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We explore the thermodynamics in two-dimensional arrays consisting of Ising-type nanomagnets lithograph-
ically arranged onto random sites and angular orientations. Introducing these basic spin-glass ingredients, we
study the characteristic features of the low-energy states achieved, following thermal-annealing protocols. From
direct visualization of real-time dynamics, we record relaxation timescales together with magnetic susceptibility
variations over temperature, revealing trends towards short-range order as randomness is increased, but falling
short of pure spin-glass behavior. Our work provides a route towards the realization of artificial Ising spin-glass
systems.
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I. INTRODUCTION

Spin glasses are magnets exhibiting a random mixture of
ferro- and antiferromagnetic order with frustrated spin for-
mations, highly degenerate energy landscapes, and nontrivial
pathways to their respective ground states [1]. In fact, the
spin-glass ground-state question has long been an extensively
investigated optimization problem [2,3]. The spin-glass phase
transition, most prominently characterized by a sharp cusp
in ac-susceptibility measurements, has been an area of in-
tense research efforts since the early 1970’s, both experi-
mentally and theoretically [4]. The variety of characteristic
phenomena in spin-glass systems has mostly been investi-
gated using macroscopic or spectroscopic characterization
techniques, ranging from magnetometry [5] and Mössbauer
spectroscopy [6] to neutron diffraction and μSR spectroscopy
[7]. Recent advances in nanofabrication techniques opened up
a pathway to create artificial spin systems that exhibit geo-
metrical frustration and allow direct real-space observations
of magnetic configurations [8,9]. Artificial spin-ice systems
[10], comprising Ising-type nanomagnets lithographically
arranged onto two-dimensional square [9,11] and kagome
[12,13] geometries, emerged as prominent examples in recent
years. In particular, artificial spin ices exhibiting thermally

*msaccone@ucsc.edu
†alan.farhan@gmx.net

induced moment fluctuations [14–16] paved the way for a
whole new line of research, where Ising-type nanomagnets
are arranged onto novel two-dimensional magnetically frus-
trated geometries, leading to emergent phenomena that do
not necessarily exist in nature. Such phenomena range from
emergent magnetic charge screening [17,18], emergent re-
duced dimensionality as a result of vertex frustration [19],
and spin frustration that can be directly tuned at the nanoscale
[20–22]. A common feature among all these artificial frus-
trated systems is their regular and ordered geometries. This
raises the question of whether an artificial Ising spin-glass
system can be created from the same Ising-type nanomag-
nets arranged into random and disordered patterns. If so,
what types of magnetic configurations are accessed, following
thermal-annealing protocols [15,18]? How would the directly
observable thermal fluctuations behave, as temperature and
disorder are varied? Can a two-dimensional spin glass be
experimentally realized, despite theoretical predictions only
discovering zero-temperature glass phases [23,24]?

In the present work, we aim to take a step in addressing
these questions by fabricating arrays of nanomagnets exhibit-
ing a controlled disorder and randomness, the major ingredi-
ent for the emergence of spin-glass behavior. We begin with
a methods section that describes the sample fabrication pro-
cess and the sample characterization, employing synchrotron-
based photoemission electron microscopy (PEEM). Then,
we move on to a section describing the obtained re-
sults, starting from thermal-annealing experiments and
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FIG. 1. (a) Scanning electron microscope (SEM) image of part
of an arrangement consisting of Ising-type nanomagnets with length
L = 300 nm, width W = 100 nm, and thickness t = 2.7 nm
arranged onto a collinear ordered fashion with a nearest-neighbor
edge-to-edge distance d = 80 nm. (b) SEM image of an array, where
disorder in the x and y coordinates of the centers of nanomagnets
is introduced in the form of Gaussian distribution with a relative
deviation σ = 100% around an average edge-to-edge distance of d
= 80 nm. In addition to coordinate randomness, the same type of
disorder is introduced for the rotational angle φ, ensuring maximum
randomness possible in two dimensions. Circles representing the
area in which spins will be designated nearest neighbor (NN, red
line), next-nearest neighbor (NNN, green dashed line), and next-
next-nearest neighbor (NNNN, blue dotted line) are drawn to denote
categories used to calculate correlation functions.

temperature-dependent moment fluctuations observed in ran-
domized nanomagnetic patterns. We then conclude with a
section summarizing the obtained results with conclusions
and an outlook for potential future work.

