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Abstract—Internet of Things (IoT) is a computing infrastruc-
ture underlying powerful systems and applications, enabling
autonomous interconnection of people, vehicles, devices, and
information systems. Many IoT sectors such as smart grid or
smart mobility will benefit from the recent evolutions of the smart
city initiatives for building more advanced IoT services, from the
collection of human- and machine-generated data to their storage
and analysis. It is therefore of utmost importance to manage the
volume, velocity, and variety of the data, in particular at the
IoT gateways level, where data are published and consumed.
This paper proposes an access time improvement framework to
optimize the publication and consumption steps, the storage and
retrieval of data at the gateways level to be more precise. This new
distributed framework relies on a consistent hashing mechanism
and modular characteristics of microservices to ensure a flexible
and scalable solution. Applied and assessed on a real case study,
experimental results show how the proposed framework improves
data access time for standardized IoT gateways.

Index Terms—Internet of Things, microservices, consistent
hashing, distributed system, gateway, big data

I. INTRODUCTION

The Internet of Things (IoT) technology is becoming a
promising opportunity for developing powerful systems and
applications, enabling autonomous interconnection of people,
vehicles, devices, and information systems [1]. Various IoT
sectors (e.g. industries, smart grid, smart mobility, ...) will
benefit from the recent evolutions of the smart city initiatives,
by leveraging ubiquitous connectivity, system interoperability,
and analytics, for building more advanced IoT services. Such
services can be shaped by the interaction and cooperation
of Cyber-Physical Systems or Industrial Internet (of Things)
technologies allowing the collection of human- and machine-
generated data as well as their storage and analysis.

Whether in smart cities or industrial environments, these
services have to be offered in real-time. As a consequence,
it is of utmost importance to manage the volume, velocity,
and variety of the data from different sources to be able to
make timely decisions based on them. These data are usually
made available through IoT gateways that implement open and
standardized API, while enabling horizontal interoperability
across vertically-oriented closed systems. Two challenges need
therefore to be tackled: (i) collecting, storing, and making
available data provided by different stakeholders and systems
in a near real-time and in a standardized way, also referred

to as the publication step in this paper; (ii) retrieving and
sending back data as fast as possible whenever an end-user
requests for them, also referred to as the consumption step.
Both contribute to ensure optimal data quality, particularly in
terms of availability and freshness.

To address these challenges, this paper proposes a dis-
tributed access time improvement framework for optimizing
the publication and the consumption steps, including the
storage and retrieval of data at the IoT gateways level. To
reach near real-time performance, the framework relies on a
consistent hashing mechanism [2] and a distributed storage
system. It speeds up access to a batch of data and can also be
considered a load balancing system when the number of users
increases. We exploit the modular characteristics of microser-
vices [3] to implement consistent hashing, as they provide an
independent environment to run the application code. With
microservices, a single application can be developed as a
suite of small autonomous services, each running on its own
domain. Our framework is assessed on a real city pilot use case
of the ongoing bloTope! H2020 project. The core component
of bloTope is the IoT gateway, referred to as O-MI node?,
relying on the Open Messaging Interface (O-MI) [4] and Open
Data Format (O-DF) [5] standards. This study allows us to
(i) show the improvement in terms of data access time at the
gateways level, and (ii) draw conclusions on the impact of our
framework on the access time.

The rest of the article is organized as follows. Section II
explains the related work on IoT gateways, data management
systems, and microservices architecture. Section III proposes
a distributed framework for optimizing data storage and re-
trieval. In Section IV, our proposed framework is assessed on
the Brussels city use case along with the experimental results.
Finally, Section V concludes this paper.

II. RELATED WORK

Existing approaches and tools can be found in literature
concerning 10T applications, data management, and the design
of IoT gateways. Many standard organizations (e.g. ETSI,
W3C, 3GPP, or IETF) provide several specifications for the

Building an IoT OPen innovation Ecosystem for connected smart objects
20-MI node implemented by Aalto University: https:/github.com/
AaltoAsia/O-MI, accessed in December 2018



IoT architecture, including service requirements, functional
design, communication interfaces, and data standardization.
These specifications can be adopted at the gateway level to
offer interoperable and scalable solutions.

