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Learning unknown ODE models with Gaussian processes

Markus Heinonen * 1 2 Çagatay Yıldız * 1 Henrik Mannerström 1 Jukka Intosalmi 1 Harri Lähdesmäki 1

Abstract

In conventional ODE modelling coefficients of an
equation driving the system state forward in time
are estimated. However, for many complex sys-
tems it is practically impossible to determine the
equations or interactions governing the underly-
ing dynamics. In these settings, parametric ODE
model cannot be formulated. Here, we overcome
this issue by introducing a novel paradigm of non-
parametric ODE modelling that can learn the un-
derlying dynamics of arbitrary continuous-time
systems without prior knowledge. We propose to
learn non-linear, unknown differential functions
from state observations using Gaussian process
vector fields within the exact ODE formalism. We
demonstrate the model’s capabilities to infer dy-
namics from sparse data and to simulate the sys-
tem forward into future.

1. Introduction
Dynamical systems modelling is a cornerstone of experi-
mental sciences. In biology, as well as in physics and chem-
istry, modelers attempt to capture the dynamical behavior
of a given system or a phenomenon in order to improve its
understanding and make predictions about its future state.
Systems of coupled ordinary differential equations (ODEs)
are undoubtedly the most widely used models in science.
Even simple ODE functions can describe complex dynami-
cal behaviours (Hirsch et al., 2004). Typically, the dynamics
are firmly grounded in physics with only a few parameters
to be estimated from data. However, equally ubiquitous
are the cases where the governing dynamics are partially or
completely unknown.

We consider the dynamics of a system governed by multi-
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variate ordinary differential functions:

ẋ(t) =
dx(t)

dt
= f(x(t)) (1)

where x(t) ∈ X = RD is the state vector of a D-
dimensional dynamical system at time t, and the ẋ(t) ∈
Ẋ = RD is the first order time derivative of x(t) that drives
the state x(t) forward, and where f : RD → RD is the
vector-valued derivative function. The ODE solution is de-
termined by

x(t) = x0 +

∫ t

0

f(x(τ))dτ, (2)

where we integrate the system state from an initial state
x(0) = x0 for time t forward. We assume that f(·) is com-
pletely unknown and we only observe one or several multi-
variate time series Y = (y1, . . . ,yN )T ∈ RN×D obtained
from an additive noisy observation model at observation
time points T = (t1, . . . , tN ) ∈ RN ,

y(t) = x(t) + εt, (3)

where εt ∼ N (0,Ω) follows a stationary zero-mean multi-
variate Gaussian distribution with diagonal noise variances
Ω = diag(ω2

1 , . . . , ω
2
D). The observation time points do

not need to be equally spaced. Our task is to learn the dif-
ferential function f(·) given observations Y , with no prior
knowledge of the ODE system.

There is a vast literature on conventional ODEs (Butcher,
2016) where a parametric form for function f(x;θ, t)
is assumed to be known, and its parameters θ are sub-
sequently optimised with least squares or Bayesian ap-
proach, where the expensive forward solution xθ(ti) =∫ ti
0

f(x(τ);θ, t)dτ is required to evaluate the system re-
sponses xθ(ti) from parameters θ against observations
y(ti). To overcome the computationally intensive forward
solution, a family of methods denoted as gradient match-
ing (Varah, 1982; Ellner et al., 2002; Ramsay et al., 2007)
have proposed to replace the forward solution by matching
f(yi) ≈ ẏi to empirical gradients ẏi of the data instead,
which do not require the costly integration step. Recently
several authors have proposed embedding a parametric dif-
ferential function within a Bayesian or Gaussian process
(GP) framework (Graepel, 2003; Calderhead et al., 2008;
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Dondelinger et al., 2013; Wang and Barber, 2014; Macdon-
ald, 2017) (see Macdonald et al. (2015) for a review). GPs
have been successfully applied to model linear differential
equations as they are analytically tractable (Gao et al., 2008;
Raissi et al., 2017).

However, conventional ODE modelling can only proceed
if a parametric form of the driving function f(·) is known.
Recently, initial work to handle unknown or non-parametric
ODE models have been proposed, although with various
limiting approximations. Early works include spline-based
smoothing and additive functions

∑D
j fj(xj) to infer gene

regulatory networks (De Hoon et al., 2002; Henderson and
Michailidis, 2014). Äijö and Lähdesmäki (2009) proposed
estimating the unknown nonlinear function with GPs using
either finite time differences, or analytically solving the
derivative function as a function of only time, ẋ(t) = f(t)
(Äijö et al., 2013). In a seminal technical report of Heinonen
and d’Alche Buc (2014) a full vector-valued kernel model
f(x) was proposed, however using a gradient matching
approximation. To our knowledge, there exists no model
that can learn non-linear ODE functions ẋ(t) = f(x(t))
over the state x against the true forward solutions x(ti).

