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ABSTRACT
We propose a new variant of the k-median problem, where the

objective function models not only the cost of assigning data points

to cluster representatives, but also a penalty term for disagreement

among the representatives. We motivate this novel problem by

applications where we are interested in clustering data while avoid-

ing selecting representatives that are too far from each other. For

example, we may want to summarize a set of news sources, but

avoid selecting ideologically-extreme articles in order to reduce

polarization.

To solve the proposed k-median formulation we adopt the local-

search algorithm of Arya et al. [2], We show that the algorithm

provides a provable approximation guarantee, which becomes con-

stant under a mild assumption on the minimum number of points

for each cluster. We experimentally evaluate our problem formula-

tion and proposed algorithm on datasets inspired by the motivat-

ing applications. In particular, we experiment with data extracted

from Twitter, the US Congress voting records, and popular news

sources. The results show that our objective can lead to choosing

less polarized groups of representatives without significant loss in

representation fidelity.
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• Theory of computation→ Facility location and clustering;
Discrete optimization; • Applied computing→ Sociology.
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1 INTRODUCTION
Consider the problem of summarizing a set of news articles on

a given topic. A standard approach to this problem is clustering:
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design a distance function that captures similarity between the

news articles and apply a clustering algorithm on the resulting

metric space. Common clustering formulations, such as k-median

or k-means, can be used [17]. The original set of input news articles

can then be summarized by the (small) set of cluster representatives.

In some cases, however, we may be interested in selecting cluster

representatives that are not too far from each other. For example,

we may want to find a set of representative news articles that are

not too extreme so that they can provide a basis for constructive

deliberation. This motivation is similar to recent proposals in the

literature that aim to reduce polarization in social media [13] and

balance the users’ content consumption [14]. In this work we are

interested in developing computational methods for clustering data

in a way that the disagreement of the cluster representatives is

minimized.

Another motivating example appears in the context of electing

a k-member committee to represent a set of individuals, such as the

employees of an organization or the members of a political party.

Assuming that all individuals have public opinions on a set of issues,

clustering these individuals on an opinion-representation space will

give a committee that faithfully represents the set of individuals

with respect to the issues under consideration. Despite providing a

good representation, however, a committee elected with a standard

clustering approachmay fail to reach consensus due to potential het-

erogeneity within the committee members. Heterogeneity within

elected members of an assembly is a widely acknowledged problem

in politics — for instance, division of representatives often results

in paralysis in various left-wing political formations.
1
As in the

previous example, we are interested in electing a committee in a

way that the disagreement of the elected members is minimized

while ensuring a faithful representation of the constituents.

Motivated by the previous examples we introduce a new formu-

lation of the k-median problem, where in addition to the k-median

objective we also seek to minimize disagreement between the clus-

ter representatives. As it is customary, we consider a metric space

(X ,d ), where d is a distance function for objects in X . We distin-

guish two subsets of X , the set of facilities F and the set of clients

C . The goal is to select a set of k facilities S ⊆ F — the cluster

representatives — so as to minimize the overall cost

cost (S ) =
∑
c ∈C

min

s ∈S
{d (c, s )} +

λ

2

∑
si ∈S

∑
sj ∈S

d (si , sj ). (1)

The first term is the same as in the standard k-median, and ex-

presses the cost of serving each client by its closest selected facility.

The second term is the one introduced in this paper and expresses

1
https://www.theguardian.com/commentisfree/2019/feb/19/podemos-spanish-

politics
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disagreement between cluster representatives. The parameter λ
determines the relative importance of the two terms. Despite clus-

tering being one of the most well-studied problems in statistical

data analysis, and the numerous formulations and problem vari-

ants that have been studied in the literature, to our knowledge, the

problem defined above has not been considered before.

As expected, the problem defined by optimizing Equation (1)

is NP-hard; in fact optimizing each of the two terms separately

is an NP-hard problem. Given the hardness of the problem, it is

compelling to consider algorithms with provable approximation

guarantees. For the k-median algorithm several approximation

algorithms exist [11, 22]. A local-search algorithm, which is simple

to implement and scalable to large datasets, has been proposed

by Arya et al. [2]. The algorithm starts with an arbitrary solution

and considers a swap of p selected facilities with p non-selected

facilities; the swap is materialized if the cost improves, and the

process continues until the cost cannot be improved. Arya et al.

show that this algorithm achieves an approximation guarantee

equal to 3 + 2/p, and the running time is O (np ). In particular, for

p = 1, the algorithm gives an approximation guarantee equal to 5,

while the running time is linear.

In this paper we show how to adapt the local-search algorithm of

Arya et al. [2] for the problem we consider and obtain an approxi-

mation guarantee O (k ) in the general case. The proposed algorithm
considers 1-facility swaps, i.e., p = 1. Furthermore, when the clus-

ters of the obtained solution have size Ω(λk ), the approximation

factor becomes 11, i.e., constant. We complete the analysis of the

proposed problem by deriving bounds on the objective function.

Our contributions in this paper are summarized as follows.

• We introduce the reconciliation k-median problem, a novel

clustering problem formulation where we aim to optimize

the data representation cost plus a term for agreement be-

tween the cluster representatives.

• We adapt the local-search algorithm of Arya et al. [2] and

obtain provable approximation guarantees for the proposed

clustering problem.

