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Abstract

In this paper we address the problem of establishing cor-
respondences between different instances of the same ob-
ject. The problem is posed as finding the geometric trans-
formation that aligns a given image pair. We use a convolu-
tional neural network (CNN) to directly regress the param-
eters of the transformation model. The alignment problem
is defined in the setting where an unordered set of semantic
key-points per image are available, but, without the cor-
respondence information. To this end we propose a novel
loss function based on cyclic consistency that solves this 2D
point set registration problem by inferring the optimal geo-
metric transformation model parameters. We train and test
our approach on a standard benchmark dataset Proposal-
Flow (PF-PASCAL)[8|]. The proposed approach achieves
state-of-the-art results demonstrating the effectiveness of
the method. In addition, we show our approach further ben-
efits from additional training samples in PF-PASCAL gen-
erated by using category level information.

1. Introduction

Establishing correspondences between images has been
a fundamental problem in computer vision for decades. Ar-
eas of application includes structure from motion, tracking,
stereo fusion, and, optical flow among many others. Al-
though challenging, these areas of research often deal with
images of the same object or scene. However, the task of se-
mantic matching are not based on similar assumptions and
offers much more challenging variations in terms of appear-
ance and geometry.

In this paper, we aim to tackle the problem of semantic
matching using CNNs. Until recently, methods [2],[11] that
use traditional hand-crafted descriptors [18]],[23],[4] have
topped the performance tables. Similar to the success of
deep-learning in other fields of computer vision [S]], CNNs
have also made an impact in the field of semantic matching
[O1,[211],[20]. However, this also comes with some chal-
lenges. Semantic matching is evaluated by measuring the
pixel transfer error. To train a neural network for this task in
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a supervised manner, one of the following forms of super-
vision is needed: i) geometric transformations like affine,
thin-plate spline, homography or relative camera position
with depth, and, ii) flow fields that contain pixel level cor-
respondence. However, one needs a large amount of image
pairs with such supervision to train CNNs. Unlike optical
flow [7]], such amount of data is not available for the partic-
ular task of semantic matching. As such existing methods
either use self-supervision [20] or weak-supervision [21].
On the other hand, obtaining images with sparse ground-
truth semantic key-points along with their respective object
categories is relatively simple for small datasets (e.g. Pro-
posal Flow). Thereby, using pairwise combinations within
a given object category, large number of image pairs can be
obtained. However, without the correspondence informa-
tion between their respective semantic key-points, it is not
clear how to effectively utilize this form of supervision to
learn a better semantic correspondence function.

In this paper, we cast the task of semantic matching as
solving a 2D point set registration problem. Our goal is
to infer the parameters of a transformation model that best
aligns the key-points from each image in a given image pair.
The only requirement is that the semantic key-point sets
should have atleast partial overlap. This indirectly removes
any assumptions that the point sets should have the same
order or size. We use a CNN [20] to predict the transforma-
tion parameters. In order to train the neural network on the
end objective of key-point alignment, we propose a novel
loss function based on nearest-neighbor cyclic consistency.
The proposed loss is a function of the predicted transforma-
tion parameters and thus allows back-propagation to train
the parameters of the CNN. Given a source-target image
pair, the key-points from source image are projected onto
the target image using the estimated geometric transforma-
tion parameters. Thereafter, each projected source point is
assigned a nearest neighbor from the ground-truth target
key-points and the Euclidean distance between them con-
stitutes the nearest-neighbor constraint. In addition, we im-
pose the cycle consistency constraint that ensures the pro-
jected source points re-project close to the original source
points under backward transformation. Results show that



the proposed method significantly outperforms the baseline
CNN geometric model [20]] on semantic matching datasets.
We also analyze and demonstrate that the combination of
two constraints is particularly important in achieving better
performance.

