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Abstract
Generating user interpretable multi-class predictions in data-rich environments with
many classes and explanatory covariates is a daunting task. We introduce Diagonal
Orthant Latent Dirichlet Allocation (DOLDA), a supervised topic model for multi-
class classification that can handle many classes as well as many covariates. To handle
many classes we use the recently proposed Diagonal Orthant probit model (Johndrow
et al., in: Proceedings of the sixteenth international conference on artificial intelli-
gence and statistics, 2013) together with an efficient Horseshoe prior for variable
selection/shrinkage (Carvalho et al. in Biometrika 97:465–480, 2010). We propose
a computationally efficient parallel Gibbs sampler for the new model. An important
advantage of DOLDA is that learned topics are directly connected to individual classes
without the need for a reference class. We evaluate the model’s predictive accuracy
and scalability, and demonstrate DOLDA’s advantage in interpreting the generated
predictions.
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1 Introduction

During recent decades more and more textual data has become available, creating a
growing need to statistically analyze large amounts of textual data. The popular Latent
Dirichlet Allocation (LDA) model introduced by Blei et al. (2003) is a generative
probabilistic model in which each document is summarized by a set of latent semantic
themes, often called topics. Formally, a topic is a probability distribution over the
vocabulary. An estimated LDAmodel is, therefore, a compressed latent representation
of the documents where each document is a mixture of topics and where each word
(token) in a document belongs to a single topic. Most probabilistic topic models, such
as LDA, are unsupervised, i.e. the topics are learned solely from the words in the
documents without access to other document meta-data.

In many situations, though, there is other information we would like to incorporate
in modeling a corpus of documents. A common example is when we have labeled doc-
uments, such as ratings of movies together with a movie description, illness categories
in medical journals, or the locations of identified bugs together with bug reports in
software engineering applications. The simplest approach would be to use a standard
topic model and then use the estimated topic distributions per document in another
model, such as a logistic regression model. This two-step approach would result in
topics that are not produced for the purpose of explaining the dependent variable of
interest. Alternatively, one could use a supervised topic model to find the semantic
topic structure in the documents that are related to the class of interest. The difference
between a supervised topic model and a two-step approach is similar to the differ-
ence between principal component regression (PCR) and partial least squares (PLS).
In PCR, the principal components are first computed and then a regression model is
estimated based on the estimated components. In PLS the components are estimated
together with the regression model with the purpose of estimating components that
have good predictive performance for the dependent variable of interest (Geladi and
Kowalski 1986).

Most of the proposed supervised topicmodels have been designedwith the objective
of by trying to find good text classification models, and the focus has naturally been on
the predictive performance. However, the predictive performance of most supervised
topic models is similar to that of using a Support Vector Machine (SVM) with covari-
ates based on word frequencies (Jameel et al. 2015). While predictive performance is
certainly important, the real attraction of supervised topic models comes from their
ability to learn semantically relevant topics and to use those topics to produce accu-
rate interpretable predictions of documents or other textual data. The interpretability
of a model is an often-neglected feature, but it is crucial in real-world applications.
As an example, Parnin and Orso (2011) show that bug fault localization systems are
quickly disregarded when the users cannot understand how the system has reached
its predictive conclusion. Compared to other text classification systems, topic models
are very well suited for interpretable predictions since topics are abstract entities that
humans can easily grasp. The problems of interpretability in multi-class supervised
topic models can be divided into three main areas.

First, most supervised topic models use a logit or probit approach, where the model
is identified by the use of a reference category to which the effect of any covariate
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is compared. This defeats one of the main purposes of supervised topic models since
it complicates the interpretability of the models. Instead of interpreting the effect of
a topic on a class, we need to interpret it as the effect on a class compared to the
reference category.

Second, to handlemulti-class categorization a topic should be able to affect multiple
classes, and some topics may not influence any class at all. In most supervised topic
modeling approaches (such as Jiang et al. 2012; Zhu et al. 2013; Jameel et al. 2015) the
multi-class problem is solved using binary classifiers in a “one-vs-all” classification
approach. This approach works well in the situation of evenly distributed classes, but
may not work well for skewed class distributions (Rubin et al. 2012). A one-vs-all
approach also makes it more difficult to interpret the model. Estimating one model per
classmakes it impossible to see which classes are affected by the same topic andwhich
topics do not predict any label. In these situations, we would like to have one topic
model to interpret. The approach of one-vs-all is also costly from an estimation point
of view since we need to estimate one model per class (Zheng et al. 2015), something
that can be difficult in a situation with hundreds of classes.

Third, there can be situations with hundreds of classes and hundreds of topics [see
Jonsson et al. (2016) for an example]. Without regularization or variable selection
we would end up with a model with too many parameters to interpret and uncertain
parameter estimates. In a good predictive supervised topic model, one would like to
find a small set of topics that are strong determinants of a single document class label.
This is especially relevant when the numbers of observations in different classes are
skewed, which is a common problem in real-world situations (Rubin et al. 2012). In
the more rare classes, we would like to induce more shrinkage compared to more
common classes.

Multi-class regression is a non-trivial problem in Bayesian modeling. Historically,
themultinomial probitmodel has beenpreferred due to the data augmentation approach
proposed by Albert and Chib (1993). Augmenting the sampler using latent variables
lead to straightforward Gibbs sampling with conditionally conjugate updates of the
regression coefficients. TheAlbert-Chib sampler often tend tomix slowly, and the same
holds for improved samplers such as the parameter expansion approach in Imai and van
Dyk (2005). Recently, Polson et al. (2013) have proposed a similar data augmentation
approach using Polya-gamma variables for the Bayesian logistic regression model.
This approach preserves conditional conjugacy in the case of a Normal prior for the
regression coefficients and was the foundation for the supervised topic model in Zhu
et al. (2013).