• We run experiments on datasets extracted from the Twitter

social network, US Congress voting records, and popular

news sources. The results show that the proposed objective

can lead to the choice of less polarized groups of represen-

tatives, as measured by a well-known method for ideology

estimation [4] and an objective estimate of the political lean-

ing of news sources.

The rest of the paper is structured as follows. In Section 2 we

present a brief overview to the literature that is most related to

our work. In Section 3 we formally define the reconciliation k-
median problem. In Section 4 we present the local-search algorithm

and state its approximability properties. In Section 5 we present

our experimental evaluation, while Section 6 is a short conclusion.

To improve readability, the hardness proof of the reconciliation

k-median problem and the proof of the approximation guarantee

of the local-search algorithm are presented in the Appendix.

2 RELATEDWORK
Data clustering is one of the most well-studied problems in data

analysis, with applications in a wide range of areas [17]. Among

the numerous formulations that have been proposed, in this paper

we focus on the k-median problem setting, which has been studied

extensively in the theoretical computer-science literature. Charikar

et al. [11] gave the first constant-factor approximation algorithm

for the k-median problem, followed by improvements that relied

on both combinatorial and LP-based algorithms [10, 18, 19]. In this

paper we build upon the local-search algorithm of Arya et al. [2].

This is a simple-to-implement and scalable algorithm that had been

offering the best performance guarantee for over a decade. The

current best approximation guarantee is 2.67 + ϵ , provided by the

algorithm of Byrka et al. [8], which optimizes a part of the algorithm

of Li and Svensson [22]. However, the algorithm is not practical.

Variants of the k-median problem have also been considered,

including the Euclidean k-median [1], capacitated k-median [7],

ordered k-median [9], and more. To our knowledge, however, this

is the first work to study the problem of k-median clustering with

a penalty on the disagreement of the cluster representatives. In-

stead, researchers have studied the problem of selecting k points to

maximize the sum of pairwise distances, i.e., the dispersion of the se-
lected point set. Several constant-factor approximation algorithms

have been proposed for the maximum-dispersion problem [12, 16].

However, the maximization makes the problem different and it is

not clear how to adapt those algorithms in our setting.

One of our motivating applications is summarization of social-

media content with the aim of reducing polarization and balancing

the information content delivered to users. This is a relatively new

research area that is receiving increasing interest [4, 13, 14, 23,

24]. However, to the best of our knowledge, none of the proposed

approaches uses a clustering formulation.

The second motivating application is election of committees

and representatives. In some cases, election questions can also be

formulated as voting problems. Voting in general has been studied

extensively in social sciences and economics literature. From the

algorithmic perspective, researchers have studied questions about

voting in social networks and concepts such as liquid and viscous

democracy [6, 26]. In addition to being not directly related to our

paper, this line of work does not directly model agreement between

elected representatives.

3 PROBLEM FORMULATION
3.1 Preliminaries
We formulate our problem in the general setting of metric facility
location [19]. We consider a metric space (X ,d ) and two subsets

F ,C ⊆ X , not necessarily disjoint. The set F represents facilities,
and the set C represents clients. A special case of interest is when

clients and facilities are defined over the same set, i.e., F = C . In
our discussion we consider the more general case that the sets of

clients and facilities are disjoint. The function d : X × X → R is a

distance measure between pairs of points in X . When c ∈ C and

s ∈ F , the distance d (c, s ) represents the cost of serving client c
with facility s . The number of facilities is denoted bym = |F | and
the number of clients by n = |C |.

The goal is to open k facilities — i.e., choose k points in F — such

that the cost of serving each client in C with the nearest selected
facility is minimized. Given a set of facilities S ⊆ F , with |S | = k , and
s ∈ S , we use NS (s ) to denote the set of clients served by facility s in
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the solution S , that is, NS (s ) = {c ∈ C | s = argminx ∈S d (c,x )}. In
the facility location formulation each facility has an associated cost,

which is incurred if the facility is opened (selected). The objective

is to minimize the total cost of serving all clients plus the cost of

opened facilities, while there is no restriction on the number of

opened facilities. When the cost of opening each facility is zero and

it is required to open at most k facilities, the problem is known as

k-median.

3.2 Reconciling cluster representatives
The problems described above, facility location and k-median, are

commonly used to find cluster representatives without regard to

the relative position of the representatives themselves. As discussed

in the introduction, our goal is to modify the problem definition so

as to find solutions in which the cluster representatives are close to

each other. To achieve our goal we propose the following clustering

variant, which we name reconciliation k-median.

Problem 1 (recon-k-median). Given a metric space (X ,d ), two
sets F ,C ⊆ X , k ∈ N, and a real number λ > 0, find a set S ⊆ F with
|S | = k , so as to minimize the cost function

cost (S ) =
∑
s ∈S

∑
c ∈NS (s )

d (c, s ) +
λ

2

∑
si ∈S

∑
sj ∈S

d (si , sj ). (2)

In order to characterize the hardness of this problem, we analyze

the two terms of the objective in isolation. The first term, which

results from setting λ = 0, is equivalent to the classical metric

k-median problem, shown to be NP-hard by Papadimitriou [25].

To analyze the second term, we define the following equivalent

problem, which asks to find a subset of k points that minimize the

sum of pairwise distances in a metric space, i.e., minimum pairwise

distances (mpd).