2. Related Work

Semantic matching. Like other fields of computer vi-
sion, SIFT [18]] features and descriptors have been the tra-
ditional choice in the field of semantic matching. SIFTFlow
[[L7] computes dense SIFT features, followed by hierarchi-
cal optimization of matching cost to obtain dense pixel level
flow. Yang et al. [23]] instead use DAISY [23]] descriptors.
While these approaches use descriptors at pixel level for
matching, Ham et al. [8] introduced proposal flow that uses
region proposals as matching elements. They use HOG de-
scriptors to match region proposals. Similarly, Taniai et al.
[22]] also use HOG descriptors to jointly perform the task of
co-segmentation and generate correspondence flow field.

Using CNN descriptors from networks pre-trained on
ImageNet [5] instead of traditional hand-engineered de-
scriptors have shown promising results [[I]. However, [8]
shows that the descriptors do not generalize well to the do-
main of semantic matching. On the other hand, optical flow
based methods [7] demonstrated that when trained end-to-
end, CNNs can outperform hand-engineered descriptors in
obtaining dense correspondence. As such, [9]], and, [13],
fine-tune CNN parameters by computing the loss in the pro-
posal flow framework. Similarly, Choy et al. [3] propose a
universal correspondence network to learn dense CNN de-
scriptors using metric learning. The final correspondence
flow field is obtained by matching putative regions using
the CNN descriptors. Instead, [27], [21], [20] directly out-
put the correspondence map. [27] directly outputs dense
optical flow styled correspondence field, while, [21]],[20]
outputs the parameters of a transformation model. The ge-
ometric transformation model is then used to generate cor-
respondence flow field.

As generating dense ground-truth correspondence field
is a challenging task, recent methods have shown that pho-
tometric consistency can be used to train CNNs to pre-
dict correspondence flow. In particular, Zhou et al. [26]
uses it to predict relative camera motion and depth for a
given image pair. [[15] uses the photometric loss in a semi-
supervised manner with GAN (Generative Adversarial Net-
work) to perform domain adaptation from synthetic to real
optical flow datasets. In the field of semantic matching,
color (or photometric) constancy constraint is not valid due
to the appearance variation between different instances of
similar objects.

In [20], Rocco et al. generate image pairs by syntheti-
cally transforming a set of images. This is used to train the
network for predicting the parameters of the transformation

model. This was later extended to [21], where the same ge-
ometric model was trained on real image pairs in a weakly
supervised manner. The weak supervision was in the form
of image level correspondence and the loss was computed
by feature correlation at positions consistent with the pre-
dicted transformation parameters.

Cycle consistency and dual learning.

The cycle consistency helps learning correspondent rep-
resentations such that a mapping from a source space to a
target space should result in a similar target to source rep-
resentation once inputted to an invert mapping. To this end,
the pairwise distances of such representations is minimized
within source and target spaces via a distance function, cre-
ating a cycle, please see Figure[]

Our approach is inspired by the work of Zhou et al. [28]
in which authors propose learning dense correspondences
between images and their 3D CAD model by imposing a
cycle-consistency condition. Zhou et al. [27] extends the
idea to the framework of CNNs by leveraging 3D mod-
els to create cyclic graphs between the rendered synthetic
views and pairs of images. The network is made to pre-
dict transformations for image-image and image-synthetic
pairs. Using the 4-cycle constraint, the synthetic-synthetic
transformation is estimated and compared with the ground-
truth to generate gradients. However, the method necessi-
tates the availability of 3D models and sampling appropriate
synthetic views.

In this work, we take the same idea and employ it to
key-point correspondences. That is minimizing the distance
between the key-points in source image and its estimated
position obtained by traversing a cycle using respective flow
fields.

3. Proposed Approach

In this section, we first describe the framework and the
desired properties of the geometric alignment model. Then
we proceed to define various learning objectives for train-
ing a CNN to predict the parameters of the transformation
model.