In addition to the issue of interpretability of models, scalability of topic models is of
crucial importance.MCMCalgorithms are generally considered to be computationally
costly. In the case of probabilistic topic models, this is even more prominent, since we
often sample at least one parameter per word for the whole corpus. Modern corpora
can be very large, with millions of documents, making efficient and parallel sampling
a crucial component.

In this paper we explore a new approach to supervised topic models that pro-
duces accurate multi-class predictions from semantically interpretable topics using a
fully Bayesian approach, hence solving all three of the above-mentioned problems.
The model combines LDA with the recently proposed Diagonal Orthant (DO) probit
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model (Johndrow et al. 2013) formulti-class classification, with an efficient Horseshoe
prior that achieves sparsity and interpretation by aggressive shrinkage (Carvalho et al.
2010). The new Diagonal Orthant Latent Dirichlet Allocation (DOLDA)1 model has
been demonstrated to have competitive predictive performance, while still producing
interpretable multi-class predictions from semantically relevant topics. In addition,
we also derive an efficient and parallel MCMC sampler that can be used to scale up
model inference to larger corpora.

The paper is organized as follows. In Sect. 2, we describe the new proposed model
and in Sect. 3 we then describe the proposed scalableMCMC sampler for the proposed
model. In Sect. 4, the experimental results are presented and in Sect. 5 we conclude
the paper. In the “Appendix”, a full derivation of the sampler is supplied.

2 Related work

Incorporating supervised information or meta-data in the estimation of topic models
has been done in a large number of papers, such as Rosen-Zvi et al. (2004), Griffiths
et al. (2005) and Chemudugunta et al. (2007) that incorporate author information,
syntax and background structures, to give a few early examples. How topic models
incorporate the labeled information, such as classes, can broadly be classified into two
groups, downstream supervised models and upstream supervised models. In upstream
topic models, loosely defined, the topics are conditioned on the labeled information,
while in downstream topicmodels, the labeled information is conditioned on the topics.
Examples of upstream topic models are topics conditioned on authorship (Rosen-Zvi
et al. 2004), topical perspectives (Ahmed and Xing 2010) andmore general supervised
information (Mimno and McCallum 2012).

In downstream topic models, of which our proposed model is an example, the label
information is instead conditioned on the topics, similar to conditioning on covariates
in a linear regression model or a logistic regression model. One of the first approaches
was proposed by McAuliffe and Blei (2008) were the authors propose a supervised
topic model based on the generalized linear model framework, thereby making it
possible to link binary, count, and continuous response variables to topics that are
inferred jointly with the regression/classification effects. This idea has been elaborated
further, especially in the case of classification, in a series of paper, all closely connected
to this work. The three most related approaches are Jiang et al. (2012), that propose
a downstream supervised topic model using a max-margin classification, Zhu et al.
(2013) that propose a logistic supervised topic model using data augmentation with
Polya-gamma variates and Perotte et al. (2011) that use a hierarchical binary probit
approach to model a hierarchical label structure in the form of a binary tree. All of
these models are downstream supervised topic models using MCMC for inference
and different forms of data augmentation approaches to model classes. Zhu et al.
(2013) and Perotte et al. (2011) in combine a data augmentation strategy together
with a linear model, just our proposed model. Compared to these earlier work we
differ in two major ways. First, we use the diagonal orthant data augmentation scheme

1 DOLDA is Swedish for hidden or latent.
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that is computationally attractive for many classes, essentially addressing the issue
of scalability in the number of classes. In addition, unlike the work of Zhu et al.
(2013), Perotte et al. (2011) and Jiang et al. (2012), we focus on interpretability by
using the horseshoe prior (Carvalho et al. 2010), something not done previously to
ours. We also, just like (Zheng et al. 2015), focus on scalability in supervised topic
models, but unlike (Zheng et al. 2015), we do not useMetropolis–Hastings to improve
computational complexity. Instead, our approach focuses on the use of exchangeability
to enable parallelism and analytically updates to make computations more efficient.

3 Diagonal Orthant Latent Dirichlet Allocation

3.1 Handling the challenges of high-dimensional interpretable supervised topic
models

To solve the first and second challenges identified in the Introduction, i.e., reference
classes and multi-class models, we propose the use of the Diagonal Orthant (DO)
probit model in Johndrow et al. (2013) as an alternative to the multinomial probit
and logit models. Johndrow et al. (2013) propose a Gibbs sampler for the Diagonal
Orthant model and show that it mixes well. One of the benefits of the DO model
is that all classes can be independently modeled using binary probit models when
conditioning on the latent variable, thereby removing the need for a reference class.
The parameters of the model can be interpreted as the effect of the covariate on the
marginal probability of a specific class, which makes this model especially attractive
when it comes to interpreting the inferred topics. This model also includes multiple
classes in an efficient way that makes it possible to estimate a multi-class linear model
in parallel over the classes.

The third problem of modeling supervised topic models is that the semantic mean-
ings of all topics do not necessarily have an effect on our label of interest; one topic
may have an effect on one or more classes, and some topics may just be noise that we
do not want to use in the supervision. In cases where there are many topics and many
classes, we will also have a very large number of parameters to analyze. The Horse-
shoe prior in Carvalho et al. (2010) was specifically designed to filter out signals from
massive noise. This prior uses a local-global shrinkage approach to shrink some (or
most) coefficients to zero while allowing for sparse signals to be estimated without any
shrinkage. This approach has shown good performance in linear regression-type situ-
ations (Castillo et al. 2015), with many predictors (Nalenz and Villani 2018), which
makes it straightforward to incorporate other covariates into our model, something
that is rarely done in the area of supervised topic models. Different global shrinkage
parameters are used for the different classes to handle the problem with an unbal-
anced number of observations in different classes. This makes it possible to shrink
more when there is less data for a given class and shrink less in classes with more
observations.
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Fig. 1 The Diagonal Orthant probit supervised topic model (DOLDA)

3.2 Generative model

The DOLDA generative model is described below. See also a graphical description of
the model in Fig. 1. A summary of the notation is given in Table 1.