A. IoT Gateways

In many IoT systems and applications, the gateway provides
an interface between backbone and sensor networks, and acts
as a communication layer through which the data are being
published and consumed. Chen et al. [6] mention the IoT
gateway as a proxy for the sensing and network domains to
communicate efficiently with other systems. The Open Group
consortium has defined universal messaging standards, namely
O-MI [4] and O-DF [5] (previously known as Quantum Lifecy-
cle Messaging QLM [7]) to provide peer-to-peer communica-
tion and real-time interaction between heterogeneous systems.
These standards reside independently at the communication
and format levels of the OSI Application layer, thus over-
coming horizontal interoperability while operating as an IoT
gateway. O-MI provides a generic open API for transporting
data payloads in nearly any format. The complementary O-
DF standard is currently the most common text-based payload
format due to its flexibility [8]. O-DF is defined as a simple
ontology, specified using XML schema, which is generic
enough for representing any object in the IoT. The four basic
operations for sending O-MI requests are read, write, cancel,
and subscribe (a specific read operation) [8] [9]. Since the
gateway is one of the essential components in IoT, Morabito
et al. [10] propose a LEGIoT gateway architecture. It optimizes
resource management, improves latency, and offers an inter-
operable solution by relying on container-based virtualization.
Similarly, the Agile® project has implemented an adaptive
IoT gateway, which supports protocol interoperability, cloud
communication, and device and data management. In addition,
Kang et al. [11] propose a self-configurable gateway featuring
dynamic discovery, real-time detection, and configuration of
smart devices over the wireless networks.

B. IoT Data Management

Since a large number of devices is connected to the gate-
ways, the data generated from them are vast in volume,
which forces IoT to adopt flexible approaches for IoT data
management. Li et al. [12] propose IoTMDB, a centralized
data storage management system, based on NoSQL database
to store massive IoT data. Similarly, an open-source NoSQL
distributed database called Apache Cassandra* is designed to
handle enormous amounts of structured, semi-structured, and
unstructured data. It applies a consistent hashing mechanism to
distribute data across a cluster. Although Cassandra provides
frequent read and write capabilities, there is no functionality of
data subscription for automatic data updates, which is central
to other mechanisms, e.g. O-MI and O-DF. Thus, Cassan-
dra is not a directly suitable solution. Another data storage
framework is implemented by Jiang et al. [13] to manage

3http://agile-iot.eu/about/, accessed in September 2018
“http://cassandra.apache.org/doc/latest/, accessed in September 2018

unstructured and structured IoT data, exploiting Hadoop and
other databases (NoSQL and relational). Fazio et al. [14]
propose a Cloud storage solution to optimize data storage,
querying and retrieval for huge amounts of heterogeneous
data. Although this solution manages massive IoT data, it may
suffer from bandwidth overhead and high latency to retrieve
immediate data for processing. Furthermore, Tian et al. [15]
propose a load-balancing algorithm (DAIRS) for cloud data
centers, which ensures the allocation of both physical and
virtual servers by considering CPU, memory, and network
bandwidth. Similarly, another load-balancing algorithm called
VectorDot is implemented by Singh et al. [16] to manage the
hierarchical and multi-dimensional load distribution in agile
data centers. However, there is no functionality of balancing
standardized data within the servers.

Additionally, one of the solutions for addressing big data
challenges in various IoT areas is employing microservices.
Recent literature claims that the unified (monolithic) frame-
work for IoT applications is an unrealistic approach; instead,
microservices are the natural fit for IoT development [3]. A
microservice® is a small, cohesive, and autonomous service
that deploys independently and interacts using lightweight
messaging protocols. Microservices architecture is an archi-
tectural style enabling the concept of modular independence
to structure an application as a collection of loosely coupled
services [3]. In this context, Krylovskiy et al. [17] exploit
microservices architecture to propose a decentralized data
management approach for smart cities. Vresk and Cavrak [18]
propose a microservices-based middleware to connect different
devices, services, and protocols ensuring system scalability
and interoperability. Microservices can also be applied to other
e.g. location- and context-based applications [19].

