then be used for the solution of both quasi-static and dynamic problems. For quasi-staticproblems , a simpleralternative is possible, if a “user material subroutine”UMAT is used together with a coupled temperature-displacementanalysis, in which temperature is identified with the non-local equivalent plastic strain ep and the plastic work-raterpl = σ : Dp is properly defined and used as a heat source, where Dp is the plastic part of the deformation rate tensor;this minimizes the programming effort and allows for the use of all elements available in the library of ABAQUS/Stan-dard as discussed in section 6. This approach cannot be used with ABAQUS/Standard in dynamic problems. Dynamicproblems including inertia terms can be solved by using ABAQUS/Explicit together with user material subroutineVUMAT and a dynamic temperature-displacement analysis option as described in section 7. When the explicit codeis used for the solution of quasi-static problems, care must be taken to eliminate the influence of the inertial terms inthe equations of motion and of the transient terms in the energy equation; these issues are discussed in detail in section7 and in example problems 8.2 and 8.3.Standard notation is used throughout. Boldface symbols denote tensors the orders of which are indicated by thecontext. All tensor components are written with respect to a fixed Cartesian coordinate system with base vectorsei (i = 1, 2, 3), and the summation convention is used for repeated Latin indices. The prefix “det” indicates thedeterminant, a superscript T the transpose, a superposed dot the material time derivative, and the subscripts s and athe symmetric and anti-symmetric parts of a second order tensor. Let (a, b) be vectors, (A, B) second-order tensors,and (C,D) fourth-order tensors; the following products are used in the text a ·b = ai bi, (a b)i j = ai b j, (A ·a)i = Aik ak,(a · A)i = ak Aki, A : B = Ai j Bi j, (AB)i jkl = Ai j Bkl, (C : A)i j = Ci jkl Akl, and (C : D)i jkl = Ci jpqDpqkl. The inverse
C−1 of a fourth-order tensor C that has the “minor” symmetries Ci jkl = C jikl = Ci jlk is defined so that C : C−1 = C−1 :
C = I , where I is the symmetric fourth-order identity tensor with Cartesian components Ii jkl = 12 (δik δ jl + δil δ jk), δi jbeing the Kronecker delta.
2. Description of constitutive model

An Eulerian formulation is used; the equations of motion and the constitutive equations are all written in thecurrent deformed configuration of the elastoplastic body.The elastic and plastic response of the material are treated independently, and combined later to obtain the fullelastic-plastic response. The rate-of-deformation tensor D at every point in the continuum is written as
D = De + Dp, (1)

where De and Dp are the elastic and plastic parts.
2.1. Elasticity

An isotropic linear hypoelastic form is assumed for the elastic part of the rate-of-deformation tensor:
De =Me : ∇σ or ∇

σ = Le : De, (2)
where ∇σ is the Jaumann or co-rotational rate of the stress tensor,

M
e
=

1
2GK + 1

3 κJ , Le = (Me)−1 = 2GK + 3 κJ , J =
1
3 δ δ, K = I −J , (3)

(G, κ) denote the elastic shear and bulk moduli respectively, δ and I the second- and fourth-order identity tensorswith Cartesian components δi j (the Kronecker delta) and Ii jkl = 12
(

δik δ jl + δil δ jk
). The hypoelastic form (2) isconsistent, to leading order, with hyperelastic behavior, because the elastic strains are small relative to the total strains(Needleman (1985); Aravas (1992)).
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2.2. Rate-independent plasticityThe isotropic yield condition is described by a smooth function of the form
Φ
(p, σe, θ, ε̄p,D)

= 0, (4)
where σ is the true (Cauchy) stress tensor, p = 13 σkk the hydrostatic stress, s = σ − p δ the stress deviator, σe =
√ 32 s : s the von Mises equivalent stress, J3 = 13 tr (s3) = dets, θ the “Lode angle” defined by

3 θ = arcsin
(

−272
J3
σ3e

)

, −π2 ≤ 3 θ ≤
π

2 , (5)
D is a “damage parameter”, and ε̄p the von Mises equivalent plastic strain, the rate of which is defined as

˙̄εp =
√2
3 Dp : Dp . (6)

The damage parameter D in (4) takes values in the range 0 ≤ D ≤ 1 and is defined in terms of the “non-local”equivalent plastic strain as described in sections 3.1 and 3.1.1.The value θ = 0 corresponds to pure shear, θ = − π6 to uniaxial tension, and θ = π6 to uniaxial compression. Wealso define the “stress triaxiality” η and the “normalized Lode angle” θ̄:
η =

p
σe , θ̄ = − θ

π/6 . (7)
The parameter θ̄ takes the values of 1 in uniaxial tension, −1 in uniaxial compression, and 0 in pure shear.The flow rule that defines the plastic part of the deformation rate Dp is defined by a “normality rule”:

Dp = λ̇P, P = ∂Φ

∂σ
, (8)

where λ̇ is a non-negative plastic flow parameter. Therefore, in view of (6), we can write
˙̄εp = λ̇ P̄, P̄ =

√2
3 P : P . (9)

The normal P to the smooth yield surface can be written in the form
P ≡ ∂Φ

∂σ
=
∂Φ

∂p ∂p∂σ + ∂Φ

∂σe
∂σe
∂σ
+
∂Φ

∂θ

∂θ

∂σ
=
1
3
∂Φ

∂p δ + ∂Φ

∂σe N +
1
σe

∂Φ

∂θ
M, (10)

where
N = ∂σe

∂σ
=

3
2σe s, M = σe ∂θ

∂σ
=

1
cos 3θ

(

δ − sin 3θN − 2N2) . (11)
Remarks

1. Equations (8), (10), and (11) show that the principal directions of σ, s, N,M, P, and Dp coincide i.e., they areall “co-axial ”.
2. The normal P to the yield surface in (10) is defined in terms of the dimensionless “direction tensors” δ, N, andM, which have constant magnitude and are orthogonal:

δ : δ = 3, N : N =M :M = 3
2 , N : δ =M : δ = N : M = 0. (12)

Also, both N andM are deviatoric, i.e., Nkk = Mkk = 0.
Tensors (δ,N,M) are shown as vectors (δv,Nv,Mv) in the space of principal stresses (σ1, σ2, σ3) in Fig. 1. Theso-called “deviatoric Π−plane” is defined by the equation σ1 + σ2 + σ3 = 0 on the (σ1, σ2, σ3) space. VectorsNv andMv lie on the Π−plane, are perpendicular to each other, and δv is normal to the Π−plane.

3. The definition of M in (11b) needs special treatment as θ → ± π6 , since in that case cos 3θ → 0. In thefollowing section 2.2.1 we show that, on smooth yield surfaces,M approaches unique finite values as θ → ± π6 .
�
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2.2.1. Principal stress directionsLet (n(1), n(2), n(3) = n(1)×n(2)) be the common unit eigenvectors of σ, s, N,M, P, andDp. The triad (n(1), n(2), n(3))forms a right-handed orthonormal basis and we can write
σ =

3
∑

i=1
σi n(i) n(i), s = 3

∑

i=1
si n(i) n(i), N = 3

∑

i=1
Ni n(i) n(i), (13)

M = 3
∑

i=1
Mi n(i) n(i), P = 3

∑

i=1
Pi n(i) n(i), (14)

where
si = σi − p = 2

3 σe Ni, Pi = 1
3
∂Φ

∂p + ∂Φ

∂σe Ni +
1
σe

∂Φ

∂θ
Mi. (15)

The principal stresses can be written in the form (e.g., Kachanov (1971); Nayak and Zienkiewicz (1972); Jiang andPietruszczak (1988))
σi = 2

3 σe cos θi + p, with θi = θ + (5 − 4 i)π6 , −π6 ≤ θ ≤
π

6 , (16)
where the numbering i = 1, 2, 3 in the definition of θi is such that σ1 ≥ σ2 ≥ σ3. Using equations (11) we concludethat the principal components of N,M, and P can be written in the form

Ni = cos θi, Mi = − sin θi = dNidθ , Pi = 1
3
∂Φ

∂p + ∂Φ

∂σe cos θi −
1
σe

∂Φ

∂θ
sin θi. (17)

A schematic representation of tensors σ, s, N,M, and δ in the principal coordinate system is shown in Fig. 1, wherethe following vectors are defined:
Nv = Ni n(i), Mv = Mi n(i), δv =

3
∑

i=1
n(i), (18)

and
σv = σi n(i) = −−→OB, sv = si n(i) = −−→AB. (19)

N is defined uniquely at all points of a smooth yield surface, and the unit vectors (√ 23Nv ,
√ 23 Mv, √ 13 δv

) form a
right-handed orthonormal basis. ThereforeMv = 1√3 δ × Nv and the components Mi are related to Ni as follows

M1 = N3 − N2√3 , M2 = N1 − N3√3 , M3 = N2 − N1√3 . (20)
Figure 2 shows the projection of the principal axes on the deviatoric Π−plane and the Lode angle θ.Equations (14a), (16b), and (17b) yield

lim
θ→ π6

M =
√3
2

(n(2)n(2) − n(1)n(1)) , lim
θ→− π6

M =
√3
2

(n(2)n(2) − n(3)n(3)) , (21)
i.e., the direction tensor M defined in (11b) takes finite values as θ → ± π6 (compare to (11b)). It is also known thatisotropic yield surfaces are symmetric with respect to the lines θ = ± π6 on Fig. 2 (e.g., Hill (1950), p. 18). Therefore,when an isotropic yield surface is smooth

lim
θ→± π6

∂Φ

∂θ
= 0, so that (10) yields lim

θ→± π6
P =

(1
3
∂Φ

∂p δ +
∂Φ

∂σeN
)

θ=± π6
, (22)

i.e., the normal P to the smooth isotropic yield surface has no component in theM-direction at θ = ± π6 .
5
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Figure 1: Schematic representation of σv, sv, δv, Nv, andMv in the principal coordinate system for σ1 ≥ σ2 ≥ σ3. When σ1 ≤ σ2 ≤ σ3,Mv hasthe opposite direction of that shown.

2.3. Rate-dependent plasticity
To simplify the formulation, we assume that the elastic domain of the material is defined by a smooth yield functionof the form

Φ
(p, σe, θ, σy(ε̄p),D) ≤ 0, (23)

where σy(ε̄p) is the yield stress of the material and the function Φ is such that ∂Φ/∂σy < 0.In rate-dependent materials, when the rate-independent yield condition (23) is violated (Φ > 0), the equivalentplastic strain ˙̄εp is determined by the rate-dependent yield function
Φ
(p, σe, θ,Σy(ε̄p, ˙̄εp),D)

= 0 ⇔ ˙̄εp = ˙̄εp(p, σe, θ, ε̄p,D)

, (24)
where function Φ in (24a) is the same as that in (23) with σy replaced by the rate-dependent yield stress Σy(ε̄p, ˙̄εp).The rate-dependent yield condition (24a) defines essentially the local equivalent plastic strain rate ˙̄εp in terms of(p, σe, θ, ε̄p,D), as stated in (24b).The function that determines Σy(ε̄p, ˙̄εp) is of the form

Σy(ε̄p, ˙̄εp) =
{

σy(ε̄p) for ˙̄εp ≤ ε̇0,F(ε̄p, ˙̄εp) for ˙̄εp ≥ ε̇0, (25)
with F(ε̄p, ε̇0)σy(ε̄p), where ε̇0 is a material parameter that defines the strain rate below which rate effects are negligi-ble. In metals, ε̇0 is of order 10−4/s and ∂F/∂ ˙̄εp > 0 (so that ∂Φ/∂ ˙̄εp ≤ 0 in (24a)).
RemarkIf the function F in (25) can be inverted to write ˙̄εp = F−1(Σy, ε̄p), then the model can be stated in the followingalternative way:When the rate-independent yield condition (23) is violated (Φ > 0), the equivalent plastic strain rate ˙̄εp is defined by

˙̄εp = F−1(Σy, ε̄p) with F−1(σy, ε̄p) = ε̇0, (26)
where Σy satisfies the yield condition (24a), i.e., Φ(p, σe, θ,Σy,D)

= 0. In fact, this is the way the rate-dependentform of the well-known Gurson model for voided metals is usually presented (Tvergaard and Needleman (1986);Needleman and Tvergaard (1987)). �
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2.4. Damage modeling
2.4.1. Damage model of Bai and Wierzbicki (2008, 2010) (BW)A detailed discussion of various commonly used local ductile failure criteria for metals has been presented by Baoand Wierzbicki (2004a). These criteria postulate that fracture occurs at a point in a body when the integral

ε̄p
∫

0
dε̄pf (η, θ) (27)

reaches a critical value at that point, where f (η, θ) is a dimensionless stress-dependent weighting function. Bai andWierzbicki (2008, 2010) suggest to normalize f (η, θ) so that this critical value equals unity (BW model). Then, thefailure criterion can be written in the form
D(ε̄pf ) = 1, with D(ε̄p) =

ε̄p
∫

0
dε̄p
f (η, θ) , (28)

where ε̄pf is the value of ε̄p when fracture occurs. The parameter D defined in (28b) can be thought of as a “damageindicator”.If parameters (η, θ) remain constant in a loading program (“proportional loading”), equations (28) leads to
ε̄
pf = f (η, θ), (29)

i.e., the function f (η, θ) defines essentially the fracture locus on the (η, θ) space.In the case of non-proportional loading, Bai and Wierzbicki (2008) suggest to define the fracture locus (29) interms of average quantities:

ε̄
pf = f (ηav, θav), where ηav = 1

ε̄
pf

ε̄
pf

∫

0
η dε̄p, θav = 1

ε̄
pf

ε̄
pf

∫

0
θ dε̄p. (30)

2.4.2. The modified damage model of Bai and Wierzbicki (MBW) (Lian et al. (2012); Wu et al. (2017b))Physically, damage initiation at a material point is identified with the creation of a micro-defect (e.g., a microcrack)at that point. According to the definition of damageD in equation (28b), damage starts accumulatingwhen the material
7



deforms plastically, i.e., when ε̄p takes non-zero values. Based on experimental data, the “Aachen group” (Lian et al.(2012); Wu et al. (2017b)) suggested that damage initiation does not occur at ε̄p = 0. Instead, Lian et al. (2012) andWu et al. (2017b) introduce a “damage initiation indicator” I defined as