Correspondences can be established between a given
source-target image pair by either predicting a dense optical
flow [7]],[27]] or by regressing the parameters of a geometric
model [21]],[20]. The main objective is to obtain a mapping
from source to target pixels and measuring the pixel transfer
error. In our framework this pixel transfer error is computed
at training and evaluation stages at only semantically mean-
ingful pixel locations (key-points). However, these seman-
tic key-points have structured local and global properties
which can be better modelled by a geometric transforma-
tion model. This makes a geometric model more suitable
than dense flow based models. As the error is measured at
pixel level (i.e. at semantic key-point locations), the only
requirement is that the geometric model should be differen-
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Figure 1. Nearest Neighbor Cycle Consistency.. The Figure shows the nearest neighbor and the cyclic consistency constraint that is used
to train a geometric transformation network. e.,. represents the cyclic consistency loss which is the re-projection error of P4 under the

transformations § 45 0 5 4. exy measure the error between the projected source point, P4 and its nearest neighbor target point (Pg’ in

the Figure.).

tiable. This allows computation of the gradient of the key-
point transfer error w.r.t parameters of the geometric model.
These gradients can then be back-propagated to the network
parameters.

We therefore use the geometric CNN [20] as our base
network which uses synthetic transformations as ground-
truth to learn a geometric mapping. The network outputs
affine and thin-plate spline (tps) transformation parameters
in an iterative manner. The network is trained using a grid
loss as follows: A fixed grid of points G = {g;}, where
g€ R?and Z = |G|, is defined on the source image. Then
using the estimated and ground truth synthetic transforma-
tions parameters, §and 0 , respective transformations T5 and
Ty are obtained. These transformations are then used to
warp (G. The grid loss is then computed in the space of
warped grid locations :

1 Z
L=~ ; IT5(G) = To(G)l2 (1)

3.1. Inference

In the current setting, we replace the uniform grid loca-
tions G with the ground-truth semantic key-points P. For
a given source-target image pair A, B we have as ground-
truth a set of semantic key-points P4, Pp with cardinal-
ities |Pa| = M and |Pg| = N. We consider the case,
where the sets are unordered and having unequal cardinali-
ties, i.e. M # N. Hence we define a correspondence map
C : RM*N = 0,1}, such that C[a, b] = 1if p, € P4 and
pp € Pp are in correspondence, else the elements of C' are
0. Therefore, equation[I|can be re-written as

1 M
Li=+: D

i=1
Pa,ps|Cla,b]=1

IT5,,(a) —poll2 (@)

The key difference with Equation [T]is that there may not
exist a single true global optimum that best aligns the key-
points of a given image pair. However, observing a diverse
set of image pairs from a given object category and corre-
sponding key-points should make the network converge to
the least-squares estimate.

3.2. Learning objectives

As defined in our problem setting, we only have knowl-
edge of the semantic key-points P4, Pp and not the corre-
spondence map, C. Thereby, in this section we propose a
list of candidate loss functions to solve Equation [2] without
the correspondence information.

Nearest-Neighbor Based on the principle of Iterative Clos-
est Point(ICP) algorithm, the projected source points un-
der the forward transformation are assigned the nearest-
neighbor target points in the Euclidean space as correspon-
dence. Thereafter, the error is computed as the Euclidean
distance between each projected source points and its near-
est neighbor target point.

M

1

L, = M 2 Jnin ITs, . (Pa) — Poll2 3)
Chamfer Distance Chamfer distance (CD) also works on
the principle of minimizing distance between nearest neigh-
bors for each point in a point set pair. In an earlier work, it
has been used for 3D point cloud registration [6]. In ad-
dition to Equation[3} CD additionally measures the distance
between each target point and its nearest-neighbor projected
source point.

N
1
F _F : X B
Léy =Ly + ;pf&% 1T, (a) = poll2 @)



Cyclic Consistency

While the nearest-neighbor policy works quite well in
practice, it can fail under viewpoint change (c.f. Section
[4.6). For instance a geometric transformation network pre-
trained on simple synthetic affine transformations may not
generalize well to real world samples with significant view-
point variation. This will result in source points not being
projected close to the correct target points. Thereby, in ad-
dition to the nearest-neighbor constraint, we also constraint
the projected source points to re-project back to the orig-
inal source points under the backward transformation. If
the nearest-neighbor target point is assigned incorrectly to a
source point, then the backward transformation will restrict
the convergence of the points under the nearest-neighbor
constraint. Thus the network has to search the space of
transformation parameters such that a source points is pro-
jected close to a target point which re-projects back to the
original source point under the backward transformation .
This also highlights the importance of applying a geomet-
ric model to parameterize the transformation as it indirectly
uses the global consensus between the semantic key-points
in an image to solve the alignment problem. The cyclic
consistency loss can be combined with both the nearest-
neighbor or the chamfer distance loss functions. For brevity,
we only express in mathematical form the combination of
cyclic consistency and nearest neighbor:

M
1
LEn—Cyc = Lfn + M Z HTéBA (TQAB (pa)) _pa||2
=1

)
The superscript F' denotes that the above loss functions
are computed in the forward direction involving the source
points only. The same can be computed in the backward di-
rection for target key-points. Although backward transfor-
mation is computed in cyclic consistency, the loss is mea-
sured in the space of source points only and not the target
points. Equations[3]4] and[5]can be written in the backward
direction as :

N
1 .
Ly = 2_ min [Ty, () = pallz (6)
i=1

_ pa,EPA

N

1
LB =1LF + =) min [T,

nn N P PPy Opa (pb) - pa| |2 (7)

N
1
Lgnnyc = Lgn + N Z HTéAB (TéBA (pb)) - pb||2

i=1

®)

Therefore, the nearest-neighbor, CD, and nearest-

neighbor cyclic consistency loss functions can be respec-
tively defined as :

Ly = Lf;n + Lfn )
Lea=LE, + L7, (10)
Lnnfc’yc = L5n7Cyc + Lfnfc'yc an

4. Experimental Results

In this section we present the experimental settings to
test the proposed method.

4.1. Dataset

The proposed approach is trained and evaluated on PF-
PASCAL dataset. First proposed in [8]], the dataset has
since been a standard benchmark on variety of tasks related
to learning the semantics of an image using deep learning
[21],[9],[20]. The dataset consists of 1400 image pairs se-
lected from PASCAL-VOC [8]] dataset. The image pairs
come from 20 object categories and are annotated with cor-
responding key-point locations.

The split proposed in earlier works [8I[,[21],[20] is used
to generate training, validation and test image pairs. This
results in about 700,300 and 300 image pairs respectively.
As deep learning models perform better with variations in
training set, additional training samples are generated by
random flipping of image pairs in training set. Although the
correspondence information is available, under the given
framework we do not use it in our training. We refer to
this dataset as D;, where |D;| = 2500.

In addition to random flipping, using the object category
information, more number of image pairs can be generated.
This is done by category specific pairwise combinations of
images from different labeled image pairs. Due to the im-
balance in the number of image in a category, we restrict
the number of new image pairs to 100 per object category.
This prevents over population of image pairs from a single
category which will result in the transformation model bi-
ased towards transformations from that specific object class.
The given pairwise combinations is done on top of D; re-
sulting in 1800 additional image pairs, referred to as D,,;.
Also, as the pairs are formed by pairwise combinations be-
tween images from labeled image pairs, we still have the
semantic key-point locations as ground-truth for each im-
age in the unlabeled image pair. The viewpoint variation is
much higher in D,,; as compared to D;. This is shown with
example image pairs in Figure 1 of Supplementary.