III. DATA PUBLICATION AND CONSUMPTION
FRAMEWORK

In recent IoT literature, data management is mainly per-
formed at the cloud level without any standardized computing
technologies. However, to the best of our knowledge, this
work is the first to optimize the storage and retrieval of
standardized IoT data by leveraging state-of-the-art computing
technologies at the gateways level. The proposed framework
tends to improve access time by relying on a consistent
hashing mechanism, which is implemented in the form of
wrappers. This new distributed framework is designed to
overcome the problems with collecting, storing, and accessing
a large volume of data in near real-time by offering a generic
mechanism mainly running at the IoT gateways level. Fig. 1
provides a high-level overview of the proposed framework.
Data providers grant access to their data often by using
proprietary APIs. Wrappers enable publishing these data on an
IoT gateway in a standardized way. To optimize the storage,
data are assigned and distributed to multiple node/gateway
instances (as well as the retrieval of these data) with the

5https://Www.martinfowler.Com/articles/microservices.html, accessed in

September 2018
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Fig. 1: High-level architecture of our framework, where m
defines the size of the hashing mechanism

consistent hashing mechanism, as depicted in Fig. 1 with a
hashing circle and lookup table. Section III-A presents the
methodology for data translation in a standardized format and
ways in which these data are then stored and later retrieved
on the IoT gateway. In addition, Section III-B describes an
implementation viewpoint.

A. Data Storage Management with Consistent Hashing

In the proposed framework, raw data need to be processed
and converted into standardized API format in real-time. Data
standardization is essential as it enables us to make the data
consistent, ensuring that the related data can easily be under-
stood, identified, and managed through common terminology
and format [20]. In data translation, the wrapper (containing
multiple microservices) acquires data items from various data
sources in raw format such as JSON, YAML, or XML. It
then parses the data, converts them into standardized format
(e.g. O-DF, JSON-LD, or RDF), and stores the translated
data with distributed storage system. Our mechanism for data
management is consistent hashing as it enables us to evenly
distribute data items onto multiple servers with a design that
is similar to Apache Cassandra. However, unlike Cassandra,
our design supports microservices and offers publish/subscribe
messaging. Consistent hashing tends to balance the node loads,
since each node receives roughly the same number of keys
and requires a minimal amount of data location changes. In
this mechanism, each server node is assigned to administer
several unique key ranges. Given a sufficient number (10+)
of key ranges per database server guarantees near optimal
load balancing behavior [2]. Unlike other load balancing

mechanisms such as Round Robin [21], consistent hashing
is tailored for higher accuracy as the addition and removal of
servers are rather dynamic with minimal data changes.

Consistent hashing provides a key space to map keys (e.g.
data or server key) that can be drawn as an identifier circle
in which the mapping starts in a clockwise manner. Data and
server IDs are mapped to the same key space. If there are
K keys mapped to N servers, adding or removing a server
will only have a % number of changes [2]. The mapping is
performed by using the hash function (e.g. SHA-2), which
assigns an m-bit key identifier to each ID. The m must be large
enough so that no two IDs hash to the same key identifier.
Furthermore, keys are ordered in an identifier circle using
modulo 2. Key k is assigned to the first server in a clockwise
manner whose identifier is equal to k. If the server with key k
is unavailable, the next server key ahead of key k is used. Let
us cite an example of a hashing circle shown in Fig. 2 where
the key space has 16 keys (m = 4) with a range from 0 to 15.
As can be seen in Fig. 2(a), the circle has four servers that are
mapped to keys 1,5, 8, and 12 (shown in small green circles).
In addition, each server is responsible for at least one key range
(out of four key ranges k1, ko, k3, and k4). The blue circles
represent the data items that are mapped to the corresponding
keys. In the mapping, the successor of key identifier 4 is 5
as the key belongs to the key range ko, which maps to the
server with key 5. Similarly, the successor of key 5 is 5,
hence the data reside at server key 5. From the implementation
viewpoint, these key ranges are stored in a lookup table where
each row specifies the mapping of the key identifier to the
corresponding server node. Moreover, Fig. 2(b) demonstrates
a scenario where another server with key 15 joins the system.
In this case, some of the keys (in ki) are now assigned to
server 15 (with key range ks).