In this work we propose NPODE1: the first ODE model for
learning arbitrary, and a priori completely unknown non-
parametric, non-linear differential functions f : X → Ẋ
from data in a Bayesian way. We do not use gradient match-
ing or other approximative models, but instead propose to
directly optimise the exact ODE system with the fully for-
ward simulated responses against data. We parameterise our
model as an augmented Gaussian process vector field with
inducing points, while we propose sensitivity equations to
efficiently compute the gradients of the system. Our model
can forecast continuous-time systems arbitrary amounts to
future, and we demonstrate the state-of-the-art performance
in human motion datasets.

2. Nonparametric ODE Model
The differential function f(x) to be learned defines a vector
field2 f , that is, an assignment of a gradient vector f(x) ∈
RD to every state x ∈ RD. We model the vector field as a
vector-valued Gaussian process (Rasmussen and Williams,
2006)

f(x) ∼ GP(0,K(x,x′)), (4)

which defines a priori distribution over function values f(x)
whose mean and covariances are

E[f(x)] = 0 (5)
cov[f(x), f(x′)] = K(x,x′), (6)

1The implementation is publicly available in http://www.
github.com/cagatayyildiz/npode

2We use vector field and differential function interchangeably.

Figure 1. (a) Illustration of an ODE system vector field induced
by the Gaussian process. The vector field f(x) (gray arrows) at
arbitrary states x is interpolated from the inducing points u, z
(black arrows), with the trajectory x(t) (red points) following the
differential system f(x) exactly. (b) The trajectory x(t) plotted
over time t.

and where the kernel K(x,x′) ∈ RD×D is matrix-
valued. A GP prior defines that for any collection of
states X = (x1, . . . ,xN )T ∈ RN×D, the function val-
ues F = (f(x1), . . . , f(xN ))T ∈ RN×D follow a matrix-
valued normal distribution,

p(F ) = N (vec(F )|0,K(X,X)), (7)

where K(X,X) = (K(xi,xj))
N
i,j=1 ∈ RND×ND is a

block matrix of matrix-valued kernels K(xi,xj). The key
property of Gaussian processes is that they encode func-
tions where similar states x,x′ induce similar differentials
f(x), f(x′), and where the state similarity is defined by the
kernel K(x,x′).

In standard GP regression we would obtain the posterior
of the vector field by conditioning the GP prior with the
data (Rasmussen and Williams, 2006). In ODE models
the conditional f(x)|Y of a vector field is intractable due
to the integral mapping (2) between observed states y(ti)
and differentials f(x). Instead, we resort to augmenting the
Gaussian process with a set of M inducing points z ∈ X
and u ∈ Ẋ , such that f(z) = u (Quiñonero-Candela and

http://www.github.com/cagatayyildiz/npode
http://www.github.com/cagatayyildiz/npode
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Rasmussen, 2005). We choose to interpolate the differential
function between the inducing points as (See Figure 1)

f(x) , Kθ(x, Z)Kθ(Z,Z)−1vec(U), (8)

which supports the function f(x) with inducing locations
Z = (z1, . . . , zM ), inducing vectors U = (u1, . . . ,uM ),
and θ are the kernel parameters. The function above cor-
responds to a vector-valued kernel function (Alvarez et al.,
2012), or to a multi-task Gaussian process conditional mean
without the variance term (Rasmussen and Williams, 2006).
This definition is then compatible with the deterministic
nature of the ODE formalism. Due to universality of several
kernels and kernel functions (Shawe-Taylor and Cristianini,
2004), we can represent arbitrary vector fields with appro-
priate inducing point and kernel choices.

2.1. Operator-valued Kernels

The vector-valued kernel function (8) uses operator-valued
kernels, which result in matrix-valued kernels Kθ(z, z′) ∈
RD×D for real valued states x, z, while the kernel ma-
trix over data points becomes Kθ = (K(zi, zj))

M
i,j=1 ∈

RMD×MD (See Alvarez et al. (2012) for a review). Most
straightforward operator-valued kernel is the identity de-
composable kernel Kdec(z, z

′) = k(z, z′) · ID, where the
scalar Gaussian kernel

Kθ(z, z′) = σ2
f exp

−1

2

D∑
j=1

(zj − z′j)2

`2j

 (9)

with differential variance σ2
f and dimension-specific length-

scales ` = (`1, . . . , `D) are expanded into a diagonal ma-
trix of size D × D. We collect the kernel parameters as
θ = (σf , `).