(1) For each topic k = 1, . . . , K

(a) Draw a distribution over words φk ∼ DirV (β)

(2) For each label l ∈ L

(a) Draw a global shrinkage parameter τl ∼ C+(0, 1)
(b) For each covariate and topic p = 1, . . . , K + P

(i) Draw local shrinkage parameter λl,p ∼ C+(0, 1)
(ii) Draw coefficients2 ηl,p ∼ N (0, τ 2l λ2l,p)

(3) For each observation/document d = 1, . . . , D

(a) Draw topic proportions θd ∼ DirK (α)

(b) For each token n = 1, . . . , Nd

(i) Draw topic assignment zn,d |θd ∼ Categorical(θd)
(ii) Draw word wn,d |zn,d , φzn,d ∼ Categorical(φzn,d )

(c) yd ∼ Categorical(pd) where

pd =
[

L∑
l

cd fN ,l

(
(z̄, x)�d ηl·

)]−1 (
FN

(
(z̄, x)�d η1·

)
, . . . , FN

(
(z̄, x)�d ηL·

))

and FN (·) is the univariate normal CDF (Johndrow et al. 2013).

2 The intercept is assigned a normal prior.
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4 Inference

4.1 TheMCMC algorithm

Markov Chain Monte Carlo (MCMC) is used to estimate the model parameters. We
use different global shrinkage parameters τl for each class, based on the fact that the
different classes can have a different number of observations. This gives the following
sampler for inference in DOLDA, see “Appendix A” for details.

(1) Sample the latent variables ad,l ∼ N+((x z̄)Td ηl , 1) for l = yd and ad,l ∼
N−((x z̄)Td ηl , 1) for l �= yd , where N+ and N− are the positive and negative
truncated normal distribution, truncated at 0.

(2) Sample all of the regression coefficients as in an ordinary Bayesian linear regres-
sion per class label l where ηl ∼ MVN (

μl , ((X Z̄)T (X Z̄) + τ 2l �l)
−1

)
and �l

is a diagonal matrix with the local shrinkage parameters λi per parameter in ηl
and μl = ((X z̄)T (X z̄) + τ 2l �l)

−1(X z̄)T al
(3) Sample the global shrinkage parameters τl at iteration j using the following two

step slice sampling:

u ∼ U
(
0,

[
1 + 1

τl,( j−1)

]
−1

)

1

τ 2l, j
∼ G

⎛
⎝(p + 1)/2,

1

2

K+P∑
p=1

(
ηl,p

λl,p

)2
⎞
⎠ I

[
1

τ 2l,( j−1)

< (1 − u)/u

]

where I indicates the truncation region for the truncated gamma.
(4) Sample each local shrinkage parameter λi,l at iteration j as

u ∼ U
(
0,

[
1 + 1

λ2p,l,( j−1)

]
−1

)

1

λ2p,l, j
∼ Exp

(
1

2

(
ηl,p

τl

)2
)
I

[
1

λ2p,l,( j−1)

< (1 − u)/u

]

where I indicates the truncation region for the truncated exponential distribution.
(5) Sample the topic indicators z

p(zi,d = k|wi , z¬i , η, a) ∝ φv,k ·
(
M¬i

d,k + α
)

× exp

(
−1

2

L∑
l

[
−2

ηl,k

Nd

(
ad,l − (z̄¬i

d xd)η
ᵀ
l

)
+

(
ηl,k

Nd

)2
])

where M is a D × K count matrix containing the sufficient statistics for 
 and
M¬i is this matrix with topic indicator zi,d removed fromM.
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(6) Sample the topic-vocabulary distributions 	

φk ∼ Dir(β + Nk,·)

where N is a K × V count matrix containing the sufficient statistics for 	.

4.2 Efficient parallel sampling of z

To improve the speed of the sampler we cache the calculations done in the supervised
part of the topic indicator sampler and parallelize the sampler. Very large text cor-
pora are increasingly common, so efficient sampling of the z is absolutely crucial in
practice. The basic sampler for z can be slow due to the serial nature of the collapsed
sampler and the fact that the supervised part of p(zi,d) involves a dot product. A naive
implementation would result in a complexity of O((K + P) · L · K ) to sample just
one topic indicator zi .

The supervised part of document d can be expressed as g¬i
d,k where

g¬i
d,k = exp−1

2

L∑
l

[
−2

ηl,k

Nd

(
ad,l − (z̄¬i

d xd)η
ᵀ
l

)
+

(
ηl,k

Nd

)2
]
.

By realizing that sampling a topic indicator zi,d will only change this part a little,
we can derive the relationship

g¬i
d,k = g¬(i−1)

d,k + 1

N 2
d

[
L∑
l

ηl,kηl,zi,d −
L∑
l

ηl,kηl,zi−1,d

]
,

where g¬(i−1)
d,k is the supervised effect computed for the previous token and where

the expression
∑L

l ηl,kηl,zi,d can be calculated once per iteration in η and can be
stored in a two-dimensional array of size K 2. We can use the above relationship to
update the supervision after sampling each topic indicator by calculating g¬i

d,k “on the
fly” based on the previous supervised contribution. This means that we only need to
compute g¬i

d,k once per document, and then we just need to update these values. This

approach to computing g¬i
d,k increases the speed by an order of magnitude for a model

with 100 topics and reduces the computational complexity of sampling one zi,d from
O((K + P) · L · K ) to O(K ) for all but the first token per document. For details, see
“Appendix B”.