The combined set D = D; U D,; forms our weakly-
labeled training dataset. It is also ensured all test or vali-
dation image pairs are removed from D. In addition, direct
flips of around 100 test image pairs are present in the train-
ing set. Although existing methods ignore this bias, in our
case enforcing cyclic consistency or forward-backward loss
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LOM[S] 73.374.4 544509 49.6 73.872.9 63.646.1 79.842.5 48.068.3 663 42.1 62.1 652 57.164.4 58.0/62.5
SCNet-A 67.6 72.9 69.3 59.774.5 72.7773259.551.4 782394 50.167.0 62.1 693 685 782 63.357.7 59.8/66.3
SCNet-AG 83.981.470.6 62.5 60.6 81.381.259.553.1 81.262.0 58.7655 733 512 583 60.0 69.3 61.5 80.0{69.7
SCNet-AG+ 85.584.466.370.857.4 82.782371.654.3 958552 59.568.6 750 563 604 60.0 73.766.5 76.7/72.2
CNNGeo 82.4 80.9 85.9 47.257.8 83.192.8 86.943.8 91.728.1 76.470.2 76.6 689 657 80.0 50.146.3 60.6/71.9
CNNGeo2 83.7 88.0 83.4 58.3 68.8 90.392.3 83.747.4 91.728.1 76377.0 76.0 71.4 762 80 59.562.3 63.9/75.8
CNNGeo-NN 86.1 87.1 79.7 70.8 70.3 98.1 93.0 74.2 54.5 91.7 32.8 70.366.2 76.2 69.4 65.2 80.0 50.3 77.8 78.9/76.7
CNNGeo-CD 86.2 88.780.9 72.279.7 96.9 94.6 80.4 67.6 87.557.81 71.1 799 825 743 89.5 20.0 69.1 73.8 85.6/81.5
CNNGeo-CD-Cyc 87.1 89.0 84.376.4 85.9 98.1 95.6 80.4 72.4 89.6 67.7 80.7 89.2 839 76.1 94.3 100.0 79.3 83.8 85.6/85.3
CNNGeo-NN-Cyc 89.9 90.2 88.6 70.8 89.1 97.594.9 83.1 68.8 93.8 64.1 83.183.5 853 77.7 87.1 80.0 77.9 87.0 83.9(85.7

Table 1. Per class PCK on PF-PASCAL dataset. PCK threshold, o = 0.1. The proposed model outperforms the existing methods.
However, our model uses more supervisory data than the current state-of-the-art CNNGeo2. The supervisory signal used here is the
information of ground-truth semantic key-points, which is cheaper to obtain for a small number of samples like the Proposal Flow. Our
proposed methods show that the baseline model CNNGeo can be extended to learn from weak key-point supervision resulting in much

better semantic matching performance.

in Section[3.2 will essentially imply training the network on
the test set. To avoid this bias, we further remove training
samples that are flips of test pairs.

Evaluation criteria. In line with previous work [8],[21]],
the proposed approach is evaluated by measuring the prob-
ability of correctly transferred key-points (PCK). This is
given by the number of source key-points whose projec-
tions lie within a given threshold to the corresponding target
points. The key-points are normalized by respective image
width and height to the range [0,1]. The distance threshold
for PCK is set to 0.1 for all experiments.

4.2. Baselines and Methods

We compare our proposed method with both CNN
and traditional descriptor based methods. LOM]S]], and,
OADSC[24] use HOG descriptors to generate a dense corre-
spondence map. SCNet [9] and its variants use off-the-shelf
region proposal methods to pool CNN descriptors, followed
by geometrically constrained matching. Geometric trans-
formation networks [20], and, [21]], referred to as CNNGeo
and CNNGeo?2 respectively, directly regress transformation
parameters that define the semantic mapping. CNNGeo is
trained in a self-supervised manner using synthetic trans-
formations, while, CNNGeo2 is trained on real image pairs
using geometrically consistent feature correlation as a loss
function.

As our proposed method is based on CNNGeo, we
follow a similar abbreviation for our proposed methods.
CNNGeo trained using Equations [0 and [I0] are termed
CNNGeo-NN and CNNGeo-CD respectively. Cyclic con-
sistency loss with the nearest neighbor is termed as
CNNGeo-NN-Cyc, while with Chamfer distance is abbre-
viated as CNNGeo-CD-Cyc. In addition, we trained CN-
NGeo2 with the image pairs in the dataset D, referred to as
CNNGeo2*.

4.3. Implementation details

Network Architecture. We use the same network archi-
tecture as used in the baseline models, CNNGeo [20]], and,
CNNGeo2 [21]. The network consists of a feature extrac-
tion layer which is a ResNet-101 [10]] architecture truncated
at the conv4-23 layer. This is followed by a feature corre-
lation layer and a series of convolutional layers. The final
layer is a fully connected layer that outputs the parameters
of the transformation model. The geometric model used is
thin-plate spline which has 18 parameters.