We note that more complex kernels can also be considered
given prior information of the underlying system charac-
teristics. The divergence-free matrix-valued kernel induces
vector fields that have zero divergence (Wahlström et al.,
2013; Solin et al., 2015). Intuitively, these vector fields do
not have sinks or sources, and every state always finally
returns to itself after sufficient amount of time. Similarly,
curl-free kernels induce curl-free vector fields that can con-
tain sources or sinks, that is, trajectories can accelerate or
decelerate. For theoretical treatment of vector field kernels,
see (Narcowich and Ward, 1994; Bhatia et al., 2013; Fuse-
lier and Wright, 2017). Non-stationary vector fields can
be modeled with input-dependent lengthscales (Heinonen
et al., 2016), while spectral kernels can represent stationary
(Wilson et al., 2013) or non-stationary (Remes et al., 2017)
recurring patterns in the differential function.

2.2. Joint Model

We assume a Gaussian likelihood over the observations yi

and the corresponding simulated responses x(ti) of Equa-
tion (2),

p(Y |x0, U, Z,ω) =

N∏
i=1

N (yi|x(ti),Ω), (10)

where x(ti) are forward simulated responses using the
integral Equation (2) and differential Equation (8), and
Ω = diag(ω2

1 . . . , ω
2
D) collects the dimension-specific

noise variances.

The inducing vectors have a Gaussian process prior

p(U |Z,θ) = N (vec(U)|0,Kθ(Z,Z)). (11)

The model posterior is then

p(U,x0,θ,ω|Y ) ∝ p(Y |x0, U,ω)p(U |θ) = L, (12)

where we have for brevity omitted the dependency on the
locations of the inducing points Z and also the parameter
hyperpriors p(θ) and p(ω) since we assume them to be
uniform, unless there is specific domain knowledge of the
priors.

The model parameters are the initial state x0
3, the inducing

vectors U , the noise standard deviations ω = (ω1, . . . , ωD),
and the kernel hyperparameters θ = (σf , `1, . . . , `D).

2.3. Noncentral Parameterisation

We apply a latent parameterisation using Cholesky decom-
position LθL

T
θ = Kθ(Z,Z), which maps the inducing

vectors to whitened domain (Kuss and Rasmussen, 2005)

U = LθŨ , Ũ = L−1θ U. (13)

The latent variables Ũ are projected on the kernel manifold
Lθ to obtain the inducing vectors U . This non-centered pa-
rameterisation (NCP) transforms the hierarchical posterior
L of Equation (12) into a reparameterised form

p(x0, Ũ ,θ,ω|Y ) ∝ p(Y |x0, Ũ ,ω,θ)p(Ũ), (14)

where all variables to be optimised are decoupled, with
the latent inducing vectors having a standard normal prior
Ũ ∼ N (0, I). Optimizing Ũ and θ is now more efficient
since they have independent contributions to the vector field
via U = LθŨ . The gradients of the whitened posterior can
be retrieved analytically as (Heinonen et al., 2016)

∇Ũ logL = LT
θ∇U logL. (15)

3In case of multiple time-series, we will use one initial state
for each time-series.
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Finally, we find a maximum a posteriori (MAP) estimate for
the initial state x0, latent vector field Ũ , kernel parameters
θ and noise variances ω by gradient ascent,

x0,MAP, ŨMAP,θMAP,ωMAP = arg max
x0,Ũ ,θ,ω

logL, (16)

while keeping the inducing locations Z fixed on a suffi-
ciently dense grid (See Figure 1). The partial derivatives
of the posterior with respect to noise parameters ω can be
found analytically, while the derivative with respect to σf is
approximated with finite differences. We select the optimal
lengthscales ` by cross-validation.