II. METHODS

The samples were fabricated by lift-of–assisted electron-
beam lithography. A 1 × 1 cm2 silicon (100) substrate was
first spin coated with a 70-nm-thick layer of polymethyl-
methacrylate (PMMA) resist. Patterns of interest are then
exposed on the substrate using a VISTEC VB300 electron-
beam writer. Next, a 2.7-nm-thick ferromagnetic permalloy
(Ni80Fe20) film was thermally evaporated at a base pressure of
1.4 × 107 torr, together with 1.5-nm-thick aluminum capping
layer, to avoid fast oxidation of the structures. This was
followed by lift-off in acetone at a temperature of 50 ◦C. The
resulting nanomagnets had lengths L = 300 nm and widths
W = 100 nm [see Figs. 1(a) and 1(b)]. The elongated shape
of the patterned single-domain nanomagnets are chosen so
that the magnetization within each individual nanomagnet can
only point in one of two possible direction along the long
axis of the nanomagnet. Thus, each nanomagnet represents
an individual Ising macrospin. The nanomagnet dimensions
are chosen to ensure a blocking temperature TB of 190–
240 K. Generally, we define the blocking temperature as the
temperature where thermally induced moment reorientations
of the nanomagnets start to occur at the timescale of several
seconds [18,20].

To introduce a controlled disorder in the lattice, the islands
are shifted from their lattice site, as depicted in Fig. 1. The
shift is controlled by separate Gaussian distributions along
the x and y directions. Thereby, the average and standard

deviations in x (y) coordinates are given by the perfect lattice
sites and by σabs=σ [(W, L) + d], with σ defined as the
relative deviation, W (L) the width (length) of the islands,
and d the average edge-to-edge distance. Introducing disorder
in the x and y coordinates results in patterns consisting of
horizontal (nonrotated) nanomagnets arranged at random
x and y sites. For simplicity, we call these structures the
nonrotated arrays. Further disorder is induced by introducing
the same type of randomness to the orientational angle φ of
the nanomagnets [see Fig. 1(b)]. The rotational distribution
is defined around zero degrees (islands are aligned along
the x axis) with a deviation of σφ = 180◦σ . Since x-ray
magnetic circular dichroism (XMCD) contrast in the
X-PEEM experiments is angle sensitive [25] with maximum
contrast, when an angle of 0◦ is present between the incoming
x rays and the magnetization direction (zero contrast is
present for an angle of 90◦), the rotation of the nanomagnets
is limited to a maximum of 80◦. Again, for simplicity, we call
these patterns with additional rotational disorder the rotated
arrays. Three kinds of disorder are investigated, i.e., σ= 0%
(ordered), 30% (distorted), and 100% (disordered), for an
edge-to-edge distance d = 80 nm. Furthermore, to ensure
that nanomagnets do not overlap as a result of the introduced
randomness, we define a minimum of 20 nm edge-to-edge
distance when generating the random patterns. This minimum
edge-to-edge distance also ensures a smooth and clean lift-off
process in acetone. The overall number of nanomagnets in
each individual array was 7200, occupying areas of 26–
30 μm2. These system sizes are comparable to previously
studied artificial frustrated spin systems [15,18,20], reducing
potential finite-size effects to a negligible minimum.

Magnetic imaging was performed at PEEM3 [26] at the
Advanced Light Source, employing XMCD at the Fe L3 edge
[27]. XMCD images are obtained by pixelwise division of
images recorded with right and left circularly polarized x
rays. The resulting XMCD contrast gives a direct measure
of the projection of the magnetic moments onto the x-ray
propagation vector. Moments pointing towards the incoming
x rays will appear dark, while moments opposing the x-ray
direction will appear bright [see Figs. 2(a)–2(e)]. For each x-
ray polarization, an exposure time of one-and-a-half seconds
is chosen, while switching polarizations regularly takes four
seconds. This gives an overall time of roughly seven seconds
to obtain an XMCD image. The aforementioned blocking
temperature is chosen to fit these timescales.