Training details. We initialize the network parameters
using CNNGeo. The proposed methods:CNNGeo-NN,
CNNGeo-CD, CNNGeo-NN-Cyc and CNNGeo-CD-Cyc
share the same training details. They are trained using the
image pairs from the training set, D, described in Section
[.1] The training images are resized to 240 x 240 resolution
before feed-forwarding through the network. The network
is implemented in Pytorch [19], and, back-propagation is
done using Adam [14]]. Batch size is set to 16 with a learn-
ing rate of 5.1076.

4.4. Results

We evaluated the baselines and existing methods on
the PF-PASCAL test set and present our results in Table
[1l Overall, the proposed weakly-supervised approach out-
performs the existing methods and the baseline geomet-
ric transformation models. The comparison with SCNet is
not direct as we use ResNet-101 architecture which learns
powerful representation than VGG-16 used by SCNet. The
comparison with models CNNGeo and CNNGeo2 are also
not direct, as we use additional supervision in the form of
semantic key-points, but, do not use the correspondence
ground-truth which is the end task. However, SCNet and
its variants do use correspondence information in a weakly-
supervised sense.

The results in Table [Il show that the model CN-



NGeo achieves better semantic matching performance when
trained with the proposed loss functions. All the pro-
posed methods (CNNGeo-*) outperform the existing meth-
ods across majority of the object categories. It is also ob-
served that the cyclic consistency has comparable perfor-
mance when combined with the nearest-neighbor and cham-
fer distance loss functions as can be observed from the
performance of CNNGeo-NN-Cyc and CNNGeo-CD-Cyec.
Results also show that clear improvement is obtained by
methods that use cyclic consistency.

4.5. Generalization Performance

Results demonstrate that with little extra supervision, the
baseline method [20] can benefit using the proposed ap-
proach. However, the extra supervision should not result
in the the learnt geometric mapping over-fitting the source
dataset. We therefore evaluate the generalization perfor-
mance of the proposed approach on Caltech-101 [16] and
TSS [22] datasets without further fine-tuning.

Caltech-101 dataset consists of 1515 image pairs from
101 object categories, and, was first used in [12] for the task
of semantic alignment. Semantic matching performance is
evaluated using the following metrics: i) the label trans-
fer accuracy (LT-ACC); ii the intersection-over-union (IoU),
and, iii) the object localization error (LOC-ERR). On the
other hand, TSS contains 400 image pairs divided into three
categories:FG3DCar, PASCAL and JODS. Evaluation cri-
teria is dense PCK computed over the foreground object.
The threshold for PCK was set to 0.05 following evaluation
settings in [21].

The proposed approach achieves state-of-the-art on
Caltech-101 dataset under the LT-ACC metric as shown in
Table 2| Overall, our approach CNNGeo-NN-Cyc consis-
tently improves over the baseline CNNGeo as shown by
gray highlights in Table[2]

From the results on TSS dataset as shown in Table [3]
CNNGeo-NN-Cyc outperforms CNNGeo on PASCAL cat-
egory by 2 percentage points, while performs comparably
in other categories.

This shows that the proposed approach utilizes the ad-
ditional supervision of semantic key-points well and gen-
eralizes to new datasets. Comparable performance is ob-
tained by CNNGeo2 on both datasets. One reason could be
the bound on representational capacity of the base network
CNNGed]

4.6. Ablation Study

In this section, we study two important aspects of our
experiments. Firstly, we try to understand the interplay
between the nearest-neighbor and cyclic consistency loss

'Both CNNGeo2 and CNNGeo-NN-Cyc are trained by fine-tuning CN-
NGeo

LT-ACC IoU LOC-ERR

LOM 078 050 026
HOG+OADSC 081 055  0.19
SCNet-A 078 050 028
SCNet-AG 078 050 027
SCNet-AG+ 079 051 025
CNNGeo 083 061 025
CNNGeo2 085 0.63 024
CNNGeo-NN-Cyc 0.86 [0.62 022

Table 2. Generalization performance on Caltech-101.

\ FG3D PASC JODS]

LOMIB] 0.786 0.531 0.653
HOG+OADSC[24] 0.875 0.729 0.708
CNNGeo 0.906 0.563 0.764
CNNGeo2 0.907 0.565 0.764
CNNGeo-NN-Cyc 0.903 0.593 0.755
Table 3. Generalization performance on TSS. Error metric is
PCK computed at threshold, & = 0.05. The generalization perfor-
mance of the proposed method is comparable to baseline models
as expected.

functions. And, secondly, we study the effect of unlabeled
data in the performance.