I =
ε̄p

∫

0
dε̄p

ε̄
pi (ηav, θ̄av) , ηav = 1

ε̄p
ε̄p

∫

0
η dε̄p, θ̄av = 1

ε̄p
ε̄p

∫

0
θ̄ dε̄p, (31)

where θ̄ is the normalized Lode angle defined in (7),
ε̄
pi (ηav, θ̄av) = (c1 e−c2 ηav − c3 e−c4 ηav) θ̄2av + c3 e−c4 ηav , (32)

and (c1, c2, c3, c4) are dimensionless positive material constants. Damage is assumed to initiate when indicator Ireaches the value of 1. If parameters (η, θ) remain constant in a loading program (“proportional loading”), thenequation (31a) implies that damage initiation occurs when ε̄p = ε̄pi (η, θ).Returning to the case of general non-proportional loading, we let σyi denote the value of the material flow stress
σy (see equations (161) and (163b) below) at damage initiation, i.e., when the condition I = 1 is satisfied. Once thevalue of I = 1 is reached, the dimensionless damage parameter D starts to evolve according to the relation

Ḋ =
{ σyiG f ˙̄εp if I = 1 and η > ηcr,0 otherwise, (33)

whereG f is a material parameter with dimensions of energy per unit volume, ηcr is a critical value of stress triaxialitybelow which local material failure never occurs (ηcr ≃ −1/3, Bao and Wierzbicki (2005)), and
Dcr(ηav, θ̄av) = min [

(c5 e−c6 ηav − c7 e−c8 ηav ) θ̄2av + c7 e−c8 ηav ,Dmax
]

, (34)
(c5, c6, c7, c8) are dimensionless positive material constants, and Dmax un upper limit to the damage parameter D tomake sure that Dcr is always ≤ 1 (Dmax . 1).Wu et al. (2017a) introduce the “failure indicator” I f , which evolves as

İ f = ḊDcr(ηav, θav) , (35)
and local material failure occurs when the failure indicator parameter I f reaches the value of unity, i.e., when I f = 1.If parameters (η, θ) remain constant in a loading program (“proportional loading”), then equation (33) and (35)imply that local material failure takes place when D = Dcr(η, θ).
3. Non-local formulation

A well-known problem in the computational implementation of damage mechanics models is that finite elementsolutions depend on the mesh size when the material enters the softening region. The mathematical reason for this isthat the governing equations loose ellipticity and the boundary value problem, as posed originally, becomes ill condi-tioned. In order to overcome this difficulty, it is common to “regularize” the problem by introducing additional termsin the constitutive equations that involve spatial gradients of strain. These additional terms restore ellipticity, increasethe order of the governing equations, and in the case of plasticity they may even change the yield condition froman algebraic non-linear equation of stress to a partial differential equation of plastic strain (Benallal and Tvergaard(1995)). The additional terms in the constitutive equations involve one or more “material lengths” that are related tomaterial microstructure. In all cases, the numerical solution of the problem becomes more involved and most standardfinite element codes cannot be used for their numerical solution.To overcome the aforementioned difficulties we introduce the “non-local equivalent plastic strain” ep and developa “strain-gradient” version of the MBW model.
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3.1. Non-local equivalent plastic strain — Gradient formulationWe follow Peerlings et al. (2001) and Engelen et al. (2003) and define the “non-local” equivalent plastic strainfield ep(x) in terms of the “local” equivalent plastic strain field ε̄p(x) from the solution of the following boundaryvalue problem (BVP):
ep − ℓ2 ∇2ep = ε̄p in Ω (36)
∂ep
∂n ≡ n · ∇ep = 0 on ∂Ω, (37)

where ℓ is a material parameter with dimensions of length, Ω is the domain occupied by the elastoplastic body in itsdeformed state, ∂Ω its boundary, and n the unit outward normal vector to ∂Ω.The boundary condition (37) guarantees that the “total values” of ep and ε̄p in Ω coincide. In fact, integration of(36) over the domain Ω and use the divergence theorem together with (37), leads to the conclusion
∫

Ω

ep dΩ = ∫

Ω

ε̄p dΩ. (38)
The BVP (36)–(37) is solved and the non-local equivalent plastic strain ep is determined in the entire problemdomain Ω and not just inside the plastic zone (Peerlings et al. (2001); Engelen et al. (2003)).The formulation of the BVP (36)–(37) and the interpretation of ep as a weighted spatial average of the localvalues ε̄p is discussed in detail by Peerlings et al. (2001) and Engelen et al. (2003). Here we give a slightly differentinterpretation of the non-local variable ep as follows. At any given material point with current position x, we calculatethe average value ε̄pav of the local equivalent plastic strain ε̄p over a material sphere V of radius R centered at x:

ε̄
pav(x) = 1V

∫

V
ε̄p(y) dV(y). (39)

If we now assume that ε̄p(y) is a smooth function of position, write a Taylor series around x, and introduce sphericalcoordinates with origin at x, we find after some lengthy but straightforward calculations that
ε̄
pav(x) = ε̄p(x) + ℓ2 ∇2ε̄p(x) + O(ℓ4 ∇4ε̄p), (40)

where ℓ = R√10 = 0.32R. Last equation implies that
ℓ2 ∇2ε̄pav(x) = ℓ2 ∇2ε̄p(x) + O(ℓ4 ∇4ε̄p). (41)

Subtracting (41) from (40) we find
ε̄
pav(x) − ℓ2 ∇2ε̄pav(x) = ε̄p(x) + O(ℓ4 ∇4ε̄p). (42)

Comparing last equation to (36), we conclude that we can identify the non-local equivalent plastic strain ep(x) in (36)with the average value ε̄pav(x) of the local equivalent plastic strain ε̄p over a sphere of radius R = √10 ℓ = 3.16 ℓcentered at x, to within terms O(ℓ4 ∇4ε̄p). Obviously, the above interpretation breaks down for material points nearthe boundary ∂Ω, where part of the material sphere of radius R centered at the point under consideration lies outsidethe domain Ω occupied by the elastoplastic body.Following a similar approach we show that, in two dimensional problems, the non-local equivalent plastic strainep(x) in (36) can be identified with the average value ε̄pav(x) of the local equivalent plastic strain ε̄p over a circle ofradius R = 2 √2 ℓ = 2.83 ℓ centered at x, to within terms O(ℓ4 ∇4ε̄p).Finally it should be emphasized that, whereas the local equivalent plastic strain is such that ˙̄εp ≥ 0 by definition,the non-local ep is defined by the solution of the BVP (36)–(37) and the possibility ėp < 0 at some material pointscannot be excluded. Therefore, following Peerlings et al. (2001) and Engelen et al. (2003), we define
êp(t) = max{ep(τ)∣∣∣ 0 ≤ τ ≤ t} (t = time), (43)

which ensures that ˙̂ep(t) ≥ 0 always. The definition of êp can be written also in a Kuhn-Tucker form (Peerlings et al.(2001); Engelen et al. (2003)). The non-local parameter êp is used in the gradient-version of the evolution equationfor damage as described in the following section.
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3.1.1. The non-local version of MBWIn the present paper we use a non-local version of the MBW damage model in which the local equivalent plasticstrain ε̄p is replaced by the non-local equivalent plastic strain êp in all expressions of section 2.4.2. This means thatthe value of damage D at a material point is not determined from the local value of the equivalent plastic strain ε̄pat that point; instead, D at a point is essentially calculated by using the average value of ε̄p over a material sphere ofradius about 3 ℓ centered at that point.In particular, we write

İ = ˙̂ep
ε̄
pi (ηav, θ̄av) , ηav = 1

êp
êp

∫

0
η dêp, θ̄av = 1

êp
êp

∫

0
θ̄ dêp, (44)

Ḋ = α σyiG f ˙̂ep, α =

{ 1 if I = 1 and η > ηcr,0 if otherwise, (45)
İ f = ḊDcr(ηav, θav) , (46)

where ε̄pi (ηav, θ̄av) and Dcr(ηav, θ̄av) are defined by (32) and (34). Local material failure occurs when the damageindicator I f reaches the value I f = 1.Figure 3 shows a schematic representation of the stress-strain curve in uniaxial tension.

Figure 3: Schematic representation of stress-strain curve in uniaxial tension.

3.2. The plastic multiplier and the tangent modulus for rate-independent materials
The elastoplastic constitutive equations are now combined to derive an equation relating the Jaumann derivative

∇
σ to the deformation rate D and the rate of the non-local equivalent plastic strain ėp in a rate-independent material.The derivation is as follows.Assuming plastic loading (λ̇ > 0), substitution ofDe = D−Dp = D− λ̇P into the hypoelastic constitutive equation
(2) (∇σ = Le : De) yields

∇
σ = Le : (D − λ̇P). (47)

Since Φ is an isotropic function, the “consistency condition” Φ̇ = 0 can be written in the form (Dafalias (1985))
Φ̇ =

∂Φ

∂σ
: ∇σ+ ∂Φ

∂ε̄p ˙̄εp +
∂Φ

∂D ∂D
∂ep ėp = 0, (48)
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or, in view of (47),
P : Le : (D − λ̇P) + ∂Φ

∂ε̄p λ̇ P̄ +
∂Φ

∂D
∂D
∂ep ėp = 0, (49)

which leads to
λ̇ =

1L
(

P : Le : D + ∂Φ
∂D ∂D

∂ep ėp
)

, L = P : Le : P + H, H = −P̄ ∂Φ
∂ε̄p . (50)

Substituting the value of λ̇ from (50a) into (47) we find
∇
σ = L : D − Anl ėp, (51)

where
L = Le − 1L (Le : P) (Le : P), Anl = 1L ∂Φ∂D ∂D

∂ep Le : P. (52)
Also, using the value of λ̇ from (50a) in (9) ( ˙̄εp = λ̇ P̄), we find

˙̄εp = P̄L
(

P : Le : D + ∂Φ
∂D ∂D

∂ep ėp
)

. (53)
The corresponding form of equation (51) for the local model is

∇
σ = Lloc : D, (54)

where
Lloc = Le − 1

Lloc (Le : P) (Le : P), (55)
Lloc = P : Le : P + Hloc, Hloc = −P̄

(

∂Φ

∂ε̄p + α
∂Φ

∂D ∂D
∂ε̄p

)

, (56)
and α takes on the values of either 0 or 1 according to equation (33).
4. Numerical integration of constitutive model

In this section, we develop an algorithm for the numerical integration of the constitutive equations. In a finiteelement environment, the solution is developed incrementally and the constitutive equations are integrated at theelement Gauss integration points. As will be described in section 5, the nodal unknowns are the displacement vectoru and the non-local equivalent plastic strain ep. The history dependent behavior is obtained based on the incrementaldisplacements and non-local equivalent plastic strains (∆u,∆ep) and the state at the start of each increment.Let F denote the deformation gradient tensor, which is determined in terms of the nodal displacements withineach finite element. At a given Gauss integration point, the solution (Fn,σn, ε̄pn ,Dn, epn) at time tn as well as the values
(Fn+1, epn+1) at time tn+1 = tn + ∆t are known, and the problem is to determine (σn+1, ε̄pn+1,Dn+1). In the following,quantities with a subscript n are evaluated at the start of the increment (t = tn) and subscript n + 1 denotes values atthe end of the increment (t = tn+1).The time variation of the deformation gradient F during the time increment [tn, tn+1] can be written as

F(t) = ∆F(t) · Fn = R(t) · U(t) · Fn, tn ≤ t ≤ tn+1, (57)
where ∆F(t) is the deformation gradient relative to the configuration at the start of the increment, and R(t) andU(t) arethe rotation and right stretch tensors associated with ∆F(t). The corresponding deformation rate D(t) and spinW(t)tensors are given by D(t) ≡ [Ḟ(t) · F−1(t)]s =

[

∆Ḟ(t) · ∆F−1(t)]s , (58)
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and W(t) ≡ [Ḟ(t) · F−1(t)]a =
[

∆Ḟ(t) · ∆F−1(t)]a , (59)
where the subscripts s and a denote the symmetric and anti-symmetric parts, respectively, of a tensor.The rotation tensor R(t) introduced in (57) is used to define the so-called “rotation-neutralized quantities” σ̂(t),N̂(i)(t), and M̂(t) (Nagtegaal and Veldpaus (1984)):

σ̂(t) = RT (t) · σ(t) · R(t), N̂(t) = RT (t) · N(t) · R(t), M̂(t) = RT (t) ·M(t) · R(t). (60)
It is assumed that the Lagrangian triad associated with ∆F(t) (i.e., the eigenvectors of U(t)) remains fixed in the timeinterval [tn, tn+1]. Then it can be shown readily that

D(t) = R(t) · Ė(t) · RT (t), σ

`(t) = R(t) · ˙̂σ(t) · RT (t), (61)
where E(t) = lnU(t) is the logarithmic strain relative to the configuration at tn. It is noted that at the start of theincrement (t = tn) Fn = Rn = Un = δ, σ̂n = σn, En = 0, (62)
whereas at the end of the increment (t = tn+1)

∆Fn+1 = Fn+1 · F−1n = Rn+1 · Un+1 = known, and En+1 = lnUn+1 = known. (63)
Taking into account that the invariants of σ̂ and σ are the same and that P is an isotropic function of its arguments,we can write the rate-independent elastoplastic equations in the form

Ė = Ėe + Ėp, (64)˙̂σ = Le : Ėe = Le : (Ė − Ėp), (65)
Φ(p, σe, θ, ε̄p,D) = 0, (66)
Ėp = λ̇P(σ̂, ε̄p,D) = λ̇

(1
3
∂Φ

∂p δ + ∂Φ

∂σe N̂ +
1
σe

∂Φ

∂θ
M̂

)

, (67)
˙̄εp =

√2
3 Ėp : Ėp. (68)

The evolution equation of damage is given by (44)–(45). Equation (67) shows that Ėp is co-axial with σ̂.The above elastoplastic equations are integrated numerically as follows. Recall that the non-local equivalentplastic strain ep is a nodal variable and, therefore, its value is known at the Gauss integration points. The evolution ofdamage is determined first by using a forward Euler scheme in (44) and (45). As the solution develops, we monitorthe evolution of damage indicator I and calculate
In+1 = In + ∆êp

ε̄
pi (ηav|n, θ̄av|n) . (69)

When the condition In+1 ≥ 1 is met for the first time, the corresponding value of σyi = σy(ε̄pn+1) is stored. Theevolution of damage is also calculated:
∆D =

{ σyiG f ∆êp if In ≥ 1 and ηn > ηcr and Dn < Dcr|n,0 otherwise, (70)
Dn+1 = min [Dn + ∆D,Dcr|n] = known, (71)
I f ∣∣∣n+1 = I f ∣∣∣n + ∆DDcr|n = known. (72)

When the damage indicator I f ∣∣∣n+1 reaches the critical value I f ∣∣∣n+1 = 1, the material loses its load carrying capacity atthat Gauss point.
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Equations (64) and (65) are integrated exactly:
∆E = ∆Ee + ∆Ep, (73)
σ̂n+1 = σ̂e −Le : ∆Ep = σ̂e − 2G ∆Ep −