Problem 2 (mpd). Given a metric space (X ,d ), a subset of objects
in the metric space F = {x1, . . . ,xn } ⊆ X , and a number k ∈ N, with
k < n, define a matrix A ∈ Rn×n as Ai j = d (xi ,x j ) for all xi ,x j ∈ F .
The goal is to find a binary vector x of dimension n that has exactly k
coordinates equal to 1 and minimizes the form xTAx. In other words,
we want to find

min xTAx,

subject to x ∈ {0, 1}n and xT 1 = k .

The following lemma establishes that there exists no polynomial-

time algorithm to find the exact solution to the mpd problem, unless

P = NP. The proof is given in the Appendix.

Lemma 1. Problem mpd is NP-hard.

Lemma 1 establishes that optimizing separately the second term

of the objective function (2) is an NP-hard problem. Note, however,

that the hardness of the two terms in Problem 1 does not imme-

diately imply the hardness of the overall problem. Consider, for

instance, an objective of the form minx
{
f (x) + (c − f (x))

}
. Even

though optimizing f can be an arbitrary NP-hard problem, the

overall problem has a constant value, and thus, it is trivial to opti-

mize — there is nothing to be done. We now show that Problem 1

is indeed NP-hard.

Lemma 2. Problem recon-k-median is NP-hard.

Proof. Consider an instance of the mpd problem, for a given set

F and a number k , and form an instance (F ,C,k, λ) of the recon-
k-median problem, where C is any arbitrary set of clients with

F ∩ C = ∅. Set d (s, c ) = 1

2
maxsi ,sj ∈F {d (si , sj )}, for all c ∈ C and

s ∈ F . Note that the distance function d is still a valid metric.

We have that

∑
c ∈C mins ∈S d (c, s ) is constant for any potential

solution set S ⊆ F , which implies that optimizing recon-k-median
is equivalent to optimizing mpd. Thus, from Lemma 1 we obtain

that recon-k-median is NP-hard. □

3.3 Bounds on the objective
To complete the analysis of the recon-k-median problem we offer

bounds on the objective, which can be used to evaluate the quality

of the solution obtained by any algorithm for the problem at a given

instance. For this to be useful, the bounds need to be non-trivial and

as close as possible to the optimal solution. We will first show how

to obtain a lower bound on the second term of the objective, that

is,

∑
si ,sj ∈S d (si , sj ). We first introduce the following definition.

Definition 1. Given two sequences of real numbers λ1 ≥ λ2 ≥

· · · ≥ λn and µ1 ≥ µ2 ≥ · · · ≥ µm , with m < n, we say that the
second sequence interlaces the first if

λi ≥ µi ≥ λn−m+i for i = 1, . . . ,m

We will employ the following result from Haemers [15].

Lemma 3. Let A be a symmetric n × n matrix, and let B be a
principal submatrix of A. Then the eigenvalues of matrix B interlace
those of matrix A.

We now state the following result.

Theorem 1. Let D be the pairwise distance matrix of facilities of
an instance of recon-k-median problem. Define matrix D̃ so that
D̃i j =

√
Di j , that is, a matrix whose entries are the square roots of the

entries of D. Let λi (D̃) denote the i-th absolutely largest eigenvalue
of D̃. Then

kλ1 (D) ≥
∑
si ∈S

∑
sj ∈S

d (si , sj ) ≥
n∑

i=n−k+1

λ2

i (D̃).

Proof. Observe that for any real symmetric matrix D, ∥D∥2F =∑
i σ

2

i (D) =
∑
i λ

2

i (D). It is easily seen that if x is a binary vector

with exactly k entries equal to 1, xTDx is equal to the sum of the

entries of a k × k principal submatrix of D, which is in turn equal

to the squared Frobenius norm of the corresponding submatrix of

D̃. Combined with Theorem 3, this proves the lower bound.

The upper bound follows immediately from the variational char-

acterization of the eigenvalues [see 20, chap. 9.2]. □

A lower and upper bound on the first term of the objective can

simply be given by

∑
c ∈C mins ∈F d (c, s ) and

∑
c ∈C maxs ∈F d (c, s ),

respectively. This is useful only for problem instances where the

number of facilities is relatively small compared to the number of

clients.
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Algorithm 1 Local search

1: procedure LocalSearch(F , C , k , λ)
2: S ← random subset of F of cardinality k
3: converged← false
4: while not converged do
5: if there exist s ∈ S and t ∈ F \ S such that cost (S \ {s} ∪
{t }) < cost (S ) then

6: S ← S \ {s} ∪ {t }
7: else converged← true
8: end if
9: end while
10: return S
11: end procedure

4 THE LOCAL-SEARCH ALGORITHM
In this section we present the proposed algorithm for the recon-k-
median problem and state its properties. The algorithm uses the

local-search strategy, proposed by Arya et al. [2], but adapted for the

objective function of recon-k-median. The algorithm starts with an

arbitrary solution consisting of k selected facilities. It then proceeds

in iterations. In each iteration it considers whether it is possible

to swap a selected facility with a non-selected facility and obtain

an improvement in the objective score. If such an improvement

is possible, the corresponding swap is performed. The algorithm

terminates when no such swap is possible. At each point during

its execution, the algorithm maintains a set of k clusters over the

set of clients, and a selected facility for each cluster, defined by

assigning each client to its closest selected facility. Pseudocode of

this local-search procedure is given in Algorithm 1.