3. Sensitivity Equations
The key term to carry out the MAP gradient ascent optimiza-
tion is the likelihood

log p(Y |x0, Ũ ,ω)

that requires forward integration and computing the partial
derivatives with respect to the whitened inducing vectors Ũ .
Given Equation (15) we only need to compute the gradients
with respect to the inducing vectors u = vec(U) ∈ RMD,

d log p(Y |x0,u,ω)

du

=

N∑
s=1

d logN (ys|x(ts,u),Ω)

dx

dx(ts,u)

du
. (17)

This requires computing the derivatives of the simulated
system response x(t,u) against the vector field parameters
u,

dx(t,u)

du
≡ S(t) ∈ RD×MD, (18)

which we denote by Sij(t) = ∂x(t,u)i
∂uj

, and expand the no-
tation to make the dependency of x on u explicit. Approxi-
mating these with finite differences is possible in principle,
but is highly inefficient and has been reported to cause un-
stability (Raue et al., 2013). We instead turn to sensitivity
equations for u and x0 that provide computationally effi-
cient, analytical gradients S(t) (Kokotovic and Heller, 1967;
Fröhlich et al., 2017).

The solution for dx(t,u)
du can be derived by differentiating

the full nonparametric ODE system with respect to u by

d

du

dx(t,u)

dt
=

d

du
f(x(t,u)). (19)

The sensitivity equation for the given system can be obtained
by changing the order of differentiation on the left hand side
and carrying out the differentiation on the right hand side.

The resulting sensitivity equation can then be expressed in
the form

Ṡ(t)︷ ︸︸ ︷
d

dt

dx(t,u)

du
=

J(t)︷ ︸︸ ︷
∂f(x(t,u))

∂x

S(t)︷ ︸︸ ︷
dx(t,u)

du
+

R(t)︷ ︸︸ ︷
∂f(x(t,u))

∂u
,

(20)

where J(t) ∈ RD×D, R(t), Ṡ(t) ∈ RD×MD (See Supple-
ments for detailed specification). For our nonparametric
ODE system the sensitivity equation is fully determined by

J(t) =
∂K(x, Z)

∂x
K(Z,Z)−1u (21)

R(t) = K(x, Z)K(Z,Z)−1. (22)

The sensitivity equation provides us with an additional ODE
system which describes the time evolution of the derivatives
with respect to the inducing vectors S(t). The sensitivities
are coupled with the actual ODE system and, thus both sys-
tems x(t) and S(t) are concatenated as the new augmented
state that is solved jointly by Equation (2) driven by the
differentials ẋ(t) and Ṡ(t) (Leis and Kramer, 1988). The
initial sensitivities are computed as S(0) = dx0

du . In our
implementation, we merge x0 with u for sensitivity analysis
to obtain the partial derivatives with respect to the initial
state which is estimated along with the other parameters.
We use the CVODES solver from the SUNDIALS package
(Hindmarsh et al., 2005) to solve the nonparametric ODE
models and the corresponding gradients numerically. The
sensitivity equation based approach is superior to the finite
differences approximation because we have exact formula-
tion for the gradients of state over inducing points, which
can be solved up to the numerical accuracy of the ODE
solver.

4. Simple Simulated Dynamics
As first illustration of the proposed nonparametric ODE
method we consider three simulated differential systems:
the Van der Pol (VDP), FitzHugh-Nagumo (FHN) and
Lotka-Volterra (LV) oscillators of form

VDP : ẋ1 = x2 ẋ2 = (1− x21)x2 − x1

FHN : ẋ1 = 3(x1 −
x31
3

+ x2) ẋ2 =
0.2− 3x1 − 0.2x2

3
LV : ẋ1 = 1.5x1 − x1x2 ẋ2 = −3x2 + x1x2.

In the conventional ODE case the coefficients of these equa-
tions can be inferred using standard statistical techniques if
sufficient amount of time series data is available (Girolami,
2008; Raue et al., 2013). Our main goal is to infer unknown
dynamics, that is, when these equations are unavailable and
we instead represent the dynamics with a nonparametric
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Figure 2. Estimated dynamics from Van der Pol, FitzHugh-Nagumo and Lotka-Volterra systems. The top part (a-c) shows the learned
vector field (grey arrows) against the true vector field (black arrows). The bottom part (d-f) shows the training data (grey region points)
and forecasted future cycle likelihoods with the learned model (shaded region) against the true trajectory (black line).

vector field of Equation (8). We use these simulated mod-
els to only illustrate our model behavior against the true
dynamics.

We employ 25 data points from one cycle of noisy observa-
tion data from VDP and FHN models, and 25 data points
from 1.7 cycles from the LV model with a noise variance of
σ2
n = 0.12. We learn the npODE model with five training

sequences using M = 62 inducing locations on a fixed grid,
and forecast between 4 and 8 future cycles starting from true
initial state x0 at time 0. Training takes approximately 100
seconds per oscillator. Figure 2 (bottom) shows the training
datasets (grey regions), initial states, true trajectories (black
lines) and the forecasted trajectory likelihoods (colored re-
gions). The model accurately learns the dynamics from less
than two cycles of data and can reproduce them reliably into
future.