(

κ − 2
3 G

)

∆Epkk δ, (74)
where σ̂e = σn +Le : ∆E = known is the “elastic predictor” and the notation ∆A = An+1 − An is used.If the elastic predictor does not violate the yield condition, i.e., Φ(σ̂e, ε̄pn ,Dn) ≤ 0, then

σn+1 = Rn+1 · σ̂e · RTn+1, ε̄
pn+1 = ε̄pn , Dn+1 = Dn, (75)

and the integration is completed.If Φ(σ̂e, ε̄pn ,Dn) > 0, plastic deformation takes place over the increment and a backward Euler scheme is used forthe numerical integration of the flow rule (67):
∆Ep = ∆λP(σ̂n+1, ε̄pn+1) = ∆λ

(1
3
∂Φ

∂p δ + ∂Φ

∂σe N̂ +
1
σe

∂Φ

∂θ
M̂

)

n+1
. (76)

Finally, the increment of the local equivalent plastic strain increment ∆ε̄p is determined from the expression
∆ε̄p =

√2
3 ∆Ep : ∆Ep . (77)

The integration algorithm can be summarized as follows. The quantities ∆λ and ∆Ep are treated as the primaryunknowns and the yield condition (66) and the plastic flow rule (76)
Φ(σ̂n+1, ε̄pn+1) = 0, (78)
∆Ep − ∆λP(σ̂n+1, ε̄pn+1) = 0, (79)

are treated as the basic equations, in which σ̂n+1 and ε̄pn+1 are determined in terms of ∆Ep as follows:
σ̂n+1(∆Ep) = σ̂e − 2G ∆Ep −

(

κ − 2
3 G

)

∆Epkk δ, (80)
ε̄
pn+1(∆Ep) = ε̄pn +

√2
3 ∆Ep : ∆Ep. (81)

Equations (78) and (79) are solved for ∆λ and ∆Ep by using Newton’s method. In every iteration, for the currentvalues of ∆λ and ∆Ep, σ̂n+1 and ε̄pn+1 are calculated by using (80) and (81). Once ∆λ and ∆Ep are found, equations(80) and (81) define σ̂n+1 and ε̄pn+1. Finally, σn+1 is computed from
σn+1 = Rn+1 · σ̂n+1 · RTn+1, (82)

which completes the integration process.
As the solution develops, the quantities A ≡ êp

∫

0
η dêp and B ≡ êp

∫

0
θ̄ dêp are calculated and stored. In particular, at

the end of every increment ηav and θ̄av are calculate and stored:
∆A = ηn + ηn+12 ∆êp, An+1 = An + ∆A, ηav

∣

∣

∣n+1 =
An+1êpn+1 , (83)

∆B = θ̄n + θ̄n+12 ∆êp, Bn+1 = Bn + ∆B, θ̄av
∣

∣

∣n+1 =
Bn+1êpn+1 . (84)
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The computer implementation of the algorithm outlined above is simplified if principal directions are used as de-scribed in the following (see also Simo (1998); Auricchio and Taylor (1999); Borja et al. (2003)). Equation (76)shows that ∆Ep is co-axial with σ̂n+1. Then from (80) we conclude that σ̂e is also co-axial with σ̂n+1. Thereforethe eigenvectors n̂(i) of the (as yet unknown) tensors σ̂n+1 and ∆Ep can be determined from the eigenvectors of the(known) elastic predictor σ̂e. With known n̂(i), we write
σ̂n+1 =

3
∑

i=1
σi n̂(i)n̂(i) and ∆Ep = 3

∑

i=1
∆Epi n̂(i)n̂(i), (85)

and the problem reduces to the determination of the principal components ∆Epi and σi. In this case, the quantities ∆λand ∆Epi are treated as the primary unknowns and equations (78)–(81) simplify to
Φ

(

σ1, σ2, σ3, ε̄pn+1
)

= 0, (86)
∆ε

pi − ∆λ Pi (σ1, σ2, σ3, ε̄pn+1
)

= 0 (i = 1, 2, 3), (87)
where

σi
(

∆Ep1 ,∆Ep2 ,∆Ep3 ) = σei − 2G ∆Epi −
(

κ − 2
3 G

)

(

∆Ep1 + ∆Ep2 + ∆Ep3 ) , (88)
ε̄
pn+1

(

∆Ep1 ,∆Ep2 ,∆Ep3 ) = ε̄pn +
√2
3

[

(

∆Ep1 )2 + (

∆Ep2 )2 + (

∆Ep3 )2
]

, (89)
p = σ1 + σ2 + σ33 , si = σi − p, σe =

√3
2

(s21 + s22 + s23) , (90)
J3 = s1 s2 s3, θ =

1
3 sin−1

(

−272
J3
σ3e

)

, θi = θ + (5 − 4 i)π6 , (91)
Ni = cos θi, Mi = − sin θi, Pi = 1

3
∂Φ

∂p +
∂Φ

∂σeNi +
1
σe

∂Φ

∂θ
Mi. (92)

The system of four non-linear equations (86)–(87) is solved for the four unknowns (∆λ,∆Ep1 , ∆Ep2 ,∆Ep3 ).
4.1. Plastic incompressibility

The problem is simplified further if the material is plastically incompressible ( ∂Φ
∂p = 0 and Dpkk = 0). In this case

we set ∆Ep3 = − (

∆Ep1 + ∆Ep2 ), eliminate ∆λ from (87), and treat (∆Ep1 ,∆Ep2 ) as the primary unknowns to find
Φ

(

σi, ε̄pn+1
)

= 0, (93)
∆Ep1 P2 (σi, ε̄pn+1) − ∆Ep2 P1 (σi, ε̄pn+1) = 0, (94)

where
σ1

(

∆Ep1 ) = σe1 − 2G ∆Ep1 , σ2
(

∆Ep2 ) = σe2 − 2G ∆Ep2 , (95)
σ3

(

∆Ep1 ,∆Ep2 ) = σe3 + 2G (

∆Ep1 + ∆Ep2 ) , (96)
ε̄
pn+1

(

∆Ep1 ,∆Ep2 ) = ε̄pn +
√4
3

[

(

∆Ep1 )2 + (

∆Ep2 )2 + ∆Ep1 ∆Ep2
]

. (97)
The problem reduces now to the solution of the two non-linear equations (93) and (94) for (∆Ep1 ,∆Ep2 ).
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4.2. Rate-dependent plasticityIf rate-dependent plasticity is used, equations (78), (86), and (93) above should be replaced by their correspondingforms of the rate-dependent yield function (23):
Φ
(

σ,Σy(ε̄p, ˙̄εp),D)

= 0, (98)
in which the approximation ˙̄εp � (ε̄pn+1 − ε̄pn )/∆t is used. In other words, equations (78), (86), and (93) are replaced by

Φ

(

σ̂n+1,Σy
(

ε̄
pn+1,

ε̄
pn+1 − ε̄pn
∆t

)

,Dn+1
)

= 0, (99)
where σ̂n+1 and ε̄pn+1 are defined in terms of the primary unknowns (∆λ,∆Epi ) by (80)–(81) or (88)–(89) or (95)–(97),and Dn+1 is known and determined by (72b). Then, the solution follows the lines described for rate-independentmaterials.Equation (99) can be thought of as a backward Euler scheme of the evolution equation for the equivalent plasticstrain given in (24b).
5. Finite element formulation

Let Ω be the domain occupied by the elastoplastic body in its deformed state, ∂Ω its boundary, and n the unitoutward normal vector to ∂Ω. The position of material particles in the deformed configuration is denoted by x, t istime, ρ is the current mass density of the material, b the body force per unit mass, and (u,σ) are the displacement andtrue (Cauchy) stress fields in the body.Let u be specified on a part ∂uΩ as û (given) and let the traction vector be specified on ∂σΩ as σ · n = t̂ (given),where the parts ∂uΩ and ∂σΩ are disjoint (∂uΩ ∩ ∂σΩ = ∅) with ∂uΩ ∪ ∂σΩ = ∂Ω.In the following we discuss the finite element implementation of the elastoplastic boundary value problem. Inview of the non-linearity of the problem, the calculations are carried out incrementally. Traditional finite elementformulations use the displacement field u(x) as the primary unknown and the elastoplastic constitutive equations areintegrated locally at the Gauss points of the elements in the mesh; the resulting values of the local equivalent plasticstrain field ε̄p(x) are, in general, discontinuous across element boundaries. In the present model, the BVP (36)–(37), that defines the non-local equivalent plastic strain field ep(x), puts additional continuity requirements on ep.Therefore, we treat the displacements u(x) and the non-local equivalent plastic strain ep(x) as the primary unknownsand introduce finite element interpolations for both u and ep to obtain the corresponding non-linear discrete problem.We discuss two possible methods of implementation of the non-local elastoplastic problem in the ABAQUSgeneral-purpose finite element code. In the first method, “user elements” are developed for the solution of quasi-static and dynamic problems in ABAQUS/Standard and ABAQUS/Explicit via “user subroutines” UEL and VUELrespectively. In section 5.1 we present a traditional (u − ep) formulation, in which the displacement u(x) and thenon-local equivalent plastic strain fields are independently interpolated.Failure analysis of 3D structures is often based on the finite element method with damage mechanics constitutivemodels. Such 3D calculations are time consuming because small time increments must be used, especially when thematerial enters the softening regime. One commonly used element in such calculations is the 8-node hexahedronwith one Gauss integration point. The use of reduced one Gauss integration station, as opposed to eight, introducesnumerical singularities to the problem and some kind of “hourglass control” is required (e.g., see Flanagan and Be-lytschko (1981)). In section 5.2 we discuss the development of a 3D isoparametric 8-node hexahedral element withone Gauss point that is used together with the damage model described in the present paper. We use the “enhancedstrain” method of Simo and Rifai (1990) to avoid the aforementioned singularities. The element is implemented inABAQUS/Standard and ABAQUS/Explicit and quasi-static and dynamic problems are solved.A second possible method for the implementation of non-local constitutive models in ABAQUS is discussed insections 6 and 7. In section 6 we show how non-local quasi-static problems (acceleration ü ≃ 0) can be solved byusing the so-called *COUPLED TEMPERATURE-DISPLACEMENT analysis option in ABAQUS/Standard togetherwith user subroutine UMAT. This minimizes the programming effort and allows for the use of all finite elementsavailable in the library of ABAQUS/Standard. This approach cannot be used with ABAQUS/Standard in dynamicproblems. Non-local dynamic problems can be solved by using ABAQUS/Explicit together with user subroutineVUMAT as discussed in section 7.
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5.1. Traditional (u − ep) formulation
The displacement field u(x) and the non-local equivalent plastic strain ep(x) are treated as the primary unknowns.A variational formulation of the problem is:Find u(x, t) and ep(x, t) satisfying u∣∣∣

∂uΩ = û such that
∫

Ω

[

σi j, j(u, ep) + ρ (bi − üi)]u∗i dΩ +
∫

∂σΩ

[t̂i − σi j(u, ep)n j]u∗i dS = 0, (100)
∫

Ω

[ep − ℓ2 ∇2ep − ε̄p(u, ep)]e∗ dΩ + ∫

∂Ω

ℓ2 ∂ep
∂n e∗ dS = 0, (101)

for all variations u∗ and e∗ with u∗ = 0 on ∂uΩ, where a comma followed by a subscript, say i, denotes partialdifferentiation with respect to the corresponding spatial coordinate xi, i.e., f,i = ∂ f /∂xi. Integration by parts in (100)and (101) leads to the following weak form:Find u(x, t) and ep(x, t) satisfying u∣∣∣
∂uΩ = û such that

∫

Ω

ρ bi u∗i dΩ +
∫

∂σΩ

t̂i u∗i dS −
∫

Ω

σi j(u, ep)D∗i j(u∗) dΩ =
∫

Ω

ρ üi u∗i dΩ ∀ u∗ ∈ U, (102)
∫

Ω

{

[

ε̄p(u, ep) − ep]e∗ − ℓ2 ep
,i e∗,i

}dΩ = 0 ∀ e∗ ∈ E, (103)
where D∗i j(u∗) = (u∗i, j + u∗j,i)/2, and

U =
{u∗|u∗ ∈ H1(Ω), u∗|∂uΩ = 0} , E =

{e∗|e∗ ∈ H1(Ω)} , (104)
with Hk consisting of all functions that possess square-integrable spatial derivatives through order k.Equations (102) and (103) form the basis of the finite element solutions in ABAQUS/Standard and ABAQUS/Ex-plicit via user subroutinesUEL and VUEL respectively. Four-node plane strain quadrilateral elements with 2×2 Gaussintegration points and 3D 8-node hexahedral elements with 2 × 2× 2 Gauss stations are developed. The displacementu(x) and non-local equivalent plastic strain ep(x) fields are interpolated independently, and the nodal degrees of free-dom are the components of u and the values of ep. Standard bi-linear (2D) or tri-linear (3D) isoparametric interpola-tions are used for both u and ep within an element. The constitutive equations are integrated numerically by using thealgorithm described in section 4. Both quasi-static and dynamic problems are solved using either ABAQUS/Standardor ABAQUS/Explicit.
5.2. Enhanced strain formulation

To improve the computational efficiency in 3D problems, we use the so-called “enhanced strain method” of Simoand Rifai (1990) to develop a 3D 8-node hexahedral isoparametric element with one Gauss integration point. Theenhanced strain method belongs to the category of “mixed finite element methods”, which typically lead to lower-order continuity requirements on some of the fields. In such methods, static condensation of some variables at theelement level is usually performed when appropriate in order to keep the total number of global degrees of freedomto a minimum. The solution is developed incrementally and the displacement field un+1(x), the spatial gradient of thedisplacement increment
∆Ln+1(x) ≡ ∂∆u(x)

∂xn+1 , (105)
the stress field σn+1(x), and the non-local equivalent plastic strain epn+1(x) are treated as independent unknowns andtheir relations are enforced in a weighted integral sense. In the weak form of the problem the displacement fieldapproximation must be H1(Ω). Approximations for ep, ∆L, and σ need only be in L2(Ω), where L2 = H0 is the spaceof all square-integrable functions. No interelement continuity is required on (∆L,σ) and they may be eliminated infavor of the displacement degrees of freedom by static condensation at the element level.
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The variational formulation of the problem is as follows:Given (un(x), epn(x), τn(x), gn(x), qn(x)), find (