For the analysis we denote by S = {s1, . . . , sk } ⊆ F the solution

returned by LocalSearch, and O = {o1, . . . ,ok } ⊆ F the optimal

solution. As mentioned before we use the notation NS (s ) to denote

the set of clients that are assigned to facility s in the solution S , and
NO (o) to denote the set of clients that are assigned to facility o in
the optimal solution O .

To analyze the performance of LocalSearchwe follow the ideas

of Arya et al. [2]. The proofs are included in the Appendix.

As a result, in the most general case, the LocalSearch algorithm
yields a O (λk )-factor approximation guarantee on the quality of

the solution achieved.

Theorem 2. Let (F ,C,k, λ) be an instance of the recon-k-median
problem. Let S be a solution returned by the LocalSearch algorithm,
and let O be an optimal solution. Then

cost (S ) ≤ (λk + 5)cost (O ). (3)

Furthermore, we are able to improve the analysis and obtain

an approximation guarantee that does not depend on the number

of facilities k . For the improved result we need to make the mild

assumption that the number of clients in any cluster of the optimal

solution and the solution returned by the algorithm is Ω(λk ). In
particular, we have.

Theorem 3. Let (F ,C,k, λ) be an instance of the recon-k-median
problem. Let S be a solution returned by the LocalSearch algorithm,
and let O be an optimal solution. Assume that |NS (s ) | ≥ ⌈2λ⌉k for

all s ∈ S and |NO (o) | ≥ ⌈2λ⌉k for all o ∈ O . Then

cost (S ) ≤ max{11, 4λ} cost (O ).

The running time of the LocalSearch algorithm is O (nmk ) per
iteration. For most applications k is considered to be a constant.

When the number of facilitiesm is of the same order of magnitude

with the number of clients n, e.g., in the important special case F =
C , the algorithm has quadratic complexity per iteration. However,

in many applications the number of facilities is significantly smaller

than the number of clients. Thus, we expect that the algorithm is

very efficient in practice for those cases.

We also note that Arya et al. [2] show how to perform swaps

of p facilities simultaneously and obtain an improved performance

guarantee at the expense of increased running time. In our case,

the penalty term in our objective, which captures the disagreement

among the cluster representatives, makes the analysis significantly

more complex and it is not clear how to use simultaneous swaps in

order to achieve a similar quality-performance trade-off. Thus, this

direction is left for future work.

5 EXPERIMENTAL EVALUATION
We perform experiments to assess the proposed concept of clus-

tering with reconciliation of representatives, as well as the per-

formance of the proposed LocalSearch algorithm.
2
Our objective

is to evaluate by some objective measure whether the proposed

problem formulation, as well as natural variations, can lead to a

choice of representatives or sources that are more moderate, less

polarizing and more likely to reach consensus.

To enrich the experimental setting and produce a more interest-

ing set of empirical observations, we relax some of the requisites

of our theoretical results. Namely, observe that in order to prove

the approximation guarantees of the LocalSearch algorithm, we

require that the distance function satisfy the properties of a metric,

and that it be the same for facilities and clients. However, we believe

that in practical scenarios, one might benefit from considering a

wider set of options, especially if we consider the exploratory na-

ture of clustering algorithms. Therefore, we measure dissimilarity

between objects using functions that do not necessarily qualify as

metrics, and we consider different ones for facilities and clients.

At a high level, our experimental methodology is as follows:

We start with a dataset for which clients and facilities model a

natural clustering problem and for which a distance function d
is available. For the facilities of the dataset we seek to obtain a

polarity score π , which is independent of the distance function d :
facilities with similar polarity scores π are more likely to agree. In

addition, facilities with scores closer to the middle of the spectrum

are less likely to disseminate extremist ideologies. We then apply

our clustering algorithm with varying values of the parameters k
and λ. We are interested in answering the following questions:

Q1. How does the agreement between selected representatives

or the polarization of information sources (measured by

the independent polarity score π ) change as a function of

λ? In other words, can we get more reconciled representa-

tives or less extreme sources by increasing the weight of

2
Our implementation of the algorithm is available at https://github.com/brunez/

recon-kmedian-ls
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the disagreement penalty term (second term of the objective

function (2))?

Q2. How does the k-median score change as a function of λ?
In other words, can we find solutions with more reconciled

representatives but without significant loss in representation

fidelity (i.e., first term of the objective function (2))?

Q3. What is the impact of the parameter k on both polarity score

and k-median score?

For our experimental evaluation we use the following datasets.
3

Twitter: The dataset, obtained by Lahoti et al. [21], consists of a

set of politically active Twitter accounts. We remove stubs — i.e.,

accounts that follow only one account and have no followers — re-

sulting in 3 302 362 accounts. Out of those we consider 500 popular

ones —with at least 50 000 followers — as candidate facilities, that is,

representatives. As remarked in the beginning of section 5, we can

extend the proposed framework by considering different metrics

for the two terms of the objective function. This corresponds to a

practical setting where the agreeability of the selected representa-

tives is measured differently than their affinity to their respective

consituents. Specifically, for this dataset we consider the following

distance functions.

(1) Facility-Client: We compute distances between facilities

and clients as the length of the shortest path between two

Twitter accounts in the undirected follower Twitter graph.
4

(2) Facility-Facility: To compute distances between facilities

we use shortest-path distances, as before. We also use Eu-

clidean distances on the spectral embedding with γ compo-

nents, as described by Belkin et al. [5]. We scale the resulting

distance matrix so that the average of all entries is equal

to that of the shortest-path distance matrix. This way we

ensure that the magnitude of λ has an equivalent effect using

the different metrics.