To further improve the performance we parallelize the sampler and use the fact
that documents are conditionally independent given 	. By sampling 	 instead of
marginalizing it out we will gain from parallelization with the additional cost of sam-
pling 	. This approach to parallelizing topic models give us a sampler that correctly
samples the posterior using an ergodic Markov chain, unlike other parallel approaches
such as AD-LDA (Magnusson et al. 2018; Newman et al. 2009).
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In summary, we propose a sampler that samples the zi,d in parallel over the doc-
uments, the elements in 	 sampled in parallel over topics, and sampling η can be
in parallel over classes. The code is publicly available at https://github.com/lejon/
DiagonalOrthantLDA.

4.3 Computational complexity

The computational complexity of the sampler depends on the different parameters sam-
pled.Belowweanalyze the different parts of the sampler for one iteration. Sampling the
regression coefficients has three parts, (1) computing �post = ((X z̄)T (X z̄) + τ 2l �l)

is of complexity O(L · D · (K + P)2), (2) inverting �post for all classes is of com-
plexity O(L ·(K + P)3), and (3) sampling from the multivariate Gaussian distribution
of each ηl is also of complexity O(L · (K + P)3). Sampling the topic indicators has
complexity O((K + P) · L · K · D) for the first topic indicator in each document, a
complexity dominated by O(L · D · (K + P)2). If we use the method for increased
efficiency proposed above, all other topic indicators can be sampled with complexity
O(K · N ). Sampling the latent variables a is of complexity (K + P) · D · L and is
hence dominated by the sampling of η. Similarly, sampling τ and λ is of complexity
(K + P) · L and is also dominated by the sampling of η. Sampling 	 is of complexity
O(K · V ), something that is generally dominated by sampling the topic indicators
O(K · N ), since topically N >> V (Magnusson et al. 2018).

Finally, the total complexity of the sampler, with regard to the number of classes
(L), the number of topics (K ), the number of documents (D), the mean document size
(N̄ ), and the number of covariates (P) is O(L ·(K +P)3+L ·D ·(K +P)2+K ·D · N̄ )

where N̄ = N/D. From this analysis, we can see that as the corpus grows (D → ∞)
we see that sampling η and the topic indicators z will dominate the computations.
But we would also expect the number of topics to grow as the number of documents
grows. In this situation, the main cost of the algorithm would be sampling the ηs and
the first topic indicator of each document.

Due to the similarity of the DOLDA sampler to that of the MedLDA sampler, it
is straightforward to use the cyclical Metropolis–Hastings proposals in Zheng et al.
(2015) for inference in DOLDA. But, as shown in Magnusson et al. (2018), it is not
obvious that the reduction in sampling complexity will result in a faster sampler when
MCMC efficiency is taken into account.

4.4 Evaluation of convergence and prediction

Weevaluate the convergence of theMCMCalgorithm bymonitoring the unnormalized
log-likelihood over the iterations:

logL(w, y|z, η,X, α, β)

= log p(y|z, η,X) + log p(w|z, α, β)
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∝
D∑
d

log
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⎣(1 − FN (−(z̄d xd)η
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j ))

∏
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FN (−(z̄d xd)η
ᵀ
l )

⎤
⎦

−
D∑
d
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⎡
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ᵀ
j ))

∏
l �=s
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ᵀ
l )

⎤
⎦

+K log�

(
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β

)
− KV log� (β) +

K∑ V∑
log�

(
Nk,v + β

)

−
K∑

log�

(
V∑

Nk,v + β

)

+D log�

(
K∑

α

)
− DK log� (α) +

D∑ K∑
log�

(
Md,k + α

)

−
D∑

log�

(
K∑

Md,k + α

)
,

where FN is the univariate normal distribution and the last part is the same computa-
tions commonly used in evaluating the standard LDA model.

To make predictions for a new document d we first need to sample the topic
indicators of the given document from

p(zi,d = k|w,	) ∝ φ̄k,v ·
(
M¬i

d,k + α
)

,

where φ̄k,v is the mean of the last part of the posterior draws of 	. We use the
posteriormeanbasedon the last iterations insteadof integrating out	 to avoid potential
problems with label switching. However, we have not seen any indications of label
switching after convergence in our experiment, probably because the data sets used
for document predictions are usually quite large. The topic indicators are sampled for
the predicted document using the fast PC-LDA sampler in Magnusson et al. (2018).
The mean of the sampled topic indicator vector for the predicted document, z̄, is then
used for class predictions:

y = argmax
(
(z̄, x)�η

)
.

This is a maximum a posteriori estimate, but it is straightforward to calculate the
whole predictive distribution for the label.

5 Experiments

We study model performance in four different ways: the classification accuracy, the
interpretability of the model, the topic quality and supervision effects on topics, and
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the scalability of the sampler. The experiments are performed on 2 sockets with 8-core
IntelXeonE5-2660SandyBridge processors at 2.2GHzat theNational Supercomputer
Center (NSC) at Linköping University.

5.1 Corpora and priors

To study the different aspects of the DOLDA model we use multiple corpora. We
collected a corpus containing the 10,810 highest-rated movies at IMDb.com. We use
both the textual description and information about producers and directors to classify
a given movie into a genre. We also analyze the classical 20 Newsgroup corpus.

In addition, we also include two corpora based on the New York Times Annotated
Corpus (Sandhaus 2008) for our experiments. To label the documents we use the
classification in the “online section”. Thus, we only use articles from 2001 and later,
when the “online section” was added. From these documents, we extract labels that we
call “Top level” and “Hierarchical”. These labels are used as the class of the documents.
An example of an “online section” is

Arts; Dining and Wine; Education; Books

A document with the above example online-section would get the top label “Arts”
and the hierarchical (2 level) label “Arts; Dining and Wine”. For the hierarchical
classification, we extracted only the articles which had at least two levels (“Arts”
being the first level and “Dining and Wine” the second level in the example above).
After extracting the classes for the documents we create four subsets from the corpora
described above. These subsets contain 90%, 60%, 20%, and 10% of documents
sampled from the above corpus. None of the documents in the 10% subset exists in
the other subsets. The purpose of the NYT corpora is to show how the sampler scales,
both with regard to documents (∼600K) and with a large number of classes (240).