∆u(x),∆ep(x),∆L(x), τ(x),∆g(x),∆q(x)), satisfying u∣∣∣
∂uΩ = û such that

∫

Ω

ρ bi u∗i dΩ +
∫

∂σΩ

t̂i u∗i dS −
∫

Ω

τi j u∗i, j dΩ =
∫

Ω

ρ üi u∗i dΩ ∀ u∗ ∈ U, (106)
∫

Ω

[

τi j − σi j (∆L,∆ep) ]L∗i j dΩ = 0 ∀ L∗ ∈ L2(Ω), (107)
∫

Ω

(

∆Li j − ∆ui, j)σ∗i j dΩ = 0 ∀ σ∗ ∈ L2(Ω), (108)
∫

Ω

[ep + qi,i − ε̄p(∆L,∆ep)]e∗ dΩ −
∫

∂Ω

qi ni e∗ dS = 0 ∀ e∗ ∈ E, (109)

∫

Ω

(qi + ℓ2 gi) g∗i dΩ = 0 ∀ g∗i ∈ L2(Ω), (110)
∫

Ω

(

∆gi − ∆ep,i) q∗i dΩ = 0 ∀ q∗i ∈ L2(Ω), (111)

where all quantities are evaluated at the end of the increment (t = tn+1). In (106) and (107), τ is the independentlyinterpolated stress field, whereas σ(∆L, ep) and ε̄p(∆L,∆ep) are the stress field and local equivalent plastic strainfield computed from ∆L and ∆ep by the constitutive equations. Also g is the independently interpolated non-localequivalent plastic strain gradient and q a generalized stress conjugate to g, and the conditions ∆gi = ∆ep,i and qi =
−ℓ2 ep

,i are enforced through the weighted integral statements (110) and (111).Next, we i) combine (106) and (107), ii) integrate by parts in (109), and iii) combine (109) and (110), to reach thealternative formulation:Find (

∆u,∆ep,∆L, τ,∆g,∆q) such that
∫

Ω

ρ bi u∗i dΩ +
∫

∂σΩ

t̂i u∗i dS −
∫

Ω

σi j (∆L,∆ep) L∗i j dΩ +

+

∫

Ω

τi j
(L∗i j − u∗i, j) dΩ =

∫

Ω

ρ üi u∗i dΩ ∀ u∗ ∈ U,L∗ ∈ L2(Ω), (112)
∫

Ω

(

∆Li j − ∆ui, j) τ∗i j dΩ = 0 ∀ τ∗ ∈ L2(Ω), (113)
∫

Ω

{

[

ε̄p(∆L,∆ep) − ep]e∗ − ℓ2 gi g∗i
} dΩ + ∫

Ω

qi (e∗,i − g∗i ) dΩ = 0
∀ e∗ ∈ E, g∗i ∈ L2(Ω), (114)

∫

Ω

(

∆ep
,i − ∆gi) q∗i dΩ = 0 ∀ q∗i ∈ L2(Ω). (115)

Following Simo and Hughes (1986) and Simo and Rifai (1990), we chose the independent stress fields τ(x) to beorthogonal to the difference between the interpolant ∆L(x) and the spatial gradient of the displacement increment
∂∆u(x)/∂x, so that (113) is satisfied automatically and the last integral on the left hand side of (112) vanishes. Simi-larly, we chose q(x) to be orthogonal to the difference ∆g(x) − ∇(∆ep(x)), so that (115) is satisfied automatically andthe last integral on the left hand side of (114) vanishes (see (139) and (140) below).
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In particular, independent interpolations are used for (∆u,∆L, τ,∆ep,∆g,∆q) within each element:
{∆u(x)}3×1 = [N(x)]3×32 {∆de}32×1 , (116)
{∆L(x)}9×1 =

(

[BL]9×32 + [Bstab(x)]9×32
)

{∆de}32×1 + [G(x)]9×6 {∆ae}6×1 , (117)
{τ(x)}9×1 = {τ0}9×1 = const., (118)

and
∆ep(x) = [Nε(x)]1×32 {∆de}32×1 , (119)
{∆g(x)}3×1 =















[Bε]3×32 +
[Bstabε (x)]

3×32















{∆de}32×1 , (120)
{q(x)}3×1 = {q0}3×1 = const., (121)

where {∆de} is the vector of the 32 nodal degrees of freedom corresponding to ∆u and ∆ep in the 3D 8-node elementand {∆ae} is a vector of six local parameters for each individual element and provide the required additional degrees offreedom to eliminate locking in incompressible or nearly incompressible materials (Puso (2000)). The local elementinternal parameters {∆ae} are eventually eliminated by “static condensation”, i.e., determined in terms of {∆de} asdescribed in the following.The constant matrices [BL] and [Bε] are defined as (Flanagan and Belytschko (1981))
[BL] = 1Ve

∫

Ωe
[BL(x)] dΩ and [Bε] = 1Ve

∫

Ωe
[Bε(x)] dΩ, (122)

where Ωe is the domain of element e, Ve the volume of element e, and ([BL] , [Bε]) are the standard “B-matrices”defined in terms of the spatial derivatives of [N] and [Nε] that enter the calculation of the following gradients:
{

∆ui, j(x)}
9×1

= [BL(x)]9×32 {∆de}32×1 and {

∆ep
,i(x)}3×1

= [Bε(x)]3×32 {∆de}32×1 . (123)
The form of the interpolation matrices ([N] , [Bstab] , [G] , [Nε] , [Bstabε

]) is discussed in detail in Appendix A. Here we
mention that matrices [Bstab(x)], [G(x)], and [Bstabε (x)] are defined so that

∫

Ωe
[Bstab(x)]dΩ = [0] ,

∫

Ωe
[G(x)]dΩ = [0] , and

∫

Ωe

[Bstabε (x)] dΩ = [0] , (124)

which guarantee the satisfaction of the aforementioned orthogonality conditions (see equations (139) and (140) be-low). Also, condition (124b) is essential for the finite elements to pass the “patch test” (Taylor et al. (1976); Flanaganand Belytschko (1981)).
Remarks

1. Analytical expressions for the components of the constant matrices [BL] and [Bε] are given in Flanagan andBelytschko (1981).
2. The enhanced gradient fields in (117) and (120) are richer than the standard gradients in (123). The presenceof the additional matrices [Bstab(x)], [G(x)], and [Bstabε (x)] removes the singularities when reduced one-pointGauss integration is used. This is also discussed right after equations (149)–(150) below.
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3. The enhanced gradients (117) and (120) can be written in the form
{∆L(x)} = {∆L} + {∆Lstab(x)} + {∆Llock(x)} , (125)
{∆g(x)} = {∆g} + {∆gstab(x)} , (126)

where we took into account (124), an overbar indicates the average value over the element, and
{∆L} = [BL] {∆de} , {∆g} = [Bε] {∆de} , (127)
{∆Lstab(x)} = [Bstab(x)] {∆de} , {∆gstab(x)} = [Bstabε (x)] {∆de} , (128)
{∆Llock(x)} = [G(x)] {∆ae} . (129)

I.e., the enhanced gradients {∆L(x)} and {∆g(x)} include a constant part and a stabilization part that removes thespurious modes when reduced one-point Gauss integration is used; an independent field {∆Llock} is also addedto {∆L} to eliminate locking in incompressible or nearly incompressible materials.
4. Conditions (124) imply that

{∆L} = {

∆ui, j} = [BL] {∆de} , (130)
{∆g} = {

∆ep
,i
}

= [Bε] {∆de} . (131)
5. The gradients (∆L,∆g) and the “stresses” (τ, q) defined in (117)–(118) and (120)–(121) are, in general, discon-tinuous across elements.
6. The stresses σ (∆L, ep) that balance the external forces in the “virtual work statement” (112) are determinedfrom the enhanced incremental displacement gradient ∆L (as opposed to the gradient ∆ui, j) and this is whatmakes the method successful.
7. The stresses σ (∆L, ep) are determined using the algorithm described in section 4. The required value of thedeformation gradient Fn+1 is determined as

Fn+1 = (exp∆L) · Fn, (132)
which results from integration of the equation Ḟ = L · F, under the assumption that the velocity gradientL = D +W is constant over the increment with ∆L = L∆t.

8. In Appendix A we introduce the standard isoparametric transformation that relates the physical coordinates x tothe element “natural coordinates” ξ and define matrices [Bstab(x)], [G(x)], and [Bstabε (x)] so that they all vanishat the element local origin ξ = 0, i.e.,
[Bstab]ξ=0 = [0] , [G]ξ=0 = [0] , [Bstabε

]

ξ=0 = [0] . (133)
Using (133) in (117) and (120), and taking into account (124), we conclude that

{∆L}ξ=0 = {∆L} = {

∆ui, j} = [BL] {∆de} , (134)
{∆g}ξ=0 = {∆g} = {

∆ep
,i
}

= [Bε] {∆de} . � (135)

The interpolations for the “virtual fields” (u∗,L∗, τ∗, e∗, g∗, q∗) are:
{u∗}3×1 = [N]3×32 {d∗}32×1, e∗ = [Nε]1×32 {d∗e}32×1 , (136)
{L∗}9×1 =

([BL] + [Bstab]) {d∗} + [G] {a∗} , {g∗}3×1 =














[Bε]3×32 +
[Bstabε

]

3×32















{d∗e}32×1 , (137)
{τ∗}9×1 =

{

τ∗0
}

9×1
= const. {q∗}3×1 =

{q∗0}3×1
= const. (138)
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Using the definitions (122), the interpolations (116)–(121) and (136)–(138), and the conditions (124), we can read-ily show that the last integrals on the left hand side of (112) and (114) vanish, and (113) and (115) are satisfiedautomatically, i.e.,
∫

Ω

τi j
(L∗i j − u∗i, j) dΩ = 0,

∫

Ω

(

∆Li j − ∆ui, j) τ∗i j dΩ = 0, (139)
and

∫

Ω

qi (e∗,i − g∗i ) dΩ = 0,
∫

Ω

(

∆ep
,i − ∆gi) q∗i dΩ = 0. (140)

Then, the variational formulation of the problem simplifies to:Find (∆u,∆L,∆ep) satisfying u∣∣∣
∂uΩ = û such that

∫

Ω

ρ bi u∗i dΩ +
∫

∂σΩ

t̂i u∗i dS −
∫

Ω

σi j (∆L,∆ep) L∗i j dΩ =
∫

Ω

ρ üi u∗i dΩ
∀ u∗ ∈ V,L∗ ∈ L2(Ω), (141)

∫

Ω

{

[

ε̄p(∆L,∆ep) − ep]e∗ − ℓ2 ep
,i e∗,i

}dΩ = 0 ∀ e∗ ∈ G. (142)
It is noted that the independently interpolated fields τ and q do not enter now the variational formulation (141)–(142);this is due to conditions (124), which make the independently interpolated piecewise-constant fields τ(x) and q(x),defined in (118) and (121), orthogonal to the interpolated differences ∆L−∇(∆u) and ∇(∆ep)−∆g respectively (Simoand Hughes (1986); Simo and Rifai (1990)). The stress field σ (∆L,∆ep) in (141) is determined in terms of ∆L and
∆ep by integrating the constitutive equations.When the interpolations (116)–(117), (119) and (136)–(137) for (∆u,∆L,∆ep) and (u∗,L∗, e∗) are used in thevariational statement, we arrive at the following discretized problem, which is a set of non-linear equations for theglobal vector of nodal unknowns {∆d}N×1 and the local parameters {∆ae}6×1 on every element:

{Ru}N×1 ≡
{Fext}
N×1
−















NELEMAe=1 {feu}32×1















− [M]N×N
{d̈}
N×1
= {0}N×1, (143)

{reL}6×1 ≡
∫

Ωe
[G]T6×9 {σ}9×1 dΩ = {0}6×1, e = 1, 2, · · · ,NELEM, (144)

{Rε}N×1 ≡
NELEMAe=1 {reε}32×1 = {0}N×1, (145)

where N is the total number of nodal degrees of freedom in the problem, NELEM the total number of elements,Athe “assembly operator”, ({Fext} , [M]) the standard global “external load vector” and “mass matrix” of the problemrespectively, {d̈} the global nodal acceleration vector, and
{feu}32×1 =

∫

Ωe















[BL]32×9
T + [Bstab(x)]T32×9















{σ}9×1 dΩ, (146)
{reε}32×1 =

∫

Ωe
(∆ε̄p − ∆ep) {Nε(x)}32×1 dΩ −



















ℓ2 Ve [Bε]32×3
T [Bε]3×32 +

[kstabε

]

32×32



















{de}32×1, (147)
[kstabε

]

32×32
= ℓ2

∫

Ωe

[Bstabε (x)]T
32×3

[Bstabε (x)]
3×32

dΩ, (148)
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where {σ} = {σ (∆L,∆ep)} and ep = ep (∆L,∆ep) are determined from the integration of the constitutive equations.Equations (144) are written for every element in the mesh and provide a set of six non-linear equations per elementthat define the local element parameters {∆ae} in terms of the element nodal degrees of freedom {∆de}. In AppendixB, we describe a methodology for the solution of (144) at every element.The global vector of nodal unknowns {∆d} is determined from the solution of the global non-linear system ofequations (143) and (145). The underlined terms in (146) and (147) are due to matrices [Bstab(x)] and [Bstabε (x)] inthe interpolation of the gradients (117) and (120). The rest (non-underlined) terms in (146) and (147) appear (alone)when the traditional formulation (102)–(103) is used.Using reduced one-point Gauss integration for the numerical evaluation of the integrals of the terms that are notunderlined in (146) and (147), we find
{feu} = {feu0} + {fstabu }, (149)
{reε} = {reε0} + {rstabε }, (150)

where
{feu0} = Ve [BL] T {σ0}, {fstabu

}

=

∫

Ωe
[Bstab]T {σ} dΩ, (151)

{reε0} = 8 J0 (

∆ε̄
p0 − ∆ep0 ) {Nε0} − ℓ2 Ve [Bε] T [Bε], {rstabε } = −

[kstabε

]

{de} , (152)
[kstabε

] is defined in (148), a zero subscript indicates that the corresponding quantity is evaluated at the “element local
origin”, i.e., the point where the natural coordinate ξ = 0 (see Appendix A), and {σ0} is calculated using {∆L} andFn+1 in (127a) and (132) together with the integration algorithm discussed in section 4.
{feu0} and {re

ε0
} in (151a) and (152a) would result if the “uniform strain formulation”1 of Flanagan and Belytschko(1981) were used in the traditional formulation (102)–(103) and lead to spurious singular modes if used alone. Theadditional underlined terms in (146) and (147) correspond to {fstabu } and {rstabε } in (149)–(152), remove the spuriousmodes, and stabilize the calculations; these terms are due to the “enhanced interpolations” used for the gradientsin (117) and (120) and provide a “physical stabilization” to the problem (Belytschko and Bindeman (1991); Puso(2000)).In Appendix C, we develop approximate, but very accurate, analytical expressions for {fstabu } and [kstabε