Congress: We collect roll call voting records from the present

US Congress using the public domain congress API.5 We build a

dataset where each row corresponds to a Congress representative

and each column is a binary variable representing the issue being

voted. Missing values are imputed using class-conditional means,

where the classes we consider are the two parties: democrats and

republicans. “Present” and “Not voting” votes are considered to be

missing. We omit votes where all representatives are missing. We

also omit representatives for whom we could not obtain an ideol-

ogy estimate using the approach described below, or who missed

too many votes. For this dataset, we use the Euclidean distance

between the vectors corresponding to each of the representatives.

To make this experiment closer to a plausible practical scenario, we

restrict half of the facilities to be democrats and the other half to

be republicans. In addition, clients are served by the closest facility

of the same party.

Domains: We combined the domain-related data described in the

work of Bakshy et al. [3] with the Twitter dataset. The set of

facilities consisted of 469 domains hosting the news sources most

often shared on the Facebook social network. The client set is

3
The datasets are available at https://doi.org/10.5281/zenodo.2573954

4
The follower graph corresponds to a snapshot taken in July 2017.

5
https://github.com/unitedstates/congress/wiki

comprised of 6 104 of the most politically active Twitter users. We

consider two alternatives for computing the distances.

(1) Mentions: Given a facility f and a client c , let ncf be the

number of times a tweet by c contains a link to f . Then
d ( f , c ) = (ncf + 1)−1

. To compute the pairwise distances be-

tween facilities we do the following. Consider two facilities,

f and д. Let Sf (respectively Sд ) be the set of clients that
have tweeted a link to f (respectively д) at least once. We de-

fine W =
∑
c ∈Sf ∪Sд

(
logncf I{c ∈ Sf } + logncдI{c < Sf }

)
,

where I is the indicator function. Then

d ( f ,д) = 1 −

∑
c ∈Sf ∩Sд logncf

W
. (4)

We define log 0 = 0. Since the objective function of recon-k-
median (Equation (1)) sums over all ordered pairs of facilities,

this distance function is in effect symmetric when applied to

our problem. Note that this is akin to the Jaccard index for

set similarity, but each element is weighted with a measure

of its relevance.

(2) Latent: We construct a matrix A such that Ai j is the number

of times a tweet by user j contains a link to domain i . We

compute the singular value decomposition A = U ΣVT
and

extract the latent representation for both domains and users

in the first 9 components (which account for 50% of the total

Frobenius norm of A). If k = 9, domain i is represented as

Ui, :k and user j as Vi, :k . To compute both facility-facility

and facility-client distances we take the Euclidean distances

between the corresponding latent representations.

The characteristics of the datasets are summarized in Table 1.

For all datasets, in order to compute the objective of recon-k-
median we take averages instead of the sums of distances. Note

that this amounts to scaling both sums, so it is equivalent to setting

λ to a particular value. The advantage of taking averages is that λ
has an impact at small values, i.e., at “small” factors of 1.

Ground truth polarity scores (π ). Tomeasure the polarity scores

of the facilities we employ different methods depending on the

dataset.

In the case of Twitter and Congress we use the approach de-

scribed by Barberá [4], which estimates the ideological leaning of

a Twitter account as a real value. For Twitter, we use polarity

scores collected at the same time as the follower graph (July 2017).

For Congress, we collected the ideological estimates in May 2018.

Using this method and the proposed datasets, all the elicited po-

larity scores are between -3 and 3. We measure the polarity of the

chosen representatives as follows. Given a solution S = {s1, . . . , sk },
let π (si ) denote the estimated polarity of facility si . We define the

polarity of solution S as the sample standard deviation of the set

{π (s1), . . . ,π (sk )}.
For Domains, we use the ideological leaning score associated to

each domain as described in the work of Lahoti et al. [21]. These

scores were computed roughly as the fraction of interactions (vis-

its or shares) by conservative users, out of total interactions. We

translated the scores so that they fall between -0.5 (left) and 0.5

(right). In this scenario, we are interested in choosing less polarized

sources. We therefore measure the polarity of the chosen set as the

ℓ-2 norm of the vector (π (s1), . . . ,π (sk )).
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Table 1: Summary of the datasets.

Name Number of Number of Distance functions

clients facilities

Twitter 3 302 362 500 Shortest path, Spectral embedding + Euclidean

Congress 420 420 Euclidean

Domains 6 104 469 Weighted Jaccard +Mentions, Latent space + Euclidean
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Figure 1: Results on the Twitter dataset with different metrics and values of k .

Results on Twitterdataset.We run the algorithm on the Twitter
dataset setting the number of selected facilities to k = 2, 4, 8 and

λ = 0, 2i/10 for i = 1, . . . , 6. For computing the pairwise distances

between facilities we use either the shortest path metric or the spec-

tral embedding with γ = k, 10, 100. Figure 1 illustrates the results.

We depict, as a function of λ, the polarity of the chosen representa-

tives, measured as described above, along with the k-median cost

of the solution — i.e., the first term of the objective function (2).