III. RESULTS

A. Thermal annealing

As mentioned above, we aim to explore the effect of
increasing disorder and randomness on low-energy magnetic
moment configurations achieved after thermal-annealing pro-
tocols [18–20]. For that purpose, the sample is heated in
situ up to 350 K, where it is kept for 1–2 hours. Then,
the sample is cooled down to 180 K for magnetic imag-
ing of both time-dependent dynamics and low-temperature
states [see Figs. 2(a)–2(e)]. At these low temperatures, the
moment configurations are not observed to change over
time and appear to be in a frozen state. Following this an-
nealing procedure, the regular arrays [see Fig. 1(a)] show
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FIG. 2. XMCD images of a low-energy moment configuration achieved, following thermal annealing in (a) a fully ordered array of Ising-
type nanomagnets, (b) a partially randomized array (σ = 30%) of parallel nanomagnets (no rotational disorder), (c) a fully randomized
array (σ = 100%) of parallel nanomagnets (no rotational disorder), (d) a partially randomized array (σ = 30%) with rotational disorder,
and (e) a fully randomized array (σ = 100%) with rotational disorder. The red scale bar indicates 1 μm. We see a transition from (a) a
long-range-ordered antiferromagnetic moment alignment for the ordered arrays, showing the characteristic dark and bright lines, to (b),(c) a
long-range-ordered ferromagnetic state for the arrays with only positional disorder, ending in (d),(e) short-range-ordered phases, when full
randomness is introduced with rotational disorder.

long-range-ordered ground-state patterns consisting of anti-
ferromagnetic moment alignments, seen as black and white
stripes in the XMCD images [see Fig. 2(a)]. Considering the
dipolar nature of internanomagnet interactions, these moment
configurations are not surprising [28]. Interestingly, this an-
tiferromagnetic alignment of moments transforms into long-
range-ordered configurations exhibiting domains of parallel
(or ferromagnetic) moment alignments [see dark and bright
patches in Figs. 2(b) and 2(c)] for arrays with nanomagnets
where randomization is induced for the x and y coordinates,
but where all nanomagnets remain nonrotated [see Figs. 2(b)
and 2(c)]. Introducing rotational randomness of the Ising-type
nanomagnets, as described above, leads to more complex
ordering patterns [dark and bright domains in Figs. 2(d) and
2(e)], which at least visually appear more short-range ordered
compared to the nonrotated arrays.

To quantify this ordering, the spatial correlation function,
conventional in the analysis of ferromagnets and antiferro-
magnets, was calculated,

C(ri j ) = 〈SiS j〉T , (1)

where Si = ±1 to represent the Ising state of spin i, ri j is the
distance between spins i and j, and 〈· · · 〉T denotes a thermal
average. The absolute value of this, C′(ri j ) = |C(ri j )|, was
used for correlation function calculations. After days at room
temperature and subsequent gradual cooling, the systems are
assumed to be in equilibrium, thus allowing/enabling one
to take the thermal average over time (in the temperature-
dependent case). This average is not possible for the an-
nealed, frozen configurations as only one state of the system
was accessed after each annealing procedure. To perform a
meaningful average for a single spin configuration and more
effectively extract correlation lengths in the thermally active
cases, a set of bins at evenly spaced values r was chosen.
All correlation function values corresponding to r − �/2 <

ri j < r + �/2, where � is the distance between consecutive
rk , were averaged to a single value,

[C′(r)]av = 1

Npair

′∑

i j

C′(ri j ). (2)
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TABLE I. Correlation length ξ and magnetic susceptibility χ

for magnetic configurations achieved after thermal annealing, all
summarized as a function of increasing disorder σ for structures
without and with rotational disorder. The third column represents
the correlation length as multiples of the largest dimension of the
islands, L, for greater clarity of interpretation. The first two digits of
the values are displayed due to imprecision from the limited sample
size.