B. Wrap-up: An Implementation Viewpoint

This section presents the proposed algorithms implemented
in our framework. Algorithm 1 provides a mechanism for
data translation, mapping, and distribution to multiple server
instances. It takes data-id as an input and produces a lookupT-
able in which the mapping of data hash keys with the
server IDs are stored. To begin, the lookupTable is initialized
with the number of servers and the corresponding random
SHA-2 keys. For instance, if there are three servers in the
framework, three hash keys are generated and assigned to these
servers. Once the keys have been mapped, the lookup table is
sorted from the smallest to the largest keys. The algorithm
proceeds by generating the hash key of the data-id, finding
the server in the lookup table, and writing the data item on
the corresponding server. In addition, the table is updated
and sorted with every new key entry. We make the lookup
table persistent using SQLite database management system.
Similarly, Algorithm 2 enables us to read data items stored
in the servers. It takes data-id and lookupTable as inputs and
returns standardized-data as an output. This algorithm first
calculates SHA-2 of the data-id, it then searches the lookup
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(b) A scenario when another server joins the circle

Fig. 2: An identifier circle with m = 4; ky... ks describes the
key ranges managed by servers 1, 5, 8, 12, and 15

Algorithm 1: Store standardized data on servers

Function store.dataItem()
Input: data-id
Output: lookupTable[hash,server]
hash < SHA-2(data-id)
foreach element k of the lookupTable[hash] do
hash’ < lookupTable[k]
if hash < hash’ then
server <— lookupTable(hash’)
break
else
server <— lookupTable(min(hash’))
break

end

end

standardized-data <— dataltem(data-id)
write(server, standardized-data)
lookupTable <— [hash,server]

table to locate the server where the data are stored, and finally
returns the requested data back to the user.

IV. CASE STUDY: AN ACCESS TIME ANALYSIS

The data publication and consumption capabilities of our
proposed framework are applied to a real use case, which
relates to Brussels city with its smart mobility scenarios in the
ongoing bloTope H2020 project. The first scenario addresses
safer mobility of children traveling to and from school in
the Belgian capital region. The second scenario highlights
smart mobility for waterbus service boats. The third scenario
describes smart parking guidance based on the availability of
parking places, occurrence of road congestions, or planned

Algorithm 2: Read standardized data from servers

Function read.dataItem()

Input: data-id, lookupTable[hash,server]

Output: standardized-data

hash < SHA-2(data-id)

if hash € lookupTable then
server <— lookupTable(hash)
data-item <— read(server, data-id)
return data-item

else

| data-item ¢ server
end

events in the city. In all the aforementioned scenarios, the
objective is to publish road traffic data through an O-MI node®,
an loT gateway implementing the core bloTope standards i.e.
O-MI and O-DF, to make timely decisions based on these
data. In the Brussels city pilot, two platforms provide data
through their own proprietary APIs. First, Waze’ is a GPS
navigation platform that provides real-time traffic alerts and
turn-by-turn navigation information. Through Waze, users can
report traffic updates such as route details, accidents and traffic
jams. Second, UrbIS® comprises a set of cartographic and
alphanumeric data for the administration of the capital region
including equipment, infrastructure, and mobility issues.

A. Wrapper Implementation

The wrapper enabling data translation, storage, and retrieval
relies on the consistent hashing mechanism with microser-
vices. Our implementation is based on three microservices
functions (written in Java) as shown in Fig. 3.

e Function 1 — Write: This function retrieves 22,780 road
segments from Brussels mobility API. Each segment has
an associated segment ID and many other key-value
attributes. Based on these IDs, the road segments are
converted into a standardized O-DF format and mapped
to the O-DF hierarchy, where each segment is considered
an O-DF object, as depicted in Fig. 3. Besides, the
objects are distributed and stored on the O-MI node
instances using the hashing mechanism, as described in
Section III-A. In our implementation, data are categorized
into groups and hashing is applied to a group level
(with group ID) instead of individual data segments, thus
placing adjacent data segments closer to each other.

o Function 2 — Update: This function updates the data
segments onto O-DF objects hierarchy (already created by
Function 1) with real-time traffic data collected from the
Waze API (= 700 segments). Data segments are updated
inside O-MI nodes based on their IDs.

e Function 3 — Read: This function responds to the user
request for reading road segments. It searches the lookup
table to locate the O-MI node (where segments are stored)
and returns the O-DF data back to the users.