Figure 2 (top) shows the corresponding true vector field
(black arrows) and the estimated vector field (grey arrows).
The vector field is a continuous function, which is plotted
on a 8x8 grid for visualisation. In general the most difficult
part of the system is learning the middle of the loop (as
seen in the FHN model), and learning the most outermost
regions (bottom left in the LV model). The model learns the

underlying differential f(x) accurately close to observed
points, while making only few errors in the border regions
with no data.

5. Unknown System Estimation
Next, we illustrate how the model estimates realistic, un-
known dynamics from noisy observations y(t1), . . . ,y(tN ).
As in Section 4, we make no assumptions on the structure
or form of the underlying system, and capture the underly-
ing dynamics with the nonparameteric system alone. We
employ no subjective priors, and assume no inputs, controls
or other sources of information. The task is to infer the
underlying dynamics f(x), and interpolate or extrapolate
the state trajectory outside the observed data.

We use a benchmark dataset of human motion capture data
from the Carnegie Mellon University motion capture (CMU
mocap) database. Our dataset contains 50-dimensional pose
measurements y(ti) from humans walking, where each pose
dimension records a measurement in different parts of the
body during movement (Wang et al., 2008). We apply the
preprocessing of Wang et al. (2008) by downsampling the
datasets by a factor of four and centering the data. This
resulted in a total of 4303 datapoints spread across 43 trajec-
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tories with on average 100 frames per trajectory. In order to
tackle the problem of dimensionality, we project the original
dataset with PCA to a three dimensional latent space where
the system is specified, following Damianou et al. (2011)
and Wang et al. (2006). We place M = 53 inducing vectors
on a fixed grid, and optimize our model starting from 100
different initial values, which we set by perturbing the pro-
jected empirical differences y(ti)−y(ti−1) to the inducing
vectors. We use an L-BFGS optimizer in Matlab. The whole
inference takes approximately few minutes per trajectory.

We evaluate the method with two types of experiments:
imputing missing values and forecasting future cycles. For
the forecasting the first half of the trajectory is reserved for
model training, and the second half is to be forecasted. For
imputation we remove roughly 20% of the frames from the
middle of the trajectory, which are to be filled by the models.
We perform model selection for lengthscales ` with cross-
validation split of 80/20. We record the root mean square
error (RMSE) over test points in the original feature space
in both cases, where we reconstruct the original dimensions
from the latent space trajectories.

Due to the current lack of ODE methods suitable for this non-
parametric inference task, we instead compare our method
to the state-of-the-art state-space models where such prob-
lems have been previously considered (Wang et al., 2008).
In a state-space or dynamical model a transition function
x(tk+1) = g(x(tk)) moves the system forward in discrete
steps. With sufficiently high sampling rate, such models
can estimate and forecast finite approximations of smooth
dynamics. In Gaussian process dynamical model (Wang
et al., 2006; Frigola et al., 2014; Svensson et al., 2016) a GP
transition function is inferred in a latent space, which can be
inferred with a standard GPLVM (Lawrence, 2004) or with
a dependent GPLVM (Zhao and Sun, 2016). In dynamical
systems the transition function is replaced by a GP interpola-
tion (Damianou et al., 2011). The discrete time state-space
models emphasize inference of a low-dimensional manifold
as an explanation of the high-dimensional measurement
trajectories.

We compare our method to the dynamical model GPDM
of Wang et al. (2006) and to the dynamical system
VGPLVM of Damianou et al. (2011), where we di-
rectly apply the implementations provided by the authors
at inverseprobability.com/vargplvm and dgp.
toronto.edu/˜jmwang/gpdm. Both methods opti-
mize their latent spaces separately, and they are thus not
directly comparable.

5.1. Forecasting

In the forecasting task we train all models with the first half
of the trajectory, while forecasting the second half starting
from the first frame. The models are trained and forecasted

Table 1. Means and standard deviations of RMSEs of 43 datasets
in forecasting and filling experiments.

MODEL FORECASTING IMPUTATION

NPODE 4.52± 2.31 3.94± 3.50
GPDM 4.94± 3.3 5.31± 3.39
VGPLVM 8.74± 3.43 3.91± 1.80

within a low-dimensional space, and subsequently projected
back into the original space via inverting the PCA or with
GPLVM mean predictions. As all methods optimize their
latent spaces separately, they are not directly comparable.
Thus, the mean errors are computed in the original high-
dimensional space. Note that the low-dimensional represen-
tation necessarily causes some reconstruction errors.