Lattice type ξ (μm) ξ/L χ

Nonrotated σ = 0% 7.6 25 0.0 × 10−12

Nonrotated σ = 30% 3.1 10 2.4 × 10−12

Nonrotated σ = 100% 3.9 13 1.8 × 10−12

Rotated σ = 30% 1.2 4.1 1.7 × 10−12

Rotated σ = 100% 1.3 4.3 1.5 × 10−12

The fit of the function to the exponential, [C′(r)]av =
exp(−r/ξ ), with ξ being the so-called correlation length,
produced the values given in Table I (see also Figs. 3(a)
and 3(c)). Notably, this is an order parameter that does not
always diverge with spin-glass transition [24,29]. The proper
spin-glass correlation function is believed to be [24]

CSG(ri j ) = 〈SiS j〉2. (3)

This function would always possess the value of one for
the frozen configurations of spins, and therefore provides no

information about them. For the time-dependent measure-
ments that allowed a spatial average,

[CSG(r)]av = 1

Npair

′∑

i j

CSG(ri j ), (4)

all values of this function were within their error bars from
zero while i �= j. Though short-range correlations are likely
present, this information is obscured by the current statistics.

These measures of correlation do not discern whether the
system is ferro- or antiferromagnetically correlated. There-
fore, a “neighbor” correlation function is introduced:

[C]N = 1

Npair

N∑

i j

C(ri j ), (5)

where the sum was either taken over nearest-neighbor (NN,
ri j � 180 nm), next-nearest-neighbor (NNN, 180 < ri j �
360 nm), or next-next-nearest neighbor (NNNN, 360 < ri j �
540 nm) pairs [see Fig. 1(b) for an illustration of these
regions]. Since the geometry of these systems is variable,
this does not strictly represent nearest-neighbor coupling in
a traditional sense, but does provide a consistent basis for
measuring local correlations. A value below zero indicates
predominantly antiferromagnetic coupling, while one above
zero indicates ferromagnetic coupling. These correlations are
plotted for all systems of interest in Figs. 3(b) and 3(d) and

FIG. 3. Measures of correlation in the annealed systems. On the left are the absolute values of the spatial correlation functions from the
(a) nonrotated and (c) rotated samples plotted on a semilogarithmic scale with their exponential fits indicated with dashed lines. (a) The
nondisordered (magenta circles), partially disordered (blue squares), and fully disordered (yellow diamonds) nonrotated cases; (c) the partially
(blue triangles) and fully (yellow stars) disordered rotated systems. The dotted lines represent the fits used to extract the correlation lengths.
On the right are the nearest-neighbor correlations of the (b) nonrotated and (d) rotated systems as disorder is varied.
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confirm qualitative observations of XMCD images such as in
Fig. 2. The alternating left-oriented stripes and right-oriented
stripes of magnetic moments in the ordered system give
rise to NN and NNN antiferromagnetic ordering and NNNN
ferromagnetic ordering [see σ = 0 in Figs. 3(b) and 3(d)].
When position alone is disordered, NN ordering becomes
approximately evenly split, as the correlation measure ap-
proaches a value of zero [red line in Fig. 3(b)], while NNN and
NNNN ordering is weakly ferromagnetic, strengthening with
higher disorder [see Fig. 3(b)]. The internanomagnet coupling
prefers ferromagnetic-type coupling when spins are moved
away from their ordered state. This is mainly due to the fact
that the tips of the nanomagnets exhibit the strongest interac-
tion among each other. So, adding positional disorder leads to
an increase in colinear (ferromagnetic) ordering patterns. The
tip-to-tip aligned spins interact ferromagnetically by their ge-
ometry and with greater strength than antiferromagnetic spins
aligned side to side. In other words, nanomagnets that have
their ends facing each other exhibit a stronger ferromagnetic-
type coupling than nanomagnets that are perfectly parallel
to one another, which exhibit a weaker antiferromagnetic
coupling. A similar effect is observed in the so-called dipolar
trident lattice [20]. When rotation is introduced, however, this
trend disappears. Due to the orientations changing, there is
a smaller probability that these strong tip-to-tip interactions
will be accessed. Antiferromagnetic order dominates for the
NN interactions, but equalizes for the NNN and NNNN
interactions [see Fig. 3(d)]. These orderings influence the
critical behavior of the system as is further revealed by the
temperature-dependent measurements discussed in the next
section.