Our companion paper (Jonsson et al. 2016) applies the DOLDA model developed
here to bug localization in a large-scale software engineering context using a corpus
with 15,000 bug reports, each belonging to one of 118 classes.

We include the corpora for different purposes. IMDb is a smaller corpus, but con-
tains additional covariates. The 20 Newsgroups corpus is included to enable accuracy
performance with other comparable supervised topic models. The New York Times
corpus is included to show the scalability of the MCMC sampler with regard to the
number of classes as well as the number of documents.

The corpora are tokenized and a standard stop list of English words are removed,
as well as the rarest word types that make up 1% of the total tokens, or in some
experiments, the words that occur less than 10 times. In the IMDb corpus, we only
include genres with at least 10 movies (Table 2).

In all experiments, we use a relatively vague prior setting α = β = 0.01 for the
LDA part of the model and c = 100 for the prior variance of the η coefficients in
the normal model prior and for the intercept coefficient when using the Horseshoe
prior. The accuracy experiment for IMDb uses 5-fold cross-validation and the 20
Newsgroups corpus uses the same training and test set as in Zhu et al. (2012) to enable
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Table 2 Corpora used in experiment, by the number of classes (L), the number of documents (D), the
vocabulary size (V ), and the total number of tokens (N )

Corpus L D V N

IMDb 20 10,810 47,371 967,255

20 Newsgroups 20 18,846 187,321 4,913,292

New York Times (hiearchical) 240 183,751 1,540,464 129,151,602

New York Times (top level) 31 595,635 3,326,778 339,298,734

Statistics have been computed using the word tokenizer in the tokenizers R package with default
settings (Mullen 2016)
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Fig. 2 Accuracy of MedLDA, taken from Zhu et al. (2012) (left) and accuracy of DOLDA for the 20
Newsgroup test set (right)

direct comparisons of accuracy. In the interpretability analysis of the IMDb corpus we
use the whole corpus, without cross-validation.

5.2 Results

5.2.1 Classification accuracy

Figure 2 shows the accuracy on the hold-out test set for the 20 Newsgroups corpus
for different numbers of topics. The accuracy of our model is slightly lower than
MedLDA and SVM using only textual features, but higher than both the classical
supervised multi-class LDA and the ordinary LDA together with an SVM approach.

We can also see from Fig. 2 that the accuracy of using the DOLDA model with the
topics jointly estimated with the supervision part outperforms a two-step approach of
first estimating LDA and then using the DO probit model with the pre-estimated mean
topic indicators as covariates. This is true for both the Horseshoe prior and the normal
prior, but the difference with regard to accuracy is just a few percentage points.

The advantage of DOLDA is that it produces interpretable predictions with seman-
tically relevant topics. Therefore, it is reassuring that DOLDAcan compete in accuracy
with other less interpretable models such as the SVM, even when the model is dramat-
ically simplified by aggressive Horseshoe shrinkage for interpretational purposes. Our
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Fig. 3 Accuracy for DOLDA on the IMDb data with normal and Horseshoe prior and using a two step
approach with the Horseshoe prior

next analysis illustrates the interpretational strength of DOLDA. See also our com-
panion paper (Jonsson et al. 2016) in the software engineering literature for further
demonstrations of DOLDA’s ability to produce interpretable predictions in industrial
applications.

Figure 3 displays the accuracy on the IMDb corpus as a function of the number of
topics. The estimated DOLDA model also contains several other discrete covariates,
such as the film’s director and producer. The accuracy of the more aggressive Horse-
shoe prior is better than the normal prior for all topic sizes. A supervised approach
with topics and supervision inferred jointly again outperforms a two-step approach.

5.2.2 Model interpretability

To illustrate the interpretability of DOLDA, we fit a new model to the IMDb corpus
using only topics as covariates. Note first in Fig. 4 how the Horseshoe prior is able
to distinguish between so-called signal topics and noise topics; the Horseshoe prior
aggressively shrinks a large fraction of the regression coefficient toward zero, making
it much easier to interpret how different latent aspects of the documents affect the class
label. This is achieved without the need of setting any additional hyper-parameters in
the model.

The Horseshoe shrinkage makes it easy to identify the topics that affect a given
class. This is illustrated for the Romance genre in the IMDb corpus in Fig. 5. This
genre consists of relatively few observations (only 39 movies), and the Horseshoe
prior, therefore, shrinks most coefficients to zero, keeping only one large signal topic
that happens to have a negative effect on the Romance genre. The normal prior, on the
other, hand gives a much denser, and therefore a much less interpretable solution.

For a further analysis of what triggers a Romance genre label, Table 3 shows the
10 top words for Topic 39. From this table, it is clear that the signal topic identified
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Fig. 4 Coefficients for the IMDb corpus with 80 topics using the normal prior (left) and the Horseshoe prior
(right)

Fig. 5 Coefficients for the genre Romance in the IMDb corpus with 80 topics using the Horseshoe prior
(upper) and a normal prior (below)

using the Horseshoe prior is some sort of “crime” topic that is negatively related to the
Romance genre, which makes intuitive sense. The crime topic is clearly expected to
be positively related to the Crime genre, and Fig. 6 shows that this is indeed the case.
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Table 3 Top words in topics using the Horseshoe prior

Topic 33 Earth space planet alien human future years world time mission

Topic 39 Police murder detective killer case investigation crime crimes solve murdered

Fig. 6 Regression coefficients for the class Crime for the IMDb corpus with 80 topics using the Horseshoe
prior (upper) and a normal prior (below)

We can also see from Fig. 6 that Topic 33 has a strong negative effect on the Crime
genre. In Table 3 we can see that Topic 33 seems to be some sort of Sci-Fi topic. This
topic has, in turn, the largest positive relationship with the Sci-Fi movie genre.