Shttps://github.com/AaltoAsia/O-MI, accessed in September 2018

Thttps://www.waze.com/, accessed in September 2018

8UrbIS solutions: https://bric.brussels/en/our-solutions/urbis-solutions, ac-
cessed in September 2018
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B. Performance in terms of Access Time

In order to evaluate the performance of our framework,
particularly in terms of data access time, we consider the
Brussels smart city use case. The experimental setup, depicted
in Fig. 4, consists of three physical machines: (i) The proposed
framework runs on an HP EliteBook Windows laptop with
Intel Core i5 2.40GHz CPU and 8GB RAM,; (ii) O-MI gate-
ways are executed as Docker containers (v17.12) on a separate
Linux machine with 16GB RAM and Intel Xeon(R) 3.20GHz
8-cores processor; (iii) The open-source software Apache
JMeter® (v4.0) runs on another HP EliteBook Windows laptop
with a memory of 8GB and Intel Core i5 2.40GHz CPU, and
enables us to simulate heavy load on the O-MI gateway.

We select two cases for performance assessment. (i) Read
access time: The time taken by the gateway to respond to a
user’s read request. Concurrent users send O-DF requests for
reading random data items and in turn, receive Brussels road
segments in the O-DF format. (ii) Write access time: The
time taken by the gateway to respond to a user’s write request.
Concurrent users send O-DF write requests for updating
and storing road segment data. The comparison considering
the two aforementioned cases is performed between without
framework and with framework setup. Without framework is
based on O-MI reference implementation®, which is imple-
mented in Java and Scala, and consists of three core compo-
nents: API endpoint, agent system, and the user interface (web
client). API endpoint manages user requests and the database.
The agent system has multiple agents which are integrated
with the API endpoint to pull/push sensor data from and to the
embedded version of Warp10'? database. The user interface is
a front-end service for creating read or write requests in O-DF
format. On the other hand, with framework setup defines our
consistent hashing implementation with microservices. Unlike
without framework setup, the proposed solution allows us
to distribute data onto multiple gateways. We can also use

%http://jmeter.apache.org/, accessed in September 2018
10http://www.warp10.io/introduction/platform/, accessed in September 2018
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Fig. 4: Experimental setup for performance analysis

more than one gateway in without framework setup. However,
instead of data distribution to multiple nodes, it will be
considered data replication (same data in every O-MI node)
which is irrelevant to this case study. Thus, without framework
is only analyzed with single O-MI gateway.

Experimental results for the read and write access time are
illustrated in Fig. 5 and Fig. 6, respectively. These graphs rep-
resent a boxplot providing minimum, 10" percentile, median,
90" percentile, and maximum of the data access time for three
different user groups calculated over each 100-second period.
The evolution of users with time is plotted in Fig. 5(d). As can
be seen, the number of users increases gradually (in a group
of 10 users) up to 30 concurrent users (at t=500s) sending
random requests. It then begins to decrease with a ratio of
10-by-10 until the end of the experiment (t=1000s). Fig. 5(a),
Fig. 5(b), and Fig. 5(c), respectively, provide an aggregated
view of the read access times for three scenarios: (i) 1 O-MI
node; (i) 3 O-MI nodes with our framework; (iii) 5 O-MI
nodes with our framework. Similarly, Fig. 6(a), Fig. 6(b), and
Fig. 6(c) provide an aggregated view of the write access times
for the same scenarios. Each scenario is repeated three times
and the observed access times do not significantly change.