The dimensionless magnetic susceptibility χ was calcu-
lated from this correlation using the fluctuation-dissipation
theorem [30]. This susceptibility χ was returned to appro-
priate dimensions by an additional factor m (the magnetic
moment of a single spin, referred to as μ in the source):

χ = m2

kBT

∑

i j

C(ri j ). (6)

For the arrays discussed here, the magnetic moment m is
calculated from a saturation magnetization, M = 85 kA/m,
found for similarly thin-film permalloy kagome structures
[25], to be m = 5.41 × 10−18 Am2. The susceptibility was
extracted from the annealed configurations of all samples
at 180 K (Table I). The ordered case shows an essentially
vanishing susceptibility as the true ground state of this system
corresponds to χ = 0. All other systems decrease in suscepti-
bility and increase in correlation length with increasing disor-
der. This suggests that the higher density, strongly interacting
areas introduced by disorder may create isolated clusters of
correlated spin. These clusters are less susceptible to external
fields due to their strong interactions with close neighbors.

B. Temperature-dependent moment fluctuations

Now, we turn to our attention to temperature-dependent
observations of thermal fluctuations in our artificial Ising
spin-glass structures [31]. To further explore the effects of
disorder, the characteristic relaxation time τ of both rotated

FIG. 4. Temperature dependence of (a),(c),(e) the nonrotated
σ = 100% system and (b),(d),(f) the rotated σ = 100% system.
The data points at and to the left of the teal dotted vertical lines
are marked with crosses to indicate that they come from frozen
configurations of spin islands. (a),(b) The characteristic relaxation
time τ was recorded from a least-squares fit of the autocorrelation
function [Eq. (6)]. The error bars are the standard error of this
fit. (c),(d) The dimensionless magnetic susceptibility for nonrotated
and rotated patterns, respectively. χ was extracted from the spatial
correlation function [Eq. (5)] at each frame. The averages from all
frames are plotted with error bars representing standard deviations
of the mean. The decreasing inverse susceptibility for nonrotated
patterns (blue squares) indicate long-range ferromagnetic ordering,
which is also visually evident in Fig. 2(b). The gray dashed lines
in (c) and (d) are the linear Curie-Weiss fit, which imply critical
temperatures of Tc = 298 ± 28.8 K for the nonrotated patterns and
Tc = 11.2 ± 14.9 K for the rotated patterns. (e),(f) The least-squares
fit to the spatial correlation function [Eq. (2)] produces the correla-
tion length ξ , whose standard error is represented by the error bars.
The curves of best fit plotted as gray dashed lines correspond to
critical exponents of ν = 1.38 ± 0.620 for the nonrotated case and
ν = 1.82 ± 0.986 for the rotated case.

and nonrotated systems is explored, with a focus on arrays
with the highest degree of introduced disorder (σ = 100%)
and freezing temperatures between 230 and 240 K [see teal
dotted lines in Figs. 4(a)–4(f)]. Below these temperatures,
only a few spin islands fluctuated due to disorder intrinsic to
the fabrication process. In studies of magnetic nanowires and
nanomagnetic spin systems, intrinsic disorder can generate
spatial disorder that pins domain walls [32,33]. While this
disorder can be expected for any patterned thin film, no
domain pinning effects were apparent in the time evolution of
the systems discussed here, which can be seen in two movies
in the Supplemental Material [31]. In a spin-glass phase, the
relaxation timescale is not expected to remain constant over
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time [34]. XMCD imaging provides the unique opportunity
to directly observe this relaxation process and extract these
relaxation timescales. The autocorrelation function,

C
′′
(t ) = 〈S(t )S(t0)〉, (7)

where the average is taken over all spins in the system, was
measured from an initial time t0 through a time 1200 seconds
later and fit the curves to an exponential decay, C′′(t ) =
exp(−t/τ ), revealing the so-called characteristic relaxation
time τ at each temperature [see Figs. 4(a) and 4(b)]. The
Pearson χ2 goodness-of-fit tests [35] indicated that all fits to
this curve rejected the null hypothesis with 95% confidence.
With only a 5% chance that this model matched the data
due to random fluctuation, this result strongly implies single
timescale dynamics, inconsistent with the varying timescales
found in the glass phase. As seen in Figs. 4(a) and 4(b), τ

varies inversely with temperature as expected, but shows no
indication of a spin-glass transition.