], thusobviating Gauss quadrature in (151a) and (148). This leads to a computationally efficient strategy that requires theevaluation of stress {σ0} only once per element when the non-linear global problem (143) and (145) is solved forthe nodal unknowns {∆d}. In particular, {feu0} and {reε0} are calculated using (149)–(152), and {fstabu } and [kstabε

] aredetermined using the analytical expressions (274)–(262) and (276)–(279) in Appendix C.
6. Non-local quasi-static problems in ABAQUS/Standard via “UMAT”

In the special case of quasi-static problems, the solution can be also obtained using user material subroutineUMATin ABAQUS/Standard together with a *COUPLED TEMPERATURE-DISPLACEMENT, STEADY STATE analysisoption as described in the following. The methodology is similar to that used recently for quasi-static problems bySeupel et al. (2018), who makes use of the ABAQUS user subroutines UMAT and HETVAL to define the problem.One version of the steady-state heat transfer problem in an isotropic material, as solved in ABAQUS, is
k∇2T + r(∆ε, T ) = 0 in Ω (153)
k n · ∇T = q̂ on ∂Ω, (154)

1 The “uniform strain formulation” introduced by Flanagan and Belytschko (1981) is based on the (analytically calculated) average strain overthe element volume and is an alternative to using one-point Gauss integration, in which strains are evaluated at the element local origin ξ = 0 andVe is replaced by 8 J0 in (151a) and (152a). The uniform strain method ensures that the element passes the “patch test” and attains the accuracy ofthe numerical solution when elements are skewed (Belytschko et al. (1984)).
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where T is temperature, k the thermal conductivity, r the heat supply per unit volume, q̂ the prescribed boundary heatflux vector, and ∆ε a strain increment properly defined in terms of nodal displacements (see ABAQUS manuals andHughes and Winget (1980)).Comparing the BVP (153)–(154) with (36)–(37), we conclude that the non-local equivalent plastic strain canbe identified with the temperature field in the coupled temperature-displacement ABAQUS analysis, provided thefollowing correspondence is used:
T ↔ ep, k ↔ ℓ2, r(∆ε(u), T )↔ ε̄p(u, ep) − ep, q̂→ 0. (155)

The constitutive equations are integrated numerically in user subroutine UMAT. In UMAT, the value of ep is providedas “temperature”, ε̄p is determined from the numerical integration of the constitutive equations using the algorithmdescribed in section 4, and r (variable RPL in UMAT) is identified with the difference ε̄p − ep. The derivatives
∂∆σ/∂∆ε (DDSDDE), ∂σ/∂T (DDSDDT), ∂r/∂∆ε (DRPLDE), and ∂r/∂T (DRPLDT) are also evaluated in UMAT.In view of (51) and (53), i.e.,

∇
σ = L : D − Anl ėp and ˙̄εp = P̄L P : Le : D + P̄L

∂Φ

∂ep ėp, (156)
∂σ/∂∆ε, ∂σ/∂T , ∂r/∂∆ε and ∂r/∂T are approximated as follows2:

∂∆σ

∂∆ε
≃ L, ∂σ

∂T = ∂σ

∂ep ≃ −Anl, (157)
and

∂r
∂∆ε

=
∂ε̄p
∂∆ε

≃ P̄L P : Le, ∂r
∂T = ∂ε̄p

∂ep − 1 ≃ P̄L ∂Φ

∂ep − 1. (158)
Such an approximation of the Jacobian is first-order accurate as the size of the increment ∆t → 0; it should beemphasized, however, that the aforementioned approximation influences only the rate of convergence of the Newtonloop and not the accuracy of the numerical solution. In the calculations, in order to integrate accurately the constitutiveequations we restrict the increment size so that the magnitude of the strain increment ∆E does not exceed the value of5σy/E. With such a restriction on the size of the increment, the aforementioned approximation of the Jacobian doesnot affect the quadratic rate of asymptotic convergence of the iterative Newton method.It should be also noted that the coupled temperature-displacement in ABAQUS/Standard can be used for thesolution of quasi-static implicit strain-gradient plasticity problems, but it cannot be used for dynamic problems, inwhich inertia effects become important.
7. Non-local dynamic problems in ABAQUS/Explicit via “VUMAT”

In dynamic problems including inertia terms, solutions can be obtained using user material subroutine VUMAT inABAQUS/Explicit together with a *DYNAMIC TEMPERATURE-DISPLACEMENT analysis option as described inthe following.The corresponding transient heat transfer equation in an isotropic material is
k∇2T + r(∆ε, T ) = ρ c Ṫ , (159)

where c is the specific heat. Again, the identifications given in (155) are used in the calculations and c is given a smallvalue, so that the transient term on the right hand side of (159) becomes negligible.The constitutive equations are integrated numerically in VUMAT, where the non-local equivalent plastic strain epis again identified with temperature in the explicit coupled temperature-displacement calculations. However, r cannotbe defined in VUMAT. Therefore, to define r, we use and the following “loading card” in ABAQUS/Explicit:*DFLUX
2 In rate-dependent models, in view of (99), the value of H in (50c) is replaced by H = −P̄ (

∂Φ
∂ε̄p + 1

∆t ∂Φ∂ ˙̄εp
)

= −P̄ ∂Φ
∂Σy

(

∂Σy
∂ε̄p + 1

∆t ∂Σy∂ ˙̄εp
).
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ALLEL, BFNUwhere ALLEL is the set of all finite elements in the mesh, and BFNU signifies a user-defined heat supply per unitvolume r (BFNU = Body Flux Non Uniform). The value of r = ε̄p − ep is defined in user subroutine VDFLUX, inwhich the value of ep is provided as “temperature” and the value of ε̄p is supplied by VUMAT via a user-introducedCOMMON block.The value of c should be “small” so that the contribution of the transient term on the right hand side of (159)is negligible. It should be noted though that the numerical stability limit on the time increment of the solution isproportional to c. To avoid the requirement of using an extremely large number of increments, a judicious choice forthe value of c is essential. An estimate for the appropriate value of c can be obtained by considering the case of auniform solution in which ∇2T = ∇2ep = 0 and (159) reduces to ε̄p − ep = ρ c ėp. The exact solution in this case is
ε̄p = ep and the error ε̄p − ep in the numerical solution is controlled by the magnitude of the dimensionless quantity
ρ c ėp. Let ε̇ be a representative strain rate in the problem; e.g., ε̇ can be defined as ε̇ = √2 ė : ė/3, where ė is thedeviatoric strain rate. Since the elastic strain rates are small compared to the plastic strain rates, ėp is of order ε̇.Therefore, the value of c to be used in the calculations should be such that

ρ c ε̇ < TOL, (160)
at all integration points in the finite element mesh, where TOL = 10−4 is a reasonable value.The explicit dynamics procedure in ABAQUS/Explicit performs a large number of small time increments ef-ficiently. An explicit central-difference time integration rule is used together with the use of diagonal (“lumped’)element mass matrices and each increment is relatively inexpensive (compared to ABAQUS/Standard) because thereis no solution of simultaneous equations. The explicit central-difference operator satisfies the dynamic equilibriumequations at the start of the increment (t = tn); the accelerations calculated at t = tn are used to advance the velocitysolution to time t = tn + ∆t/2 and the displacement solution to time tn+1 = tn + ∆t. No derivatives (Jacobians) such as
∂∆σ/∂∆ε, ∂∆σ/∂T , ∂r/∂∆ε, or ∂r/∂T are needed in the explicit calculations.The central difference operator is conditionally stable and the stability limit depends on the element size and thedilatational wave speed of the material.
RemarkIn cases where ABAQUS/Standard has convergence difficulties, e.g., in problems involving complicated contact con-ditions, ABAQUS/Explicit can be used also to carry out quasi-static solutions by minimizing the influence of thedynamic inertia terms in the solution. If there is no damping in the problem, it is not uncommon the stresses in eachelement to oscillate with a small amplitude about the static equilibrium stresses. When ABAQUS/Explicit is used forthe solution of quasi-static problems, the user should make sure that the kinetic energy is a small fraction of the strainenergy in the problem. �

8. Applications
In the present paper we use a pressure-independent form of the yield function (4) due to Bai andWierzbicki (2008)as modified by Lian et al. (2012):

Φ
(

σe, θ, ε̄p,D)

= σe − (1 − D) F(

γ(θ))σy (ε̄p) = 0, (161)
where

F(

γ(θ)) = csθ + (caxθ − csθ)
[

γ(θ) − γm+1(θ)m + 1
]

, γ(θ) =
√3

2 − √3
( 1
cos θ − 1

)

, (162)
caxθ =

{ ct
θ

if θ̄ ≥ 0,cc
θ

if θ̄ < 0, σy(ε̄p) = σ0
(

1 + ε̄p
ε0

)1/n
, ε0 = σ0E , (163)

(cs
θ
, ctθ, ccθ,m, n) are dimensionless material constants, and σy(ε̄p) is the flow stress of the material. This yield surfacehas three axes of symmetry on the deviatoric Π−plane and does not have in general a tension/compression symmetry.
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In the special case where cc
θ
= ct

θ
, the yield surface does have tension/compression symmetry and six axes of symmetryon the Π−plane.The convexity of the yield surface defined in (161)–(163) is discussed in detail by Lian et al. (2012).

RemarkThe yield function (161) can be also written in the form
F(

σe, θ, ε̄p,D)

= Σe(σe, θ,D) − σy (ε̄p) = 0, (164)
where Σe(σe, θ,D) is an equivalent stress defined in terms of σe, θ, and D:

Σe(σe, θ,D)

=
σe(1 − D)F(

γ(θ)) . � (165)

The material properties used in the calculations presented in the following are:
ε0 = σ0E = 1.65 × 10−3, ν = 0.3, ctθ = 1, ccθ = 0.98, csθ = 0.95, m = 7, (166)

where ν is Poisson’s ratio. Typical values are E = 200 GPa and σ0 = 330 MPa. The chosen values of cs
θ
, ct

θ
, and cc

θguarantee convexity of the yield surface (Lian et al. (2012)).The calibration of the model and the values of the constants (c1, c2, · · · , c8) that enter the damage equations (32)and (34) are discussed in Buchkremer et al. (2014), Novokshanov et al. (2015), and Wu et al. (2017b). Here, we usethe values
c1 = 0.4943, c2 = 2.2660, c3 = 0.10, c4 = 1.1310, (167)
c5 = 0.83, c6 = 0.5449, c7 = 0.85, c8 = 0.3926. (168)

The critical value of stress triaxiality ηcr in (33), below which local material failure never occurs, is (Bao andWierzbicki (2005))
ηcr = −13 . (169)

Also the material parameters G f in (33) and Dmax in (34) take the values
G f = 0.515σ0 and Dmax = 1. (170)

The values of the hardening exponent n in (163b) and the material length scale ℓ are specified separately in eachproblem.The stress-strain curves in uniaxial tension and plane strain tension for the model material described above withhardening exponent n = 5 are shown in Fig. 3. Recall that η = 13 and θ̄ = 1 in uniaxial tension, and η ≃ 1√3 = 0.577
and θ̄ ≃ 0 in plane strain tension. Points marked “A” on the curves in Fig. 4 indicate the load level at which I = 1 (orequivalently ε̄p = êp = ε̄pi ), and damage starts developing; points marked “×” denote material failure, i.e., D = Dcr.All calculations are carried out incrementally. In ABAQUS/Standard the discretized nonlinear equations are solvedusing Newton’s method. The Jacobian of the global Newton scheme is approximated by the tangent stiffness matrix
derived using the moduli given by (51) (∇σ = L : D − Anl ėp) as described in section 6.
8.1. Localization in plane strain tension

We consider the quasi-static problem of plastic flow localization in a tension specimen under plane strain condi-tions. We consider one quarter of the specimen and doubly symmetric solutions are found. Figure 5 shows a schematicrepresentation of one quarter of the specimen together with the geometric boundary conditions. The right side of thespecimen is traction free and the upper side is subjected to a prescribed displacement δ. The height of the specimen
24
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(a) (b)
Figure 4: True stress versus axial logarithmic strain ε11 for (a) uniaxial tension and (b) plane strain tension. In plane strain, σ11 is the axial stressand σ33 the stress normal to the plane of deformation (σ33 ≃ σ11/2).

is h = 1.5w and the material length in the constitutive equations is ℓ = 0.08w, where w is the width of the specimen.The hardening exponent is n = 5.We obtain first an estimate of the localization strain by using the methodology of Rice and co-workers (Rudnickiand Rice (1975); Rice (1976); Needleman and Rice (1978)). The condition for plastic flow localization in a shearband is that there exists a unit vector n on the x1-x2 plane in the deformed configuration such that (Needleman andRice (1978))
det [nkLepki jl nl + Ai j] = 0, where A = −12 [σ − σ · nn − (n · σ · n) δ + nn · σ] . (171)

If such an n exists, then the direction of the shear band is perpendicular to n.Aravas and Ponte Castañeda (2004) have shown that the localization condition (171) can be written in the form
B ≡ B11 B22 − B21 B12 = 0, (172)

where3
B11 = Lloc1111 n21 +

(G − σ12
) n22, B12 = (

Lloc1122 +G + σ12
) n1 n2, (173)

B21 = (

Lloc1122 +G − σ12
) n1 n2, B22 = Lloc2222 n22 +

(G + σ12
) n21, (174)

Lloc is the fourth-order elastoplastic tangent modulus tensor defined in (55), σ1 is the normal stress in the direction ofstretching, and index 1 corresponds to the direction of stretching, and index 2 denotes the transverse direction in theplane of deformation. The calculation of the stage at which localization of plastic flow is determined by deforming asingle 4-node element in plane strain tension and using a UMAT based on the local version of the algorithm describedin section 4. Within UMAT, the localization calculations are carried out as described in Aravas and Ponte Castañeda(2004). It is found that the conditions for plastic flow localization are satisfied for
δ = 0.05155 h and ψ = 45◦, (175)

3 One typo in Aravas and Ponte Castañeda (2004) is corrected in the expression for B11 in (173a) and two typos are corrected in the expressionfor B22 in (174b). The results reported in Aravas and Ponte Castañeda (2004) are based on the correct expressions for B11 and B22.
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Figure 5: Schematic representation of one quarter of the plane strain tension specimen.