The following conclusions can therefore be drawn:

1) Read access time evolution: As seen in Fig. 5, when the
load is relatively low [0:200s], the access time is also low
(less than 1s). When the load increases [200:600s], the
access time increases accordingly to around 4s, 2s, 1s in
our respective scenarios. Finally, when the load decreases
[600:1000s], the framework progressively adapts itself
and the read access time decreases. Overall, even if in
most cases (90%) the access times are still acceptable, it
can be seen that our framework enables to minimize the
worst case (when the load is important).

2) Write access time evolution: As seen in Fig. 6, when
the load is comparatively low [0:200s], the access times
are almost the same for all the three scenarios. However,
there is a significant decrease in the maximum value of
write access time from 34s in Fig. 6(a) to around 3s in
Fig. 6(c). When the load increases [200:600s], the maxi-
mum value decreases accordingly to around 36s, 18s, 4s
in our respective scenarios. In case of a single O-MI
node, the load cannot be distributed and all the concurrent
requests are handled by one gateway, which allows to
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Fig. 5: Impact on read access time

incorporate a significant amount of delay for performing
successful data write. Finally, when the load decreases,
the write access time also decreases with it.

3) Number of nodes: Compared to Fig. 5(a), Figures 5(b)
and 5(c) show that adopting our framework enables de-
creasing read access time, even when the load is relatively
high, i.e. all the concurrent users are active [400:600s].
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The case is the same for write access time in Fig. 6(b)
and Fig. 6(c), as the load is distributed to multiple O-
MI gateways. Overall, adding more nodes through our
framework improves the performance as compared to a
single O-MI node, thus reducing the access time.

In addition to the previous cases that consider only the read
and write requests of a random data item with concurrent
users, TABLE I shows the access time for three different
requests. (i) ReadAll (response size: 41 Mbytes): an O-DF
request is sent to read all 22,780 road segments. (ii) Read
“single” random object (response size: 85 Kbytes): a request is
sent to retrieve single random road segment. (iii) Read “large”
random object (response size: 422 Kbytes): a request is sent
to read several road segments from multiple O-MI nodes. The



TABLE I: Access time measurements (in seconds) with and
without our framework for three read requests

Without Framework With Framework

3 nodes 5 nodes
Min Max Avg

Min Max Avg Min Max Avg
ReadAll * * * 21.33 2898 22.89 21.10 22 21.51
Read “single”
random object 039  22.13  1.93 0.05 9.33 0.75 0.09 1.97 0.45
Read “large”
random object 1.33  11.67  1.66 0.50 3.41 0.68 0.41 3.74 0.55

* timeout

measurements in TABLE I are taken from a period when all
concurrent users were active [400:600s]. Overall, even if there
is no significant difference in read access times in requests (ii)
and (iii), they allow confirming the previous results. However,
it is important to note that our framework can significantly
improve access to all the data segments (request (i)). In case
of a single O-MI node, the request is timed out (timeout = 40s)
and the node may even become unresponsive.

V. CONCLUSION AND FUTURE WORK

This paper proposes a distributed data publication and con-
sumption framework to improve access time for standardized
IoT gateways. It optimizes the storage and retrieval of data at
the IoT gateway level and tackles the following challenges:
(i) collecting, distributing, and storing data provided by dif-
ferent stakeholders in a near real-time and in a standardized
way; (i) retrieving and sending back data as fast as possible
whenever an end-user requests for them. This new distributed
framework is implemented by employing microservices, which
consists of two parts: (i) It translates the raw data into a
standardized API format; (ii) It relies on a consistent hashing
mechanism to distribute and store real-time data onto multiple
servers, thereby improving access time to a batch of data. We
assessed our framework by applying it to the Brussels city
use case of the ongoing bloTope project, in which the core
component is the IoT gateway, developed through the adopted
messaging standards, i.e., O-MI and O-DF. The experimental
results conclude that the proposed framework improves data
access time and ensures a scalable solution. Our future work
will address the integration of our proposed framework with
the O-MI security module'!, as it provides user authentication
and authorization to securely access data items. Further, the
framework will be enhanced to offer fault tolerance capability
in such times when either the gateways or the distributed
storage mechanism fail to respond.
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