We run the algorithm 40 times for each setting and report the aver-

age and standard deviation bands. We can see that increasing the

value of λ leads to significantly less polarized representatives in

various cases. The effect is most noticeable for larger values of k ,
and particularly consistent using the spectral embedding with 100

components. An interesting result on this dataset is that we can

achieve significant decreases in polarity without incurring much

additional k-median cost. That is, it is possible to elect a much more

agreeable committee — with respect to the chosen polarity measure

— without notable loss in representation fidelity.
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Figure 2: Results on the Congress dataset for different values of k .
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Figure 3: Results on the Domains dataset with different metrics and values of k .

Results on Congressdataset.We run the algorithm on the Congress
dataset, using the same configurations as for Twitter. Figure 2 il-
lustrates the results. Here, the decrease in polarity is only clear

in the case k = 2, for values of λ at least 0.8. It should be noted,

however, that the voting data and the polarity scores come from

completely different sources. It would therefore be interesting to

carry out further experiments with these data.

Results on Domainsdataset.We run the algorithm on the Domains
dataset, using the same configurations as for Twitter but consid-
ering k = 16 as well, as in the case of news sources it is practical to

consider larger sets. Figure 3 shows the results, using the distance

function defined in Equation (4) (w-jaccard) and the latent repre-

sentation (latent). We run each configuration 80 times and report

average results and standard deviation bands. The reduction in

polarity is noticeable, in particular using the latent representation

with larger values of k . For very small sets of news sources (e.g.,

k = 2) the method does not exhibit a reduction in polarity. In order

to gain further insight on the impact of the penalty term, we report

an example of the news sources that appear more frequently as λ
increases. Specifically, we take a case where decrease in polarity is

noticeable (latent, k = 8, λ = 0.8). We then collect the 16 sources

that appear the most, and do the same for λ = 0. The results are

shown in Table 2. For each domain, we report the frequency (i.e.,

the fraction of times it was part of the solution out of the 80 runs),

the ideological score and the number of times it was mentioned in

the collected tweets.

Number of iterations. Even though the time complexity of the

local-search algorithm per iteration is not too high, a legitimate

concern to be raised is the possibility that it might require a large
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Table 2: Top-16 news sources for different values of λ, using latent representations.

λ = 0

Domain Frequency Ideology Mentions

nydailynews.com 1.000 -0.114 10 191

politico.com 1.000 -0.073 36 184

slate.com 1.000 -0.341 14 364

cbsnews.com 0.687 -0.057 4 394

buzzfeed.com 0.687 -0.262 11 683

twitchy.com 0.537 0.469 13 192

westernjournalism.com 0.462 0.450 3 562

9news.com 0.462 -0.016 349

politifact.com 0.350 -0.240 3 097

cbsloc.al 0.337 -0.081 2 526

christianpost.com 0.337 0.337 383

theatlantic.com 0.312 -0.176 6 883

newrepublic.com 0.312 -0.335 1 626

lifenews.com 0.200 0.483 3 657

6abc.com 0.200 -0.252 819

usatoday.com 0.112 -0.064 18 513

λ = 0.8

Domain Frequency Ideology Mentions

chicagotribune.com 0.962 -0.082 1 531

chron.com 0.475 0.170 431

abc13.com 0.325 0.005 255

9news.com 0.250 -0.016 349

detroitnews.com 0.225 0.090 535

azc.cc 0.225 -0.028 744

nbcwashington.com 0.225 -0.214 485

csmonitor.com 0.225 -0.030 382

wjla.com 0.225 -0.160 374

msn.com 0.200 -0.031 615

kgw.com 0.187 -0.118 107

christianpost.com 0.175 0.336 383

abc7chicago.com 0.175 -0.251 328

inquisitr.com 0.175 0.049 2 150

stripes.com 0.175 0.182 555

wsbtv.com 0.137 -0.043 167

Table 3: Number of iterations on Twitter dataset (avg/max).

Metric k = 2 k = 4 k = 8

Shortest path 2.5/4 2.8/5 3.09/7

Spectral, γ = 2 2.18/3 - -

Spectral, γ = 4 - 2.73/5 -

Spectral, γ = 8 - - 3.13/6

Spectral, γ = 10 2.32/4 2.8/6 3.32/7

Spectral, γ = 100 2.45/4 2.75/5 2.58/4

number of iterations to converge. Our observations, however, sug-

gest that in practice a small number of iterations — where by it-

eration we understand the inspection of all candidate changes —

are necessary. Table 3 shows the average and maximum number of

iterations for the Twitter dataset.

6 CONCLUSIONS
We have considered the problem clustering data so as to optimize

the total representation cost plus an additive term to penalize dis-

agreement among the chosen representatives. The proposed prob-

lem, which we name reconciliation k-median, has applications in

summarizing data with non-polarized representatives, as well as

in electing k-member committees that are more likely to reach

consensus. We have shown the proposed problem to be NP-hard
and derived bounds on the objective. Inspired by the literature on

related problems, we have analyzed a local-search algorithm in this

context and derived approximation guarantees, of factor O (λk ) in
the general setting, and constant under mild assumptions. Through

experiments on real data coming from a social network and voting

records, we have shown empirically how the proposed formulation

can lead to the choice of less polarized groups of representatives,

as measured by a well-known method for ideology estimation, as

well as less ideologically-extreme sets of news sources. This work

opens various enticing directions for future inquiry. First it would

be interesting to determine whether the approximation guarantees

can be improved, as well as to attempt to find tight examples to

know the possible extent of said improvement. Second, it would

be interesting to perform further experiments on similar and other

datasets. It is particularly compelling to improve our understand-

ing of how different metrics can interact with known methods for

estimating polarization.
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APPENDIX
6.1 Hardness results
Here we prove Lemma 1, which is a key ingredient of the proof of

hardness for recon-k-median. Before we proceed, we provide a def-
inition of Densest k-subgraph, a well-known NP-hard optimization

problem which we employ in our reduction.