where (e1, e2) are unit vectors along the coordinate axes on the plane of deformation.We turn now to the numerical solution of the problem. To trigger the initiation of non-uniform deformation in thespecimen, an imperfection in the material properties is introduced over a small square region of side d = 0.05w at thecenter of the specimen, as shown in Fig. 5. In particular, the stress σ0 in (163b) is replaced by 0.98σ0 in the imperfectregion.Calculations are carried out for the local (ℓ = 0) and the non-local (ℓ , 0) versions of the model. Two differentfinite element formulationswere used for the non-localmaterial and all gave the same results reported in the following.The particular formulations are: i) a 4-node isoparametric plane strain element via UEL in ABAQUS/Standard with2× 2 Gauss integration and a uniform volumetric part for the deformation gradient (equal to its average value over theelement) and ii) a 4-node plane strain coupled temperature-displacement element (CPE4HT) in ABAQUS/Standardwith 2 × 2 Gauss integration and a UMAT.Three different meshes are used, namely 20 × 30, 30 × 45, and 40 × 60 initially square elements, where the firstand second numbers denote the number of elements in the w and h directions respectively.Figure 6 shows the normalized “load-extension” curves as calculated using the three different meshes. The dashlines correspond to the local solutions and the solid lines to the non-local ones. It is evident that the local solutionsexhibit a strong mesh-dependence after the deformation ceases to be uniform. The corresponding non-local numericalsolutions converge to the exact one as the mesh is refined at all levels of extension δ.Figure 7 shows contour plots of the damage parameter D for the local model (ℓ = 0) as calculated using the threedifferent meshes at an extension level δ = 0.057 h. The width of the shear band tends to zero as the mesh is refinedand the strong mesh dependence of the solution is again evident. This is due to the loss of ellipticity of the governingequations, which allows for discontinuous solutions.Figures 6 and 7 show that the local model predicts very well the onset of localization and the orientation of theshear band, but it cannot be used in the post bifurcation regime when the BVP looses ellipticity.Figure 8 shows contour plots of the damage parameter D for the non-local model (ℓ = 0.08w) as calculated usingthe three different meshes at an extension level δ = 0.08 h. The width of the shear band is now independent of themesh size as the mesh is refined sufficiently. The equations remain elliptic at all deformation levels (Benallal andTvergaard (1995)) and this excludes the possibility of discontinuous solutions.
8.2. Impact of a steel rod on a rigid surface

We consider the dynamic problem of a L = 32.4 mm long cylindrical steel rod of square cross section of 2 a×2 a =6.4 mm × 6.4 mm, impacting a rigid wall with an initial velocity of V0 = 250 m/sec. The initial mass density of therod is ρ0 = 7850 kg/m3. This is a standard benchmark problem used by many general-purpose finite element codes.
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Figure 6: Normalized-load-deflection curves in plane strain tension for local and non-local model.

The high velocity impact causes large plastic deformation at the front end of the rod that is in contact with the rigidsurface and is the area of interest.Because of symmetry, one quarter of the specimen is analysed and appropriate symmetry conditions are imposed.To simulate the impact of the rod on the frictionless rigid wall, zero axial displacements are prescribed at the nodeson the front end of the rod, while all other nodes are subjected to a 250 m/sec initial velocity in the direction of theimpact (perpendicular to the rigid wall). While this technique is appropriate for modeling the crushing of the front endof the rod in the absence of friction or rebound, a contact pair should be used if there are significant friction effects orif separation between the rod and the rigid wall is of interest.A rate-dependent version of the plasticity model is used and σy(ε̄p) in (161) is replaced by
Σy(ε̄p, ˙̄εp) =

{

σy(ε̄p) if ˙̄εp ≤ ε̇0,
(1 + d1 ln ˙̄εp

ε̇0
)

σy(ε̄p) if ˙̄εp ≥ ε̇0, (176)
where d1 = 0.035 and ε̇0 = 10−4 s−1. A hardening exponent n = 10 and a material length ℓ = 1 mm are used in thecalculations. This value of ℓ is chosen arbitrarily to be a fraction of a. It is emphasized though that the value of ℓ doesnot influence the calculations, since, as discussed in the following, the very negative triaxialities in the rod preventdamage. The main purpose of this example is to check the enhanced formulation and the associated hourglass control.The dynamic analysis is carried out for a time period of t = 40 µs using both ABAQUS/ Standard and ABA-QUS/Explicit and the results are identical. In all analyses discussed below, a 20×20×72 finite element mesh of eight-node hexahedral elements is used. In ABAQUS/Standard we use a UEL with an 8-node isoparametric hexahedralelement and 2 × 2 × 2 Gauss integration points based on the standard (u − ep) formulation described in section 5.1.Another set of calculations is also carried out with ABAQUS/Standard using a UEL with an 8-node isoparametrichexahedral element and one Gauss integration point based on the enhanced strain formulation described in section5.2. Equal time increments are used in both sets of calculations. It is found that at least 5000 time increments arerequired for accurate (convergent) solutions. The enhanced (reduced integration) formulation reduces the requiredcomputer time about 70%. It should be mentioned that in the early stages of the solution strain rates of the order of105 s−1 develop at the center of the area of the rod that is in contact with the rigid wall.In ABAQUS/Explicit the dynamic analysis is carried out using a VUMAT as described in section 7. Eight-nodeisoparametric hexahedral ABAQUS elements with one Gauss integration point (C3D8RT in ABAQUS library) andthe ABAQUS “enhanced hourglass control” are used. A value of c = 3 × 10−13 s/(kg/m3) is used in (159) so that, for
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Figure 7: Contour plots of damage parameter D for the local model at δ = 0.057 h. Whole specimen is shown.

Figure 8: Contour plots of damage parameter D for the non-local model at δ/h = 0.08. Whole specimen is shown.

ε̇ = 105 s−1,
ρ c ε̇ = 2.36 × 10−4. (177)

Numerical experiments indicate that smaller values of c do not change the results, whereas values of c one order ofmagnitude larger do alter the solution. At least 4 million increments are required for accurate solutions. The requiredcomputer time is more than twice (216% higher) the time required for the solution obtained by ABAQUS/Standardwith UEL and one Gauss integration point. A comparison of implicit and explicit ABAQUS calculations has beengiven by Nagtegaal and co-workers (Nagtegaal and Taylor (1991); Rebelo et al. (1992)).Figure 9(a) shows the variation of the normalized force F exerted by the rod on the rigid wall with time and Fig.
9(b) shows the time variation of the kinetic energy K = ∫

Ω

12 ρ v2 dΩ and total plastic workW p = ∫

Ω













t
∫

0
σ : Dp dt













dΩ in
the rod normalized by the initial kinetic energy K0 = 12 ρ0 v20 a2 L. Dynamic effects are important at the early stages ofthe impact; the kinetic energy reduces with time and is dissipated in the form of plastic work in the rod, as expected.It should be noted also that the force on the rigid wall takes negative values for a short period of time, indicating thatseparation is actually occurring.Contour plots of the equivalent plastic strain ε̄p and the non-local equivalent plastic strain ep are shown in Fig.
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(a) (b)
Figure 9: Time variation of normalized a) force on the plate and b) kinetic energy and plastic work (energies normalized by the initial kinetic energyK0 = 12 ρ0 v20 a2 L).

10 at the end of the calculations t = 40µs. At the front end of the rod near the rigid wall the non-local values ep aresmaller than the local values ε̄p, since ep represents local spatial averages of ε̄p as discussed in section 3.1. It shouldbe also noted that the non-local values ep are calculated but they do not affect the solution in this problem since nodamage is developing. The reason is that ep takes large values in the part of the rod where very negative triaxialitiesdevelop (η < ηcr = −1/3) and this suppresses damage evolution according to (33).

(a) (b)
Figure 10: Contour plots at t = 30 µs of: (a) equivalent plastic strain ε̄p and (b) the non-local equivalent plastic strain ep.

8.3. Ductile fracture
We consider the quasi-static problem of a plane strain mode-I blunt crack in a homogeneous rate-independentisotropic elastoplastic material under small scale yielding conditions. Crack-tip plasticity is accounted for in themanner of a boundary layer formulation described by Rice (1967, 1968) and used by McMeeking (1977) in hispioneering large strain crack-tip finite element calculations. Traction free boundary conditions are used on the crackface and displacement boundary conditions remote from the tip are applied incrementally to impose an asymptoticdependence on the mode-I plane strain elastic solution, i.e., the following displacement field is applied on a circular
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arc at a distance r = R from the crack tip:
{ u1u2

}

=
KI2G

√ r
2 π (3 − 4 ν − cos θ)

{ cos θ2sin θ2
}

, (178)
where (u1, u2) are Cartesian displacement components, x1 and x2 are crack-tip Cartesian coordinates, x1 being the axisof symmetry and x2 the direction of mode-I loading, KI is the mode-I stress intensity factor, and (r, θ) are crack-tippolar coordinates.Let b0 be the initial radius of the semicircular notch at the tip of the blunt crack. The outermost radius of thefinite element mesh, where the elastic asymptotic displacement field (178) is imposed, is R � 1200 b0. Because ofsymmetry, only half of the region 0 ≤ θ ≤ π is analyzed. The finite element mesh in the region near the crack tip isshown in Fig. 11. A total of 1658 4-node plane strain coupled temperature-displacement elements with one Gaussintegration (CPE4RT in ABAQUS) and hourglass control are used in the calculations.

Figure 11: Finite element mesh in the region near the blunt crack tip.
A hardening exponent n = 5 and a material length ℓ = b0 = 1 mm are used in the computations.The problem is solved using both ABAQUS/Standard with a user subroutine UMAT and ABAQUS/Explicit witha VUMAT. The material is rate-independent and time enters only as a “loading parameter” in the quasi-static problem.However, when ABAQUS/Explicit is used, the dynamic problem is solved and time enters the formulation explicitly.The values of mass density ρ and the time scale used influence the magnitude of the inertia terms and the strain ratesthat develop. Let K̄I ≡ KI/(σ0 √b0) be the normalized applied load and ε̇ = √2 ė : ė/3 the norm of the strain ratetensor. The material parameters ρ, c, and the loading rate ˙̄KI are chosen so that the kinetic energy is less than 1%of the total plastic work in the problem and condition (160) is satisfied, i.e., ρ c ε̇ = O(10−4) or less at all integrationpoints in the finite element mesh.A load of K̄I = 40 is applied. The maximum extent of the plastic zone at this load level is rp ≃ 0.17R. ABA-QUS/Standard requires about 5000 increments for this first step, whereas ABAQUS/Explicit requires about 1 millionincrements and comparable computer time. Both codes give identical solutions up to the load K̄I = 40.Figure 12 shows the variation of the local and non-local equivalent plastic strain ahead of the crack, plotted on thesame scale, at various load levels; in Fig. 12 and in the following figures of this section, x is the distance of a materialpoint in the undeformed configuration from the root of the semicircular notch. Clearly, at each material point, the
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non-local value ep is smaller than the corresponding local value ε̄p; this is due to the fact that ep can be viewed asthe spatial average value of ε̄p, as discussed in section 3.1. As ℓ → 0, the non-local value ep at every material pointapproaches the corresponding local value ε̄p at that point. The maximum values of both ε̄p and ep appear on the notchsurface.
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Figure 12: Distribution of the equivalent plastic strain ε̄p (a) and the non-local equivalent plastic strain ep (b) ahead of the crack tip at different loadlevels.

Figures 13 and 14 show the distribution of the opening stress σ22, the von Mises equivalent stress σe, the hydro-static stress p = σkk/3, and the triaxiality η = p/σe ahead of the crack tip. The maximum value of the opening stress
σ22 appears ahead of the notch whereas the maximum von Mises equivalent stress σe occurs on the notch surface. Asshown in Fig. 14a the traction-free boundary condition reduces the value of the hydrostatic stress on the notch surfaceand causes the maximum of σ22 to occur ahead of the crack (McMeeking (1977)). At low load levels, both σ22 and
σe increase with increasing K̄I ; however, as damage develops ahead of the crack, the load carrying capacity of thematerial decreases and leads to lower local stresses in that region.Figure 15 shows the distribution of damage D ahead of the crack at different load levels. The evolution of damagedepends on the non-local equivalent plastic strain ep, the triaxiality η, and the Lode angle θ, as described in equations(31)–(34). Damage is initiated ahead of the crack at a load level of K̄I = 17.8. As shown in Fig. 15, the maximumvalue of D appears initially ahead of the crack and moves to the notch surface at higher loads.ABAQUS/Standard has convergence difficulties beyond K̄I = 40, when material starts to fail locally; the calcula-tions are terminated at this load level. A separate set of calculations is carried out using ABAQUS/Explicit and thesolution can be continued for values of K̄I larger than 40.The material is assumed to fail locally when the normalized damage indicator I f reaches the value of I f = 1.When the value of I f = 1 is reached at the Gauss point of an element, the material is assumed to lose its load carryingcapacity and the element is removed. Material failure starts on the root of the notch. Figure 16 shows contours of thedamage parameter D at K̄I = 40.1 and K̄I = 45; deleted elements are shown “empty” in Fig. 16. For K̄I = 45, themaximum extent of the plastic zone is rp ≃ 0.21R, i.e., the plastic zone is well inside the region of dominance of theapplied asymptotic elastic solution.
9. Closure

In the present paper we have developed a methodology for the numerical implementation of a family of isotropicnon-local elastoplastic damage models that include the effects of the third invariant J3 of the stress deviator. Theimplementation in the ABAQUS general-purpose finite element code is discussed and several example problems are
31
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Figure 13: Distribution of (a) normalized stress σ22/σ0 and (b) normalised von Mises equivalent stress σe/σ0 ahead of the crack tip at differentload levels.

solved. The methodology is quite general and can be extended to anisotropic damage models for porous metals, suchas those developed by Gurson (1977) and Ponte Castañeda and co-workers (Danas and Ponte Castañeda (2009a,b)).Such work is now underway.
Acknowledgments

The authors would like to thank Dr. Juan Hurtado, SIMULIA R&D Technology Director, for helpful discussionsand material. The support of the European Commission through project RFCS-2015 709711 is gratefully acknowl-edged.

32



0 0.01 0.02 0.03 0.04 0.05 0.06
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
K1 
K1 
K1 
K1 

 2
0I

x
K

0

p

 

 

IK 10

IK 20

IK 30

IK 40

0 0.01 0.02 0.03 0.04 0.05 0.06
0.0

0.5

1.0

1.5

2.0

2.5

3.0

K1 
K1 
K1 
K1 

 
2

0I

x
K

 

 

IK 10

IK 20

IK 30

IK 40

(a) (b)
Figure 14: Distribution of (a) normalized hydrostatic stress p/σ0 (p = σkk/3) and (b) triaxiality factor η = p/σe ahead of the crack tip at differentload levels.