This illustrates an example how the aggressive shrinkage of the Horseshoe prior
not only increases the prediction accuracy, but also simplifies interpretations since a
much smaller number of topics is estimated to affect a given label - making it easier
to focus on the topics that actually have an effect in the analysis. This is much more
difficult in the Normal prior situation.
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Fig. 7 Document entropy (left) and topic coherence (right) for the IMDb corpus

5.2.3 Topic quality and effect of supervision

Even though the accuracy improves using a supervised approach, this raises the ques-
tion of the effect of the supervision on the quality of the individual topics. How are
the topics affected by the supervision and by shrinkage priors?

To study the effect on the topics, we focus on two measurements of topic quality.
First, we study the effect of topic coherence using the measure proposed by Mimno
et al. (2011). This measure has been shown in experiments to be a good approximation
of topical coherence, estimated using manual annotations, such as topic intrusion
(Chang et al. 2009).

We also study the document entropy of the topics. This measure gives us an indi-
cation of how the topics are distributed over documents. Are topics evenly distributed
over documents (high entropy) or more sparsely distributed over documents (low
entropy). This is an indication of the effect that supervision has on the topics. Is the
supervised information making the distribution over documents more or less sparse?

In Fig. 7 we can see that, in general, there is no large difference in coherence or
document entropy between the different models and priors, which is also true for the
other corpora (not shown). This indicates that the effect of the supervision on the
inferred topics is small; document entropy and topic coherence remains more or less
the same with and without supervision.

To study the effect of the supervision in more detail, we focus instead on those
topics that are actually affected by the supervision in the model. Since we have L
number of coefficients that affect each topic, we choose to study the supervised effect
on topic k, called rk , by looking at the sum of the absolute values of the η coefficients,
i.e.

rk =
L∑

l=1

|ηl,k |.

This is a rough estimate of the overall supervised effect on the individual topics.
We also studied negative and positive regression coefficients separately, but the results
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Fig. 8 Coherence and document entropy by supervised effect with 50 topics

are similar. In Fig. 8 the results are presented for different corpora, priors, and topic
quality measures. In all cases, we use K = 50. The results are similar to those of
K = 100.

Figure 8 show the effect of the supervision. We can see the effect of the horseshoe
prior in that the regression supervised effects are lower in general, due to the shrink-
age imposed by the prior. With regard to topic coherence and document entropy, the
supervision has no clear effect. Instead, it seems like the effect that the supervision
has on the topics is corpus-specific. In the 20 Newsgroups corpus, we can see a small
positive relationship between coherence and supervision effect, something that is not
shared by the other corpora.

These results indicate that the effect of the supervision on individual topics depends
on the corpora (and the label). This makes sense in that different types of labels will
relate to different aspects of the text and the underlying topics. For the 20 Newsgroups,
we can see a slight positive correlation between coherence and the supervised effects,
and this is also a corpus with higher prediction accuracy. But overall, the results seem
to indicate that there is no clear effect of the supervision on topic quality, as measured
by document entropy and coherence.

5.2.4 Scaling and parallelism performance

One of the contributions of this model is its ability to scale to larger corpora using a
parallel and efficient MCMC sampler. To study the scalability of the model we ran
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Fig. 9 Scaling performance (left) and parallel performance (right). The scaling experiments were run for
5000 iterations and the parallel performance experiments were run for 1000 iterations each. All were run
with 3 different random seeds and the average runtime was computed. In the parallel experiment, the 20%
NYT Hierarchical data was used and 2, 4, 8, and 16 cores

experiments on the runtime effects on the different aspects identified in the complexity
analysis, the number of classes, the number of documents and the number of topics.

Figure 9 show the results of the scaling and parallel performance experiments. From
the results, we can see that the scaling in size of the corpus is more or less linear, as
we expect. More interestingly, the runtime of the two NYT corpora is very similar.
The hierarchical NYT corpus has roughly ten times more classes (240 vs. 31) than the
top-level NYT corpus while being roughly one third in size. Hence we can conclude
that, empirically, the largest effect on runtime is the number of documents, or tokens,
rather than the number of classes for a standard setting with 100 topics.

Figure 9 also shows the parallel performance of the sampler. Unlike most other
large-scaleMCMCsamplers for topicmodels, this sampler is both parallel and samples
using an ergodic Markov chain with the posterior as the target. This still gives good
parallel performance, even on a smaller corpus, such as the IMDb corpus. It is also
obvious that the concurrency with regard to the different classes is also of importance.
For the hierarchical NYT corpus, the increased number of classes affects the overall
sampling time, but the parallel performance is not affected. We can also see that the
parallel performance is needed mainly when the number of topics is larger.

6 Conclusions

Several supervised topic models have been proposed with the purpose of identify-
ing topics that can be used successfully to classify documents. We have proposed
DOLDA, a supervised topic model with special emphasis on generating semantically
interpretable predictions together with an efficient and scalable MCMC sampler for
inference.An important component of themodel to ease interpretation is theDO-probit
model without a reference class. By coupling the DO-probit model with an aggressive
Horseshoe prior with a shrinkage that is allowed to vary over the different classes, it
is possible to create an interpretable classification model that automatically identifies
the most interesting “signal” topics. At the same time, the DOLDAmodel comes with
very few hyperparameters - only the standard LDA parameters α and β are needed,
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which has been extensively studied in Wallach et al. (2009). The fact that there are
so few parameters is different from most other supervised topic models (Jiang et al.
2012; Zhu et al. 2012; Li et al. 2015).