Figure 3 illustrates the models on one of the trajectories
35 12.amc. The top part (a) shows the training data in
the PCA space for npODE, and optimized training data rep-
resentation for GPDM and VGPLVM (black points). The
colored lines (npODE) and points (GPDM, VGPLVM) in-
dicate the future forecast. The bottom part (b) shows the
first 9 reconstructed original pose dimensions reconstructed
from the latent forecasted trajectories. The training data is
shown in grey background, while test data is shown with
circles.

The VGPLVM has most trouble forecasting future points,
and reverts quickly after training data to a value close to
zero, failing to predict future points. The GPDM model
produces more realistic trajectories, but fails to predict any
of the poses accurately. Finally, npODE can accurately
predict five poses, and still retains adequate performance on
remaining poses, except for pose 2.

Furthermore, Table 1 indicates that npODE is also best
performing method on average over the whole dataset in the
forecasting.

5.2. Imputation

In the imputation task we remove approximately 20% of the
training data from the middle of the trajectory. The goals are
to learn a model with the remaining data and to forecast the
missing values. Figure 4 highlights the performance of the
three models on the trajectory 07 07.amc. The top part
(a) shows the training data (black points) in the PCA space
(npODE) or optimized training locations in the latent space
(GPDM, VGPLVM). The middle part imputation is shown
with colored points or lines. Interestingly both npODE and
GPDM operate on cyclic representations, while VGPLVM
is not cyclic.

The bottom panel (b) shows the first 9 reconstructed pose

inverseprobability.com/vargplvm
dgp.toronto.edu/~jmwang/gpdm
dgp.toronto.edu/~jmwang/gpdm
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Figure 3. Forecasting 50 future frames after 49 frames of training data of human motion dataset 35 12.amc. (a) The estimated locations
of the trajectory in a latent space (black points) and future forecast (colored lines). (b) The original features reconstructed from the latent
predictions with grey region showing the training data.

dimensions from the three models. The missing values are
shown in circles, while training points are shown with black
dots. All models can accurately reproduce the overall trends,
while npODE seems to fit slightly worse than the other
methods. The PCA projection causes the seemingly perfect
fit of the npODE prediction (at the top) to lead to slightly
warped reconstructions (at the bottom). All methods mostly
fit the missing parts as well. Table 1 shows that on average
the npODE and VGPLVM have approximately equal top
performance on the imputing missing values task.

6. Discussion
We proposed the framework of nonparametric ODE model
that can accurately learn arbitrary, nonlinear continuos-time
dynamics from purely observational data without making
assumptions of the underlying system dynamics. We demon-
strated that the model excels at learning dynamics that can
be forecasted into the future. We consider this work as the

first in a line of studies of nonparametric ODE systems, and
foresee several aspects as future work. Currently we do not
handle non-stationary vector fields, that is time-dependent
differentials ft(x). Furthermore, an interesting future av-
enue is the study of various vector field kernels, such as
divergence-free, curl-free or spectral kernels (Remes et al.,
2017). Finally, including inputs or controls to the system
would allow precise modelling in interactive settings, such
as robotics.

The proposed nonparametric ODE model operates along a
continuous-time trajectory, while dynamic models such as
hidden Markov models or state-space models are restricted
to discrete time steps. These models are unable to consider
system state at arbitrary times, for instance, between two
successive timepoints.

Conventional ODE models have also been considered from
the stochastic perspective with stochastic differential equa-
tion (SDE) models that commonly model the deterministic
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Figure 4. Imputation of 17 missing frames in the middle of a 94-length trajectory of human motion dataset 07 07.amc (subsampled every
fourth frame). (a) The estimated locations of the missing points in the latent space are colored. (b) The original features reconstructed
from the latent trajectory.

system drift and diffusion processes separately leading to
a distribution of trajectories p(x(t)) (Archambeau et al.,
2007; Garcı́a et al., 2017). As future work we will consider
stochastic extensions of our nonparametric ODE model, as
well as MCMC sampling of the inducing point posterior
p(U |Y ), leading to trajectory distribution as well.
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Tarmo Äijö, Kirsi Granberg, and Harri Lähdesmäki. So-
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Modeling and interpolation of the ambient magnetic field
by gaussian processes. arXiv, 2015. arXiv:1509.04634.

Andreas Svensson, Arno Solin, Simo Särkkä, and Thomas
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