Furthermore, using the fluctuation-dissipation theorem
from Eq. (5), the magnetic susceptibility was calculated at
each temperature for both nonrotated and rotated arrays, and
plotted in Figs. 4(c) and 4(d), respectively. The nonrotated
patterns show a decreasing inverse susceptibility with increas-
ing temperature [see Fig. 4(c)], indicating that the system
is well within a long-range-ordered ferromagnetic phase, as
can be visually seen from the XMCD image in Fig. 2(b).
The opposite trend is observed for rotated structures [see
Fig. 4(d)]. Applying a Curie-Weiss fit, χ = C

T −Tc
, to both

temperature dependencies, where C is the Curie constant and
Tc is the critical temperature, yields Tc = 298 ± 28.8 K for
the nonrotated patterns and Tc = 11.2 ± 14.9 K for the rotated
structures. This and all additional fits passed Pearson’s χ2 test.
These temperatures differ by an order of magnitude due to
the variable interaction strengths. Those strengths are higher
for the nonrotated systems because the tips are more likely
to be close to one another. This highlights the potential of
controlling critical temperatures through a variation of certain
parameters such as disorder σ , in our particular case.

Plotting the correlation lengths as function of temperature
[see Figs. 4(e) and 4(f)], the data is fitted to a power law
ξ (T ) = A((T − Tc)/Tc)ν using the Tc determined from the
susceptibility and leaving A, a prefactor, and ν, the critical
exponent, as fitting parameters. The gray dashed lines in
Figs. 4(e) and 4(f) represent these fits, ν = 1.38 ± 0.620 and
ν = 1.82 ± 0.986, for the rotated and nonrotated patterns,
respectively. Comparing these exponents to those of the two-
dimensional (2D) and 3D spin glasses (ν = 3.559 ± 0.025
[36] and ν = 2.15(15) [37], respectively) and the 2D through
4D Ising models (ν = 1, ν = 0.6310 ± 0.0015, and ν = 0.5
for two, three, and four dimensions, respectively [38]) further
indicates that the systems investigated here, while exhibiting
complex behavior, are not forming spin-glass phases. The

critical exponent falls below the spin-glass critical exponents
for two (ν = 3.559 ± 0.025 [36]) and three dimensions (ν =
2.15(15) [37]) and, considering the error, lies somewhere in
the vicinity of the two-dimensional Ising model (ν = 1 [38]).

IV. SUMMARY AND OUTLOOK

Seen as a whole, these systems do not form typical spin
glasses, but offer hints as to how artificial spin glasses may be
constructed. The random configurations should balance ferro-
magnetic and antiferromagnetic interaction to avoid ordering
by either of those dominant behaviors. Patterning nanomagnet
arrays to mimic higher-dimensional behaviors may achieve
this, perhaps through concepts such as effective dimension
[39]. If interactions are structured to be more treelike, then
spin glasses can approach system-wide correlation in multi-
ple configurations. This would translate to higher entropies
corresponding to higher critical temperatures. System geom-
etry may be modified further by randomizing spin dilution
or nanomagnet sizes [40], or by introducing random height
offsets [16,41] within the system. These modifications could
leverage the long-range nature of dipolar interactions to shape
interaction structures in methods not typically approached
by purely theoretical studies. The patterned permalloy thin
films analyzed here and in so-called artificial spin ices always
exhibit an obstacle in the form of finite blocking temperatures,
but nonzero critical temperatures would work around this
limitation. Once these steps are taken and spin-glass phases
are realized, the real-time dynamics of such artificial spin
glasses may be explored in their entirety. This unique testing
grounds could probe new questions about magnetic dynamics
and systems with similar mathematic descriptions, such as
artificial neural networks [42], electroencephalography (EEG)
data [43], and sediment deposition [24]. Furthermore, the
exploration of various temperature schedules and their effect
on the low-energy state achieved [3], aging, and memory
effects [1,4] in prospective artificial spin glasses will be the
focus of potential future research, establishing direct links to
naturally occurring spin-glass systems.
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