Our experiments show that the gain in interpretation from using DOLDA comes
with only a small reduction in prediction accuracy compared to the state-of-the-art
supervised topicmodels; moreover, DOLDAoutperforms other fully Bayesianmodels
such as the original supervisedLDAmodel.Wehave also shown that learning the topics
jointly with the classification part of the model gives more accurate predictions than
a two-step approach, where a topic model is first estimated and a classifier is then
trained on the learned topics, showing a general benefit of supervised topic modeling.

The horseshoe prior has also shown benefits in supervised topicmodels, leading to a
muchmore clear picture of the important topics for a given label with similar, or better,
prediction accuracy. The computational cost of the horseshoe is small compared to
the other parts of the sampler, making it an attractive prior for use in other supervised
models as well.

The supervision effect on the topics is generally small and in line with previous
results. The supervision, in general, does not seem to affect the topic interpretability
much, but there seems to be an indication that this is corpus (and label) dependent.
In the 20 Newsgroups corpus, where the accuracy is higher, the relationship between
topic coherence and supervision effects are slightly positive.

Finally, we show that the DOLDA model scales well for large corpora and many
classes. Still, further improvement in scalability can be achieved with regard to the
number of topics K . The ideas of Zheng et al. (2015) can probably improve the
scalability with respect to K , the number of topics, but this is something we leave for
future work.
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Appendix A: Derivation of theMCMC sampler

Herewewill derive the sampler presented in Sect. 4. The full joint posterior distribution
is∏
d∈D

[p(yd |ad)p(wd |zd ,	)] p(a|η, z,X)p(η|λ, τ)p(λ)p(τ )p(z|
,	)p(
)p(	),

with notation summarized in Table 1.
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Sampling the latent variables a

This is achieved using the same approach as in Johndrow et al. (2013, p. 34), using
truncated Normal distributions.

Sampling the regression coefficients�

The prior for ηl is given by

�η,l = Λ−1
η,l = τ 2l

⎛
⎜⎜⎜⎝
c/τ 2l 0 · · · 0
0 λ2l,1 0
...

. . .
...

0 0 · · · λ2l,p

⎞
⎟⎟⎟⎠ ,

where η1 is the intercept of the model and p is the total number of η for class l. Condi-
tioned on a, we sample updates of each ηl as in ordinary Bayesian linear regression.

ηl ∼ N
(
μn,l ,�

−1
post,l

)
,

where

μn = ((X Z̄)T (X Z̄) + �η)
−1(X Z̄)T a,

and

�post,l = (X z̄)T (XNz) + �η,l .

Sampling of category global shrinkage parameter �l

The derivations are done for a given class l sowe suppress the index l in the derivations.
We start by deriving the unnormalized posterior distribution of τ .

p(τ |λ, η) ∝ p(η|λ, τ) · p(τ )

= 1√
(2π)pcτ 2pλ21 · · · λ2p

exp

(
−1

2
ηT�ηη

)
· 2

π
· 1

1 + τ 2

∝ 1

τ p
exp

(
− 1

2τ 2

(∑
i

η2i

λ2i

))
· 1

1 + τ 2

We use slice sampling as presented by Scott (2010, p. 6f.). We set γ = 1
τ 2

that

implies τ = γ − 1
2 and let μ̂ = ∑P

p

(
ηp
λp

)2
. This gives the following unnormalized
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posterior for γ :

p(γ |λ, η) ∝ γ
p
2 exp

(
−1

2

(∑
i

η2i

λ2i

)
γ

)
· 1

1 + γ −1

∣∣∣∣ d

dγ
γ − 1

2

∣∣∣∣
∝ exp

(
−1

2
μ̂γ

)
γ

p−1
2

1

γ + 1
.

To sample τ we use the slice sampling algorithm of Damlen et al. (1999, Section
3.2) by setting

l(γ ) = 1

1 + γ

π(γ ) = exp

(
−1

2
μ̂γ

)
γ

p−1
2 .

We can see that π(γ ) is the density of a Gamma distribution with α = (p + 1)/2
and β = 1

2 μ̂. We can hence sample γ in two steps:

u ∼ U (0, (1 + γ )−1)

γ ∼ G

(
(p + 1)/2,

1

2
μ̂2

)
I (γ < (1 − u)/u)

where I (·) indicates the truncation region. After sampling we transform back to τ by

setting τ = γ − 1
2 .

Sampling of local shrinkage parameter �l per category

As with the global shrinkage parameter, the category index l is suppressed. The com-
putations follow that of τ in large parts. We have that for each λi,l

p(η|λi , τ )p(λi ) ∝ 1

λi
exp

(
− η2i

2τ 2λ2i

)
· 1

1 + λ2i
,

and then we set γi = 1
λ2i

with λi = γ
− 1

2
i and hence

p(γi ) ∝ γ
1
2
i exp

(
− η2i

2τ 2γ −1
i

)
· 1

1 + γ −1
i

∣∣∣∣ d

dγ
γ

− 1
2

i

∣∣∣∣
∝ exp

(
− η2i

2τ 2
γi

)
· 1

γi + 1
.
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To sample λi we use a similar algorithm to that of the slice sampling approach used
for τ :

l(γi ) = 1

1 + γi

π(γi ) = exp

(
−1

2

(ηi

τ

)2
γi

)
,

and, hence, we sample

ui ∼ U (0, (1 + γi )
−1)

γi ∼ Exp

(
1

2

(ηi

τ

)2)
I (γ < (1 − ui )/ui ),

where I (·) indicates the truncation region and Exp is the exponential distribution.

After sampling γi we convert back to λi with λi = γ
− 1

2
i .