Appendix A: Finite element matrices

The following convention is used in all Appendices:i) lower case Latin subscripts have a range of three, representing spatial coordinate directions (i = 1, 2, 3),ii) upper case Latin subscripts or superscripts have a range of eight, corresponding to element nodes (A = 1, 2, · · · , 8),andiii) lower case Greek subscripts have a range of four (α = 1, 2, 3, 4).In the physical domain we consider a global fixed Cartesian coordinate system with coordinates x = (x1, x2, x3) =(x, y, z). We also introduce a bi-unit cube �, sometimes called the “parent domain” or “master element”, with “naturalcoordinates” ξ = (ξ1, ξ2, ξ3) = (ξ, η, ζ) in the range −1 ≤ ξi ≤ 1 (i = 1, 2, 3).Each 3D 8-node hexahedral isoparametric finite element Ωe in the physical domain is mapped onto the masterelement � with an invertible transformation of the form
xi(ξ) = 8

∑

A=1
NA(ξ) xAi (i = 1, 2, 3), (179)

where xAi is the i-th coordinate of node A in the physical domain, NA(ξ) are the element “shape functions”
NA(ξ, η, ζ) = 1

8 (1 + ξA ξ)(1 + ηA η)(1 + ζA ζ) (A = 1, 2, · · · , 8), (180)
and (ξA, ηA, ζA) = (ξA1 , ξA2 , ξA3 ) are the values of the natural coordinates at the nodal points.The components Ji j of the Jacobian matrix [J] and the Jacobian J of the transformation (179) are defined as

Ji j(ξ) = ∂xi(ξ)
∂ξ j and J(ξ) = det[J(ξ)]. (181)

RemarkSometimes the point ξ = 0 is referred to in the literature as the “centroid” of the element Ωe. Using equation (179)
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Figure 15: Distribution of the damage parameter D ahead of the crack tip at different load levels.

(a) (b)
Figure 16: Contours of damage D and deleted elements at (a) K̄I = 40.1 and (b) K̄I = 45 (b). Solutions are obtained using ABAQUS/Explicit.When the value of I f = 1 is reached at the Gauss point of an element, the material is assumed to lose its load carrying capacity and the element isremoved. Deleted elements are shown “empty”.

we can readily show that
x(0) = 1

8
8

∑

A=1
xA. (182)

It is emphasized though that the point x(0) on the physical domain is not in general the geometric center of Ωe, unless
Ωe is a rectangular parallelepiped. Therefore, we avoid the term “centroid” and refer to the material point at ξ = 0 asthe “element local origin”. �

The “constant Jacobian matrix”” and “constant Jacobian” are obtained by evaluation at the element local origin
ξ = 0: [J0] = [J(0)], J0 = J(0). (183)
We also define

jik = (J−10 )

ik =
∂ξi
∂xk

∣

∣

∣

∣

∣

ξ=0. (184)
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We recall that
∆Li j = ∂∆ui

∂x j , (185)
and, following Simo and Rifai (1990) (see also Puso (2000)), we introduce the transformed quantities

∆L̃i j(ξ) ≡ J(ξ)J0 (J0)mi (J0)n j ∆Lmn(ξ), so that ∆Li j(ξ) ≡ J0J(ξ) jmi jn j ∆L̃mn(ξ). (186)
Equations (186) can be written in matrix form as

{

∆L̃(ξ)}
9×1

=
J(ξ)J0 [J 0]9×9 {∆L(ξ)}9×1 or {∆L(ξ)}9×1 =

J0J(ξ) [K0]9×9
{

∆L̃(ξ)}
9×1

, (187)
where

⌊∆L⌋1×9 =
⌊

∆u1,1 ∆u2,2 ∆u3,3 ∆u1,2 ∆u2,1 ∆u1,3 ∆u3,1 ∆u2,3 ∆u3,2 ⌋

, (188)
[J 0]9×9 = [K0]9×9

−1, (189)

[K0]9×9 =

















































































j211 j221 j231 j11 j21 j11 j21 j11 j31 j11 j31 j21 j31 j21 j31j212 j222 j232 j12 j22 j12 j22 j12 j32 j12 j32 j22 j32 j22 j32j213 j223 j233 j13 j23 j13 j23 j13 j33 j13 j33 j23 j33 j23 j33j11 j12 j21 j22 j31 j32 j11 j22 j12 j21 j11 j32 j12 j31 j21 j32 j22 j31j11 j12 j21 j22 j31 j32 j12 j21 j11 j22 j12 j31 j11 j32 j22 j31 j21 j32j11 j13 j21 j23 j31 j33 j11 j23 j13 j21 j11 j33 j13 j31 j21 j33 j23 j31j11 j13 j21 j23 j31 j33 j13 j21 j11 j23 j13 j31 j11 j33 j23 j31 j21 j33j12 j13 j22 j23 j32 j33 j12 j23 j13 j22 j12 j33 j13 j32 j22 j33 j23 j32j12 j13 j22 j23 j32 j33 j13 j22 j12 j23 j13 j32 j12 j33 j23 j32 j22 j33

















































































. (190)

Equation (186b) shows that, given ∆L̃ in the natural space (ξ, η, ζ), the enhanced gradient ∆L in the physical space(x, y, z) is obtained by convecting ∆L̃ by the Jacobian of the isoparametric map according to (186b) or, equivalently,(187b).If we use the approximation J(ξ) ≃ J0 in (186a), we can show that the components ∆L̃i j can be written in the form
∆L̃i j � ∂∆ũi

∂ξ j =
8

∑

A=1
∂NA
∂ξ j ∆ũAi , ∆ũi ≡ (J0)ki ∆uk, (191)

where ∆ũi (i = 1, 2, 3) are the components of the convected incremental displacement and ∆ũAi (A = 1, 2, · · · , 8) thecorresponding nodal values. Equation (191a) shows that we can interpret ∆L̃ as an incremental displacement gradientin the natural space (ξ, η, ζ), where the appropriate convected displacement increment is defined by (191b) above.Using the transformation (191b) we can show that the transformed nodal displacements can be written in matrixform as
{

∆d̃e}
1×32

= [G]32×32 {∆de}1×32 , (192)
where

⌊∆de⌋32×1 =
⌊

⌊∆d1⌋4×1 ⌊∆d2⌋4×1 · · · ⌊∆d8⌋4×1
⌋

, (193)
⌊∆dA⌋4×1 =

⌊

∆uA1 ∆uA2 ∆uA3 ∆epA ⌋

, A = 1, 2, · · · , 8, (194)

[I0]T4×4 =


















[J0]T3×3 01×101×1 01×1


















, [G]32×32 =



































[I0]T4×4
. . . [I0]T4×4



































, (195)
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with (∆uAi ,∆epA) being the increments of the components of displacement and of the non-local equivalent plastic strainat node A.The idea now is to define the finite element interpolation of the enhanced field transformed ∆L̃(ξ) in the nat-ural space (ξ, η, z) and then to convect it in accordance with (186a) to determine the corresponding enhanced ∆Lin the physical space (x, y, z). The resulting interpolation for ∆L is automatically frame invariant provided that theinterpolation of ∆L̃(ξ) is {ξ, η, ζ}-invariant. We recall the enhanced gradient fields (117) and (120):
{∆L(x)}9×1 =

(

[BL]9×32 + [Bstab(x)]9×32
)

{∆de}32×1 + [G(x)]9×6 {∆ae}6×1 , (196)
{∆g(x)}3×1 =















[Bε]3×32 +
[Bstabε (x)]

3×32















{∆de}32×1 . (197)
The constant matrices [BL] and [Bε] in (196) and (197) are defined in (122). Following Puso (2000), we define[Bstab(x)], [G(x)], and [Bstabε (x)] by convecting appropriately defined matrices on the natural space (ξ, η, z). We startby writing

{

∆L̃stab(ξ)}
9×1

=
[B̃stab(ξ)]

9×32
{

∆d̃e}
32×1

, (198)
where

[B̃stab (ξ)]
9×32

=

[
[B̃1 (ξ)]

9×4
[B̃2 (ξ)]

9×4
· · ·

[B̃8 (ξ)]
9×4

]

, (199)
with

[B̃A (ξ)]
9×4

=

















































































γA1 η + γA3 ζ + γA4 η ζ 0 0 00 γA1 ξ + γA2 ζ + γA4 ζ ξ 0 00 0 γA2 η + γA3 ξ + γA4 ξ η 0
γA2 ζ 0 0 00 γA3 ζ 0 0
γA2 η 0 0 00 0 γA1 η 00 γA3 ξ 0 00 0 γA1 ξ

















































































A = 1, 2, · · · , 8, (200)
{

γα
}

8×1 =
1
8

















{hα}8×1 −
3

∑

i=1

(

⌊hα⌋1×8 {xi}8×1
)

{bi}8×1

















α = 1, 2, 3, 4, (201)
⌊h1⌋1×8 =

⌊ 1 −1 1 −1 1 −1 1 −1 ⌋

, (202)
⌊h2⌋1×8 =

⌊ 1 1 −1 −1 −1 −1 1 1 ⌋

, (203)
⌊h3⌋1×8 =

⌊ 1 −1 −1 1 −1 1 1 −1 ⌋

, (204)
⌊h4⌋1×8 =

⌊

−1 1 −1 1 1 −1 1 −1 ⌋

, (205)
{bi}8×1 =

1Ve
∫

Ωe

∂

∂xi {N}8×1 dΩ i = 1, 2, 3, (206)
where γAα is the A-th component of {γα} (α = 1, 2, 3, 4, A = 1, 2, · · · , 8). Analytical expressions for the componentsof {bi} can be found in Flanagan and Belytschko (1981).
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Next, we combine equation (200) with {∆Lstab(ξ)} = [Bstab(ξ)] {∆de} and the transformation (187b) to find theexpression
[Bstab(ξ)]9×32 =

J0J(ξ) [K0]9×9
[B̃stab(ξ)]

9×32
[G]32×32, (207)

which defines the [Bstab]-matrix in the physical space (x, y, z).The form of [B̃A (ξ)] in (200) is discussed in detail by Puso (2000). Here we mention that the last six rows
of [B̃A (ξ)] in (200) are chosen so that shear locking is eliminated when the element is a rectangular parallelepiped
(Freischläger and Schweizerhof (1996)). We also note that the expression for [B̃stab(ξ)] in (199) can be written in thefollowing alternative form:

[B̃stab(ξ)]
9×32

=

4
∑

α=1
[B̂α(ξ)]

9×4
[Γα]T4×32 , (208)

where

[B̂1(ξ)]
9×4

=

















































































η 0 0 00 ξ 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 η 00 0 0 00 0 ξ 0

















































































,
[B̂2(ξ)]

9×4
=

















































































0 0 0 00 ζ 0 00 0 η 0
ζ 0 0 00 0 0 0
η 0 0 00 0 0 00 0 0 00 0 0 0

















































































,
[B̂3(ξ)]

9×4
=

















































































ζ 0 0 00 0 0 00 0 ξ 00 0 0 00 ζ 0 00 0 0 00 0 0 00 ξ 0 00 0 0 0

















































































, (209)

[B̂4(ξ)]
9×4

=

















































































η ζ 0 0 00 ζ ξ 0 00 0 ξ η 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 0

















































































, [Γα]32×4 =

















































γ1α [δ]4×4
γ2α [δ]4×4
...

γ8α [δ]4×4,

















































, [δ]4×4 =





























1 1 1 1





























. (210)

We also note the following identity [G]T32×32 [Γα]32×4 = [Γα]32×4 [I0]4×4 (211)
or [Mα]4×32 ≡ [Γα]T4×32 [G]32×32 = [I0]T4×4 [Γα]T4×32 =

[

γ1α [I0]T4×4 γ2α [I0]T4×4 · · · γ8α [I0]T4×4
]

. (212)
When we replace the left-hand-side of (211) with the right-hand-side in a computer code, we reduce significantly thenumber of arithmetic operations involved.
Similarly, the [G(ξ]-matrix in the physical space (x, y, z) is formed by convecting an appropriately defined [G̃(ξ)]-
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matrix in the natural plane (ξ, η, ζ) (Puso (2000)):

[G(ξ)]9×6 =
J0J(ξ) [K0]9×9

[G̃(ξ)]
9×6

,
[G̃ (ξ)]

9×6
=

















































































ξ 0 0 η ξ ζ η ζ ξ0 η 0 η ξ ζ η ζ ξ0 0 ζ η ξ ζ η ζ ξ0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0

















































































. (213)

The last three columns in [G̃ (ξ)] provide the bilinear terms in interpolation (117) of ∆L necessary to avoid incom-pressibility locking.
Finally, the stabilization matrix [Bstabε (ξ)] that enters the enhanced gradient g of the non-local equivalent plastic epin (120) is defined as

[Bstabε (ξ)]
3×32

=
J0J(ξ) [J0]−13×3

[B̃stabε (ξ)]
3×32

, (214)
where

[B̃stabε (ξ)]
3×32

=

[
[B̃1ε (ξ)]3×4

[B̃2ε (ξ)]3×4
· · ·

[B̃8ε (ξ)]3×4
]

, (215)
[B̃Aε (ξ)]3×4

=





















0 0 0 γA1 η + γA3 ζ + γA4 η ζ0 0 0 γA1 ξ + γA2 ζ + γA4 ζ ξ0 0 0 γA2 η + γA3 ξ + γA4 ξ η





















(A = 1, 2, . . . , 8). (216)

An alternative expression for [B̃stabε (ξ)], as defined in (215), is
[B̃stabε (ξ)]

3×32
=

4
∑

α=1
[B̂αε (ξ)]3×4

[Γα]T4×32 , (217)
where

[B̂1ε(ξ)]3×4
=





















0 0 0 η0 0 0 ξ0 0 0 0




















,
[B̂2ε(ξ)]3×4

=





















0 0 0 00 0 0 ζ0 0 0 η





















, (218)
[B̂3ε(ξ)]3×4

=





















0 0 0 ζ0 0 0 00 0 0 ξ





















,
[B̂4ε(ξ)]3×4

=





















0 0 0 η ζ0 0 0 ζ ξ0 0 0 ξ η





















. (219)
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Appendix B: Calculation of {∆ae} in terms of {∆de}

Equations (144) are written for every element in the finite element mesh and provide a set of six non-linear equationsper element that define the local element parameters {∆ae} in terms of the element nodal degrees of freedom {∆de}.We recall that (144) has the form
∫

�

[G(ξ)]T6×9 {σn+1(ξ)}9×1 Jn+1(ξ) d� = {0}6×1, (220)
for all elements, where J(ξ) is the Jacobian of the transformation of the mapping from the master element to domain
Ωe in physical space (see equation (181b) in Appendix A). We also note that (144) is also satisfied at the start of theincrement, i.e,

∫

�

[G(ξ)]T6×9 {σn(ξ)}9×1 Jn(ξ) d� = {0}6×1 . (221)
In plastically incompressible materials, Jn+1 ≃ Jn to first order, since the elastic strains are small. Then, last twoequations imply that

∫

Ωe

[G(ξ)]T6×9 {∆σ(ξ)}9×1 dΩ = {0}6×1, (222)
on all elements in the problem.