Problem 3. (densest k-subgraph — dks) Given a simple graph
G = (V ,E) with |V | = n and adjacency matrix A, and a number
k ∈ N with k < n, find

min

x
xTAx,

subject to x ∈ {0, 1}n and xT 1 = k .

We can now prove the aforementioned lemma.

Proof of lemma 1. We proceed by reduction from Densest k-
subgraph (dks).
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Consider an instance of dks, G = (V ,E), |V | = n with adjacency

matrix A. We define a matrix Ã as follows:

Ãi j =




Ai j (i, j ) ∈ E

0 i = j

2 otherwise.

Notice that this matrix is symmetric, the diagonal (and nothing

else) is zero, and since mini,j Ãi j = 1 and maxi,j Ãi j = 2, for all i ,
j, and ℓ

Ãi j ≤ Ãi, ℓ + Ãℓ, j .

We want to show that if

x = argmin

x∈{0,1}n

xT 1=k

xT Ãx,

then

x = argmax

x∈{0,1}n

xT 1=k

xTAx.

We can write xT Ãx =
∑
i
∑
j Ãi j I{xi = x j = 1} = M + 2N ,

where we have defined

M = |{(i, j ) |xi = x j = 1} ∩ E |

N = |{(i, j ) |xi = x j = 1} ∩ Ē |

That is,M is the number of pairs in x with a corresponding edge in

G, and N is the number of pairs in x without a corresponding edge

in G. Note thatM + N = 2

(k
2

)
= k2 − k .

Similarly, xTAx =
∑
i
∑
j Ai j I{xi = x j = 1} = M , where M =

k2 − k − N .

Suppose x minimizes mpd but it does not maximize dks. Then
for some x′,

x′TAx′ > xTAx,

which implies

M ′ > M,

or

x′T Ãx′ = M ′ + 2N ′ < M + 2N = xT Ãx.

This contradicts the initial assumptions, hence if x minimizes mpd,

x maximizes dks. □

6.2 Approximation guarantees
We employ the following notation:

− f (S ) =
∑
x ∈C d (x , s (x )), where s (x ) is the facility assigned to

client x ;
− д(S ) = 1

2

∑
x ∈S
∑
y∈S d (x ,y);

− NS (s ) is the set of clients served by facility s in solution S .

Proof of theorem 3. FromArya et al. [2], we know there exists

a set of k pairs Σ = {(oi , sj ) | i, j ∈ [k]} ⊂ O × S satisfying the

following properties:

(1) Every o ∈ O is considered in exactly one pair.

(2) Every s ∈ S is considered in two pairs at most.

From the local optimality of S we have

f (S − sj + oi ) − f (S ) + д(S − sj + oi ) − д(S ) ≥ 0,

for any i, j ∈ [k]. Again from Arya et al. [2], we know we can

choose the set of pairs Σ such that the following inequality holds:

5f (O ) − f (S ) ≥
∑

(oi ,sj )∈Σ

(
f (S − sj + oi ) − f (S )

)
. (5)

Furthermore, since S and S − sj + oi differ in one centroid only,

we have

д(S − si + oj )−д(S )

=
∑

x ∈S−sj+oi

∑
y∈S−sj+oi

d (x ,y) −
∑
x ∈S

∑
y∈S

d (x ,y)

=
∑
s ∈S
s,sj

d (oi , s ) −
∑
s ∈S

d (s, sj ).

Summing this difference over all k pairs we get∑
(oi ,sj )∈Σ

(д(S − oi + si ) − д(S ))

=
∑

(oi ,sj )∈Σ

*.
,

∑
sp ∈S,sp,sj

d (oi , sp ) −
∑
sp ∈S

d (sp , sj )
+/
-
.

Therefore, we have

5f (O ) +
∑

(oi ,sj )∈Σ

∑
s ∈S,s,sj

d (oi , s ) ≥ f (S ) +
∑

(oi ,sj )∈Σ

∑
s ∈S

d (sj , s ).

We consider this inequality, and modify it so that it becomes

dependent only on factors of f (O ), д(O ), f (S ), д(S ). To accomplish

this, we will consider the set of pairs Σ.
First, let us examine the following quantity:∑

(oi ,sj )∈Σ

∑
s ∈S,s,sj

d (oi , s ).

By the triangle inequality, we have that the sum corresponding

to each pair (oi , sj ) ∈ Σ is bounded as follows:∑
s ∈S
s,sj

d (oi , s ) ≤
∑
s ∈S
s,sj

d (oi ,ohs ) + d (ohs ,x ) + d (x , s ), (6)

where ohs is such that NO (ohs ) ∩ NS (s ) , ∅ and x ∈ NO (ohs ) ∩
NS (s ). If NS (s ) ⊆ NO (oi ), we consider d (oi , s ) ≤ d (oi ,ohs ) +
d (oi ,x ) + d (x , s ), choosing ohs as described below.