Sampling the topic indicators z|8,�, z¬i, X

The final step of the sampler is to derive the conditionals for the topic indicators z. We
first remove all parameters that do not depend on z from the joint posterior.

p(zi,d = k|	, η, z¬i , xd) ∝ p(wd |zd ,	) · p(zd |θd ,	) · p(ad |η, z̄d , xd),

where
∏

d∈D [p(wd |zd ,	)] · p(z|
,	) is the standard LDA posterior. Due to the
conditional conjugacy of the Dirichlet prior for the multinomial distribution, we can
integrate out either 
 or both 
 and 	. Integrating out only 
 results in either the
partially collapsed sampler for parallel sampling over documents

p(zi,d = k|	, η, z¬i ,X) ∝ φk,v ·
(
M¬i

d,k + α
)

· p(ad |η, z̄¬i
d,k, xd),

where we also need to sample 	. This can be done in parallel over topics as φk ∼
Dir(β + Nk).

Alternatively, we can integrate out both 
 and 	 and use the sequential collapsed
sampler

p(zi,d = k|	, η, z¬i ,X) ∝
N¬i
k,vnd

+ β∑V
j

[
N¬i
k, j + β

] ·
(
M¬i

d,k + α
)

· p(ad |η, z̄¬i
d,k, xd),

Since the latent variables of a Diagonal Orthant probit model are conditionally
independent given the regression parameters Johndrow et al. (2013, Section 1.3) we
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have that

p(ad |η, z¬i
d , xd) =

L∏
l=1

p(ad,l |ηl , z̄¬i
d,k, xd),

where p(ad,l |ηl , z̄¬i
d,k, xd) is the density of the N ((z̄¬i

d xd,k)η
ᵀ
l , 1) distribution, so

p(ad,l |ηl , z̄¬i
d,k , xd) ∝ exp

(
−1

2

(−2(z̄d xd )ηᵀaᵀ
d + (z̄d xd)ηᵀη(z̄d xd)ᵀ

))

= exp

(
−1

2

L∑[
−2

ad,l

Nd
ηl,k + 2

(
(z̄¬i

d xd)η
ᵀ
l

) 1

Nd
ηl,k +

(
1

Nd
ηl,k

)2
])

= exp

(
−1

2

L∑[
−2

ηl,k

Nd

(
ad,l − (z̄¬i

d xd)η
ᵀ
l

)
+

(
ηl,k

Nd

)2
])

.

Appendix B: Efficient updating of supervision effects

One of the more important aspects of the sampler is that we need to update the super-
vised addition to full conditional posterior of zi,d , g¬i

d,k . Observe that this should be
computed before starting to sample each topic indicator, per document, and for all k.

gd,k = exp

(
−1

2

L∑
l

[
−2

ηl,k

Nd

(
ad,l − (z̄d xd)η

ᵀ
l

) +
(

ηl,k

Nd

)2
])

,

for all k = 1, . . . K , d = 1, . . . D and i = 1, . . . Nd .
To sample a topic indicator we first need to compute the supervised effect for each

k when the topic indicator zi has been removed as

g¬i
d,k = exp

(
−1

2

L∑
l

[
−2

ηl,k

Nd

(
ad,l − (z̄¬i

d xd)η
ᵀ
l

)
+

(
ηl,k

Nd

)2
])

.

To draw a new topic indicator we then use

p(zi,d = k|·) ∝ φk,v ·
(
M¬i

d,k + α
)

· g¬i
d,k .

Once we have calculated gd,k , we would like to efficiently add and withdraw a
topic indicator from these values, since sampling the topic indicators is done once per
token and iteration of the sampler, and the number of tokens can be very large. In the
following way we can calculate the relation between gd,k and g¬i

d,k .

g¬i
d,k = exp

(
−1

2

L∑
l

[
−2

ηl,k

Nd

(
ad,l − (z̄¬i

d xd)η
ᵀ
l

)
+

(
ηl,k

Nd

)2
])
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= exp

(
−1

2

L∑
l

[
−2

ηl,k

Nd

(
ad,l − [(z̄d xd)] η

ᵀ
l + ηl,zi,d /Nd

) +
(

ηl,k

Nd

)2
])

= exp

(
−1

2

L∑
l

[
−2

ηl,k

Nd

(
ad,l − [(z̄d xd)] η

ᵀ
l

) +
(

ηl,k

Nd

)2
]

+
L∑
l

ηl,kηl,zi,d

N 2
d

)

= gd,k · exp
(

1

N 2
d

L∑
l

ηl,kηl,zi,d

)
,

https : //www.overlea f .com/project/5a2c2856e2804c1b13b23cd2

and therefore

gk,d = g¬i
d,k · exp

(
− 1

N 2
d

L∑
l

ηl,kηl,zi,d

)
,

where zi,d is the topic indicator at position i . As can be seen, to update gd we need
to loop over the gd vector and update it element-wise when adding and removing a
topic indicator zi,d . As is shown below, it is possible to update this gd vector on the
fly when sampling each new token, based on

g¬i
d,k = gk,d · exp

(
1

N 2
d

L∑
l

ηl,kηl,zi,d

)

= g¬(i−1)
d,k · exp

(
− 1

N 2
d

L∑
l

ηl,kηl,z(i−1),d

)
· exp

(
1

N 2
d

L∑
l

ηl,kηl,zi,d

)

= g¬(i−1)
d,k · exp

(
1

N 2
d

[
L∑
l

ηl,kηl,zi,d −
L∑
l

ηl,kηl,z(i−1),d

])
,

where zi,d is the topic indicator at position i , z(i−1),d is the previous topic indicator

and g¬(i−1)
d,k is the supervised effect for the previous topic indicator. In addition, the

expression
∑L

l ηl,kηl,zi,d can be pre-calculated during each iteration further reducing
the (amortized) complexity of the sampler.
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