The training samples in D; consist mostly of image pairs
with similar viewpoint. On the other hand, as mentioned
in Section .1} D,,; has a larger viewpoint variation. We
train CNNGeo-NN on both D; and D and present seman-
tic matching performance on PF-PASCAL test set in Table
Results show that addition of unlabeled pairs leads to a
decrease in performance. This can be attributed to the view-
point variation resulting in incorrect assignment of nearest-
neighbor correspondence between source and target key-
points. But, by adding the cyclic consistency constraint, the
performance improves by a big margin demonstrating the
importance of the proposed constraint in semantic point-set
registration.

To study the impact of unlabeled data, D,; in learning
a better geometric mapping, we train CNNGeo-NN-Cyc on
both D; and D. From Table[3] it can be observed that utiliz-
ing more data brings significant improvement in semantic
matching performance on PF-PASCAL test set. We also
trained baseline model, CNNGeo2 on D training set (CN-
NGeo2* in Table [5). Performance is comparable to CN-
NGeo2, showing that the method is not able to gain im-
provement in semantic matching performance by utilizing
additional training samples.

4.7. Qualitative Results

Besides the quantitative results reported in the previous
sections, we also present a qualitative analysis of the experi-
ments. Figures[2] and, [3]shows a pair of source-target image
pairs of different objects (arranged row-wise), and the per-
formance of different methods in aligning the source onto



Figure 2. Performance study.. Each row in the Figure shows a different object. The samples are taken from the test set from PF-PASCAL
dataset. Each example row is divided into 5 columns: i)source image, ii)target image, iii )source image warped using the proposed CNNGeo-
NN-Cyc,iv)source image warped using baseline CNNGeo, and, v)source image warped using CNNGeo2.
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CNNGeo-NN D,
CNNGeo-NN D
CNNGeo-NN-Cyc|D

85.5 88.4 85.376.4 68.8 95.493.384.650.6 91.738.0 72.9 62.9 80.2 73.7 72.9 100.0 66.3 74.3 65.6|78.4
86.1 87.1 79.770.8 70.3 98.1 93.0 74.2 54.5 91.7 32.8 70.3 66.2 76.2 69.4 652 80.0 50.3 77.8 78.9|76.7
89.990.2 88.6 70.8 89.1 97.594.9 83.1 68.8 93.8 64.1 83.183.5 853 77.7

87.1 80.0 77.987.0 83.9/85.7

Table 4. Per class PCK on PF-PASCAL dataset. PCK threshold, o = 0.1. An ablation study on the impact of cyclic consistency under
viewpoint variation. Results show that addition of image pairs from D,; (D = D; U D,,;) results in performance drop of simple nearest-
neighbor based model, CNNGeo-NN. However, by adding cyclic consistency constraint, the resulting model CNNGeo-NN-Cyc achieves

better performance .

the target image using the estimated transformations.

In Figure we show qualitative comparison of the
warped source image by the baseline models, CNNGeo,
CNNGeo2, and our best performing method, CNNGeo-
NN-Cyc (c.f. Table [T) on the test set of PF-PASCAL
dataset. Results clearly demonstrate that our proposed
method produces higher quality alignment than the baseline
models.

In Section [.6] we made the observation that the com-
bination of cyclic and nearest-neighbor constraint is impor-
tant in learning to align semantically related images. Here
we provide qualitative proof in Figure 3] by comparing the
alignment quality of warped source image using CNNGeo-
NN-Cyc (column 3 in Figure), and, CNNGeo-NN (column
4). The samples shown in the Figure come from the set D,,;.
The results show that CNNGeo-NN is not able to learn pro-
prer semantic mapping purely based on nearest-neighbor
constraint. Instead, by adding the cyclic consistency con-
straint, CNNGeo-NN-Cyc achieves much better semantic

alignment.