For notational convenience, we define

σ (oi ) =
∑
s ∈S
s,sj

d (oi ,ohs ) + d (ohs ,x ) + d (x , s ),

for each (oi , sj ) ∈ Σ — note that each oi appears exactly once in the

pairs in the set Σ, so the pair (oi , sj ) is uniquely determined by oi .
We want to choose the entries of inequality (6) such that

− every entry of the form d (oi ,ohs ) appears twice;
− every entry of the form d (ohs ,x ) appears once;
− every entry of the form d (x , s ) appears once.
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Algorithm 2 Reverse procedure to choose the replacements

1: for i = 1, . . . ,k do
2: Bi ← ∅
3: end for
4: for i = 1, . . . ,k do
5: r ← random ordering of 1, . . . ,k
6: for every j = 1, . . . ,k
7: Bi ← Bi ∪ {r (j )}
8: end for

To achieve this, we need a set of replacements such that for each

σ (oi ), the k − 1 corresponding replacements contain k − 1 distinct

entries of the forms d (oi ,ohs ), d (ohs ,x ), d (x , s ).
We define a function µ that maps each x ∈ C to a pair (oi , sj ) such

that x ∈ NS (sj ) ∩ NO (oi ). Since |NS (si ) | ≥ k and |NO (oi ) | ≥ k

by assumption, we can choose a subset C̃ ⊆ C of k2
points such

that each s ∈ S , as well as each o ∈ O , appears in k of the k2

pairs associated to the chosen points. We now define k multisets

Bj = {i : ∀x ∈ C̃ such that µ (x ) = (oi , sj )}. That is, each sj ∈ S
corresponds to a multiset Bj , which contains the index of each

oi ∈ O with which sj shares a client in C̃ , including repetitions.
For i = 1, . . . ,k we define themultisetsKi = {i, i, . . . , i}, |Ki | = k

andM =
⋃
i Ki . Consider the procedure outlined by Algorithm 2.

It is clear that such a procedure can produce any partition of the

multisetM into k sets containing k elements each. Consider the or-

derings such that said procedure results in the partition B1, . . . ,Bk .
If we reverse the procedure using those orderings, we obtain the

desired sequence of replacements. Note that for any entry d (oi , s )
in σ (oi ) such that NS (s ) ⊆ NO (oi ), we can make the rest of the

replacements first and then choose ohs from the remaining ele-

ments of O . Additionally, note that each sum σ (oi ) requires us to
make only k − 1 replacements. Since the above method provides k
satisfactory replacements for each sum, we can simply pick k − 1

of those. We can now conclude that

− every element of the form d (oi ,oj ) can only appear either

in σ (oi ) or in σ (oj ). Since for all σ (oi ), the entry d (oi ,oj ) is
unique, each d (oi ,oj ) appears at most twice;

− for any element of the form d (o,x ),o ∈ O , x is unique;

− for any element of the form d (s,x ), s ∈ S , x is unique.

We have established the following inequality∑
(oi ,sj )∈Σ

∑
s ∈S
s,sj

d (oi , s ) ≤ 2д(O ) + f (O ) + f (S ). (7)

We now examine the quantity∑
(oi ,sj )∈Σ

∑
s ∈S

d (sj , s ). (8)

For every two facilities si , sj ∈ S , either

− d (si , sj ) appears in the sum;

− d (si , sj ) does not appear in the sum. This implies 1) si , sj
are not part of any pair in Σ and 2) some other sh appears

in two pairs (remember that there are exactly k pairs and

each s ∈ S takes part in at most two). Since the summa-

tion

∑
sj ∈S d (sh , sj ) is computed over all elements of S , we

have two appearances of d (sh , si ) and other two of d (sh , sj )

(one for each summation corresponding to the two pairs

involving sh ). Since d (sh , sj ) + d (sh , si ) ≥ d (si , sj ), we can
replace d (sh , sj ) + d (sh , si ) with d (si , sj ) in the sum (8) and

the inequality still holds.

This implies the following:∑
(oi ,sj )∈Σ

∑
s ∈S

d (sj , s ) ≥ д(S ).

Combining this with inequality (5) we can state

10f (O ) + 2

∑
(oi ,sj )∈Σ

д(S − sj + oi ) − 2f (S ) − 2д(S ) ≥ 0. (9)

Considering each cluster in both S and O to have at least ⌈2λ⌉k
points, we can extend the result to account for λ. To do this, we

apply the replacements leading to inequality (7) ⌈2λ⌉ times to the

sum 2λ
∑

(oi ,sj )∈Σ
∑

s ∈S
s,sj

d (oi , s ) and obtain

2λ
∑

(oi ,sj )∈Σ

∑
s ∈S
s,sj

d (oi , s ) ≤ 4λд(O ) + f (O ) + f (S )

To see this, note that for every entry of the form d (oi ,x ) or d (sj ,x ),
x is still unique. Combining this with inequality (9), we have

10f (O ) + 4λд(O ) + f (O ) + f (S ) ≥ 2f (S ) + 2д(S ),

which implies

11f (O ) + 4λд(O ) ≥ f (S ) + д(S ).

Therefore,

max{11, 4λ} cost (O ) ≥ cost (S ).

□

Theorem 4. Let (F ,C,k, λ) be an instance of problem 1. Let S =
{s1, . . . sk } be a solution output by algorithm 1 and letO = {o1, . . . ok }
be an optimal solution.. Then

cost (S ) ≤ (λk + 5)cost (O ) (10)

The proof, which we omit due to space constraints, is similar to

that of theorem 3.
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