In the following we use the constitutive equation (51) ∇σ = L : D − Anl ėp, to linearize (222) and then introducestandard approximations used in physical stabilization methods to determine analytically {∆ae} in terms of {∆de}.
We start by writing the constitutive equation (51) ∇σ = L : D − Anl ėp, in the form

σ̇ = C : L − Anl ėp, (223)
where

Ci jpq = Li jpq + 1
2

(

σiq δ jp + σ jq δip − σip δ jq − σ jp δiq
)

. (224)
Equation (223) leads to the following approximate expression for ∆σ:

∆σ � C : ∆L − Anl ∆ep, (225)
where C andAnl are evaluated at the start of the increment at t = tn. We introduce next the finite element interpolationsfor ∆L and ∆ep from (117) and (119) to find

{∆σ(ξ)}9×1 �















[

C(ξ)]9×9
(

[BL]9×32 +
[Bstab(ξ)]9×32

)

−
{Anl(ξ)}

9×1
⌊Nε(ξ)⌋1×32















{∆de}32×1 +

+
[

C(ξ)]9×9
[G(ξ)]9×6 {∆ae}6×1 , (226)

where
⌊∆σ⌋1×9 = {∆σ}

T = ⌊

∆σ11 ∆σ22 ∆σ33 ∆σ12 ∆σ21 ∆σ13 ∆σ31 ∆σ23 ∆σ32
⌋

, (227)
⌊Anl⌋
1×9
=

{Anl}T = ⌊ Anl11 Anl22 Anl33 Anl12 Anl21 Anl13 Anl31 Anl23 Anl32 ⌋

. (228)
Note that {∆σ(ξ)} in (226) is linear in {∆de} and {∆ae}.Evaluation of (226) at ξ = 0 yields

{∆σ0}9×1 ≡ {∆σ(0)}9×1 =















[C0]9×9 [BL]9×32 −
{Anl0

}

9×1
⌊Nε0⌋1×32















{∆de}32×1 , (229)
where we took into account (133) and a zero subscript indicates that the corresponding quantity is evaluated at ξ = 0.Next, we introduce two fundamental approximations used in physical stabilization methods (Puso (2000)):
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(i) the values of the constitutive matrices [

C(ξ)] and [Anl(ξ)] over the whole element domain are approximated
with their values at the corresponding local origin, i.e., we set [C(ξ)] � [C0] and [Anl(ξ)] � [Anl0

],
(ii) the value of the Jacobian J(ξ) over the whole element domain is approximated with its value at the correspond-ing local origin, i.e., we set J(ξ) � J(0) ≡ J0.
Then, (226) can be written in the form

{∆σ(ξ)}9×1 � {∆σ0}9×1 + {∆σstab(ξ)}9×1 , (230)
where {∆σ0} is defined in (229) and

{∆σstab(ξ)}9×1 =















[C0]9×9
[Bstab(ξ)]9×32 −

{Anl0
}

9×1
⌊N̂ε(ξ)⌋
1×32















{∆de}32×1 + [C0]9×9
[G(ξ)]9×6 {∆ae}6×1 , (231)

with ⌊N̂ε(ξ)⌋ = ⌊Nε(ξ)⌋ − ⌊Nε(0)⌋.Finally, we substitute (230)–(231) into (222) to find
[Kau]6×32 {∆de}32×1 + [Kaa]6×6 {∆ae}6×1 � {0}6×1 or {∆ae}6×1 � − [Kaa]6×6

−1 [Kau]6×32 {∆de}32×1 , (232)
where

[Kaa]6×6 =
∫

Ωe
[G]T6×9 [C0]9×9 [G]9×6 dΩ, [Kau]6×32 =

∫

Ωe
[G]T6×9















[C0]9×9 [Bstab]9×32 −
{Anl0

}

9×1
⌊N̂ε⌋
1×32















dΩ. (233)
Matrix [G(ξ)] is chosen in Appendix A such that [Kaa] is diagonal and the inversion required in (232b) is trivial. Also,analytical expressions can be obtained for [Kaa] and [Kau] as described in the following. Therefore, the calculation of
{∆ae} in (232b) is very efficient computationally.The analytical evaluation of [Kaa] and [Kau] is as follows. We use the transformations (207) and (213a) for [Bstab]and [G], and introduce the transformed matrices

[

C̃0
]

9×9
= [K0]T9×9 [C0]9×9 [K0]9×9 ,

{Ãnl0
}

9×1
= [K0]T9×9

{Anl0
}

9×1
, (234)

where [K0] is defined in (190), so that equations (233) can be written in the form
[Kaa]6×6 =

∫

Ωe

[G̃]T
6×9

[

C̃0
]

9×9
[G̃]

9×6
dΩ, [Kau]6×32 =

∫

Ωe

[G̃]T
6×9















[

C̃0
]

9×9
[B̃stab]
9×32

−
{Ãnl0

}

9×1
⌊N̂ε⌋
1×32















dΩ. (235)

Let C̃i j and Ãi be the elements of [

C̃0
] and {Ãnl0

} and use the approximation dΩ = J(ξ) d� � J0 d�. Then, using
(235a) and equation (213b) for [G̃], we find the following analytical expressions for the elements of the diagonalmatrix [Kaa] (see also Puso (2000))

(Kaa)ii = 8 J03 C̃ii i = 1, 2, 3 (no summation on i), (236)
(Kaa)44 = (Kaa)55 = (Kaa)66 =

=
8 J09

(

C̃11 + C̃22 + C̃33 + C̃12 + C̃21 + C̃23 + C̃32 + C̃13 + C̃31
)

. (237)
Also, taking into account that

{N̂ε(ξ)}32×1 =

8
∑

I=1
N̂I (ξ) {δI}32×1, {δI}J =

{ 0 if J , 4 I,1 if J = 4 I, I = 1, 2, · · · , 8,J = 1, 2, · · · , 32, (238)
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and using (235b), we conclude that we can write [Kau] in the form
[Kau]6×32 = [Kau1]6×32 − [Kau2]6×32 , (239)

where
[Kau1]6×32 =

4
∑

α=1
[Kαau1

]

6×4
[Mα]4×32 , [Kau2]6×32 =

8
∑

I=1
{KIau2}6×1

⌊δI⌋1×32, (240)
with

[Mα]4×32 =
[

γ1α [I0]T4×4 γ2α [I0]T4×4 · · · γ8α [I0]T4×4
]

, (241)
[Kαau1

]

6×4
= J0

∫

�

[G̃ (ξ)]T
6×9

[

C̃0
]

9×9
[B̂α (ξ)]

9×4
d�, (242)

{KIαu2}6×1
= J0

∫

�

[G̃ (ξ)]T
6×9

{Ãnl0
}

9×1
N̂i (ξ) d�, (243)

γIα is defined in (201), and [I0] in (195a).
The integrals in (242) and (243) can be evaluated analytically. Substituting [B̃stab(ξ)] = 4

∑

α=1
[B̂α(ξ)] [Γα]T from

(208) and using (213b) for [G̃] together with (209)–(210) for [B̂α (ξ)], we find the following analytical expressions
for the elements of matrices [Kαau1

] and {KI
αu2

}:

[K1au1
]

6×4
=
8 J03



















































0 C̃12 C̃19 0
C̃21 0 C̃27 00 0 0 00 0 0 00 0 0 00 0 0 0



















































,
[K2au1

]

6×4
=
8 J03



















































0 0 0 0
C̃26 0 C̃23 0
C̃34 C̃32 0 00 0 0 00 0 0 00 0 0 0



















































, (244)

[K3au1
]

6×4
=
8 J03



















































0 C̃18 C̃13 00 0 0 0
C̃31 C̃35 0 00 0 0 00 0 0 00 0 0 0



















































, (245)

[K4au1
]

6×4
=
8 J09



















































0 0 0 00 0 0 00 0 0 00 0 C̃13 + C̃23 + C̃33 0
C̃11 + C̃21 + C̃31 0 0 00 C̃12 + C̃22 + C̃32 0 0



















































, (246)

and
{K1au2

}

6×1
=
J09



















































−3 Ã1
−3 Ã2
−3 Ã3Ã1 + Ã2 + Ã3Ã1 + Ã2 + Ã3Ã1 + Ã2 + Ã3



















































,
{K2au2

}

6×1
=
J09























































3 Ã1
−3 Ã2
−3 Ã3

−
(Ã1 + Ã2 + Ã3)Ã1 + Ã2 + Ã3
−

(Ã1 + Ã2 + Ã3)























































, (247)
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{K3au2
}

6×1
=
J09























































3 Ã13 Ã2
−3 Ã3Ã1 + Ã2 + Ã3

−
(Ã1 + Ã2 + Ã3)
−

(Ã1 + Ã2 + Ã3)























































,
{K4au2

}

6×1
=
J09























































−3 Ã13 Ã2
−3 Ã3

−
(Ã1 + Ã2 + Ã3)
−

(Ã1 + Ã2 + Ã3)Ã1 + Ã2 + Ã3























































, (248)

{K5au2
}

6×1
=
J09























































−3 Ã1
−3 Ã23 Ã3Ã1 + Ã2 + Ã3

−
(Ã1 + Ã2 + Ã3)
−

(Ã1 + Ã2 + Ã3)























































,
{K6au2

}

6×1
=
J09























































3 Ã1
−3 Ã23 Ã3

−
(Ã1 + Ã2 + Ã3)
−

(Ã1 + Ã2 + Ã3)Ã1 + Ã2 + Ã3























































, (249)

{K7au2
}

6×1
=
J09



















































3 Ã13 Ã23 Ã3Ã1 + Ã2 + Ã3Ã1 + Ã2 + Ã3Ã1 + Ã2 + Ã3



















































{K8au2
}

6×1
=
J09























































−3 Ã13 Ã23 Ã3
−

(Ã1 + Ã2 + Ã3)Ã1 + Ã2 + Ã3
−

(Ã1 + Ã2 + Ã3)























































. (250)

Summarizing we note that the elements of [Kaa] are determined in (236)–(237) and [Kau] is defined by (239)–(240)and (242)–(250).
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Appendix C: Analytical expressions for stabilization terms

In this Appendix we derive analytical expressions for matrices {fstabu } and [kstabε

] introduced in (151b) and (148).
We recall the definition of {fstabu }:

{fstabu
}

=

∫

�

[Bstab(ξ)]T {σ(ξ)} J(ξ) d�, (251)
where all quantities are evaluated at the end of the increment.Next, we use (230) to write {σ(ξ)} ≃ {σ0} + {σstab(ξ)} and take into account (124a) to conclude that

{fstabu
}

≃
∫

�

[Bstab(ξ)]T {σstab(ξ)} J(ξ) d � . (252)

Using the definition of [Bstab] in (207), together with (208) and (212), we find
{fstabu

}

32×1
=

4
∑

α=1
[Mα]T32×4 {fα}4×1 , (253)

where
{fα}4×1 = J0

∫

�

[B̂α(ξ)]T
4×9

[K0]T9×9 {σstab(ξ)}9×1 d�, α = 1, 2, 3, 4, (254)
In plastically incompressible materials, J0 ≃ J0∣∣∣n to first order. We also use the approximation [K0] ≃ [K0]n, to find

{fα} = {fα}n + {∆fα} , α = 1, 2, 3, 4, (255)
where

{∆fα}4×1 = J0
∫

�

[B̂α(ξ)]T
4×9

[K0]T9×9 {∆σstab(ξ)}9×1 d � . (256)
Using (231) for {∆σstab}, we find

{

∆fβ}
4×1
�

[Kβ
]

4×32
{∆de}32×1 +

[Kβau1
]T

4×6
{∆ae}6×1 , β = 1, 2, 3, 4, (257)

where {∆ae} is found from the solution of the local problem in the element as described in Appendix B, [Kβau1
] asdefined in (242)–(246),

[Kβ
]

4×32
=

[Kβ1
]

4×32
−

[Kβ2
]

4×32
, β = 1, 2, 3, 4, (258)

[Kβ1
]

4×32
=

4
∑

γ=1
[Kβγ

]

4×4
[Mγ

]

4×32
,

[Kβγ
]

4×4
= J0

∫

�

[B̂β(ξ)]T
4×9

[

C̃0
]

9×9
[B̂γ(ξ)]

9×4
d�, (259)

[Kβ2
]

4×32
=

8
∑

I=1
{KβI2

}

4×1
⌊δI⌋1×32,

{KβI2
}

4×1
= J0

∫

�

[B̂β(ξ)]T
4×9

{Ãnl0
}

9×1
N̂I (ξ)d�, (260)

and ⌊δI⌋ is defined in (238).We use the expressions (209)–(210) for [B̂β(ξ)] and evaluate analytically the integrals in (259b) and (260b) to find:
[K14]
4×4
=

[K24]
4×4
=

[K34]
4×4
=

[K41]
4×4
=

[K42]
4×4
=

[K43]
4×4
= [0]4×4, (261)
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[K11]
4×4
=
8 J03





























C̃11 0 C̃17 00 C̃22 C̃29 0
C̃71 C̃92 C̃77 + C̃99 00 0 0 0
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−Ã1
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Ã1Ã2Ã30































,
{K422

}

4×1
=

{K482
}

4×1
=
J09































Ã1
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where C̃i j and Ãi are the elements of [C̃0] and {Ãnl0
}.

Summarizing we note that {fstabu } is determined analytically from (253), (255), (257), (242)–(246), and (258)–(274).

Next we consider the calculation of [kstabε

] defined in (148):
[kstabε

]

32×32
= ℓ2

∫

�

[Bstabε (ξ)]T
32×3

[Bstabε (ξ)]
3×32

J(ξ) d�, (275)

where all quantities are evaluated at the end of the increment. Using the definition of [Bstabε

] in (214), together with(217), we conclude that
[kestab]32×32

= ℓ2 J0 4
∑

α=1

4
∑

β=1
[Γα]T32×4

[Hαβ

]

4×4
[

Γβ
]T

4×32
, (276)

where
[Hαβ

]

4×4
=

∫

�

[B̂αε (ξ)]T4×3
[D0]3×3

[B̂βε(ξ)]3×4
d�, [D0]3×3 = [K0]T3×3 [K0]3×3 , α, β = 1, 2, 3, 4. (277)

We use the expressions (218)–(219) for [B̂αε (ξ)] and evaluate analytically the integrals in (277a) to find:
(Hαβ)

γδ
= Eαβ δ4γ δ4δ, α, β, γ, δ = 1, 2, 3, 4, (278)

[Eαβ]
4×4
=
8
3
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











, (279)

where Di j are the elements of [D0].Summarizing we note that [kestab] is determined analytically from (276), (278), and (279).
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