We also show qualitative semantic alignment of
CNNGeo-NN-Cyc trained on D; (5th column in Figure [3).
The results show that the method generalizes quite well in-
spite of not seeing the samples during training. But, the
performance is still behind the same method when trained
using the full training set, D. This assessment and the re-
sults in Table [5] show that our proposed method leverages
the additional training samples from D,,; to achieve better
semantic matching performance.

Despite achieving significant improvement over the
baseline models, our proposed method (CNNGeo-NN-Cyc)
still cannot solve certain challenging cases as shown in Fig-
ure @] The samples are shown from the training set, D.
However, the alignment quality is still acceptable given that
only location information of the key-points was used as a
weak supervision.




‘ ‘Dataset‘aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv ‘mean‘
CNNGeo-NN-Cyc|D, 83.9 89.8 88.8 77.8 76.6 97.6 93.4 82.9 55.4 91.738.6 77.6 73.1 81.5 76.9 79.5 100.0 69.5 79.5 69.4/80.9
CNNGeo-NN-Cyc|D 89.990.2 88.6 70.8 89.1 97.594.9 83.1 68.8 93.8 64.1 83.1 83.5 853 77.7 87.1 80.0 77.9 87.0 83.9(85.7
CNNGeo2* D 84.3 87.7 81.4 542 64.1 90.592.8 86.2 46.6 91.7 31.3 76.6 70.5 759 70.1 78.6 100.0 57.9 61.3 63.9|75.6
Table 5. Per class PCK on PF-PASCAL dataset. PCK threshold, o = 0.1. Assessment of unlabeled samples D,,; in semantic matching
performance. The results show that addition of image pairs from D,,; (D = D;UD,,;) leads to the the proposed method, CNNGeo-NN-Cyc
learning a better geometric mapping. In comparison, baseline model, CNNGeo2* performs comparably to CNNGeo2 (c.f. Table[T).

source target CNNgeo-NN-Cyc (D) CNNgeo-NN (D) CNNgeo-NN-Cyc (D))

Figure 3. Performance study.. Each row in the Figure shows a different object. The samples are taken from the training data D. Each
example row is divided into 5 columns: i)source image, ii)target image, iii)source image warped using the proposed CNNGeo-NN-Cyc
trained on dataset D,iv)source image warped using CNNGeo-NN trained on D, and, v)source image warped using CNNGeo-NN-Cyc
trained on D;.

5. Conclusion

We presented a loss function for training a neural net-
work to predict the transformation parameters for align-
ing an image pair. The loss function is based on nearest-
neighbor cyclic consistency and only requires weak super-
vision in the form of overlapping set of key-points per im-
age in a given image pair. Results demonstrate that our pro-
posed approach outperforms the baseline models. Although
our method uses additional supervision, it is still weakly
supervised like the baseline models as no correspondence
information is used during training.

Figure 4. Challenging cases. In addition, we show that our proposed approach gen-
eralizes equally well as the baseline models to previously
unseen data. Both quantitative and qualitative analysis
is reported to demonstrate that the combination of cyclic
and nearest-neighbor constraints is important in learning to
align semantically related images.
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Figure 1. Sample pairs from PF-PASCAL. The Figure shows
sample image pairs from D;

D

Figure 2. Dataset. The Figure shows the datasets considered in
this work.

1. Dataset and Additional Results

In Figure 1, we show some image pairs from the PF-
PASCAL dataset. In particular the samples are from the set,
D; (c.f. Section 4.1). Similarly in Figure 2 we show how

source target

CNNgeo-NN-Cyc

Figure 3. Performance of proposed CNNGeo-NN-Cyc on sam-
ple pairs from D,,;.

the image pairs are generated for the set D,,;. Each image
pair within the green bounding box comes from D;. Using
pairwise combinations 4 additional pairs can be generated.
One of them is shown in red bounding box. Such samples
consitute the set D,;. As can be clearly seen, the samples
from D,,; display higher viewpoint variation. We also show
the performance of our model, CNNGeo-NN-Cyc on some
additional pairs from the set, D,; in Figure 3. It can be
observed that the pairs from D,,; are more challenging with
higher viewpoint variation as compared to D;.



