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Abstract  19 

 Atmospheric pCO2 has increased since the industrial revolution leading to a lowering of 20 

the ocean surface water pH, a phenomenon called ocean acidification (OA). OA is claimed to be 21 

a major threat for marine organisms and ecosystems and, particularly, for Polar regions. We 22 
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explored the impact of OA on the shell mechanical properties of the Antarctic scallop 23 

Adamussium colbecki exposed for one month to acidified (pH 7.6) and natural conditions 24 

(unmanipulated littoral water), by performing Scanning Electron Microscopy, nanoindentation 25 

and Vickers indentation on the scallop shell. No effect of pH could be detected either in crystal 26 

deposition or in the mechanical properties. A. colbecki shell was found to be resistant to OA, 27 

which suggests this species to be able to face a climate change scenario that may threat the 28 

persistence of the endemic Antarctic species. Further investigation should be carried out in order 29 

to elucidate the destiny of this key species in light of global change. 30 

Keywords: Ocean Acidification, pH, benthos, shell, SEM, nanoindentation, Vickers, Adamussium 31 

colbecki, Antarctica 32 

Introduction 33 

 Atmospheric pCO2 has increased since the industrial revolution leading to a lowering of 34 

the ocean surface water pH of 0.1 units since pre-industrial time and a further reduction of 0.4 35 

units is expected for the end of the century, a phenomenon called ocean acidification (OA, 36 

Caldeira and Wickett 2003; Orr et al. 2005 and references therein). OA is expected to be a major 37 

threat to calcifying marine invertebrates either because it decreases the availability of carbonate 38 

ions (Hahn et al. 2012 and reference therein) or because it may lead to carbonate dissolution 39 

(Roleda et al. 2012). The calcium carbonate saturation state () is a function of CO3
2− and calcium 40 

ion concentrations ([Ca2+]); seawater  describes the CaCO3 precipitation and dissolution 41 

thermodynamic potential: when > 1, CaCO3 will be maintained in the solid state, when < 1, 42 

the mineral will tend to dissolve (Cyronak et al. 2015). Many marine invertebrates are known to 43 

use bicarbonate instead of carbonate ions and many species so far investigated have shown to 44 

be able to control  at the calcification site, so that seawater  may not affect their ability to 45 

biomineralize (Cyronak et al. 2015 and references therein; Roleda et al. 2012 and references 46 
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therein). However, calcification mechanisms are still far from being understood and further 47 

research is required in order to elucidate the response of the different species. 48 

The Antarctic marine environment is supposed to be one of the most threatened by rising 49 

atmospheric CO2, because of the peculiar seawater physico-chemical parameters (Fabry et al. 50 

2008; McNeil and Matear 2008). At the same time, Antarctic species adaptive capacity is 51 

suggested to be poor due to extremely slow development (Pearse et al. 1991; Peck et al. 2002) 52 

and because their evolution took place in a relatively physically stable environment (Kapsenberg 53 

and Hofmann 2014; Matson et al. 2014). Most of the studies investigating OA effects on Antarctic 54 

species dealt with the sea urchin Sterechinus neumayeri, assessing different physiological aspects 55 

(e.g. Collard et al. 2015; Morley et al. 2016), fertilization (e.g. Suckling et al. 2015), larval 56 

development (e.g. Kapsenberg and Hofmann 2014) and genetic expression (Dilly et al. 2015; Foo 57 

et al. 2016). Only few works investigated the response of other Antarctic key benthic species to 58 

OA. Gonzalez-Bernat et al. (2013) found significant effects of low pH on larval survival and 59 

morphology of the sea star Odontaster validus. Cummings et al. (2011) reported a genetic shell 60 

adaptation in the clam Laternula elliptica, as a response to OA. Benedetti et al. (2016) found a 61 

significant effect of the interaction among OA, temperature and cadmium exposure in digestive 62 

gland and gills of the Antarctic scallop Adamussium colbecki. Recent investigations show that the 63 

low pH exposure affects the reproductive system of adult S. neumayeri and A. colbecki, 64 

conversely to O. validus, that is able to cope with OA with no negative effects on the gonads 65 

(Dell’Acqua et al. 2019). 66 

Adamussium colbecki is a key benthic species that can be found patchily aggregated all 67 

around the Antarctic continent (Schiaparelli and Linse 2006). In the littoral area of Terra Nova 68 

Bay (Victoria Land, Ross Sea) the scallop is very abundant from -20 m to -80 m (Chiantore et al. 69 

2001) and plays a key role in the benthic-pelagic coupling (Chiantore et al. 1998). This species is 70 
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also acknowledged as an ecosystem engineer (Cerrano et al. 2006, 2009), sentinel organism 71 

(Bonacci et al. 2004; Regoli et al. 2002) and as a relevant food source for higher trophic levels 72 

(Dell’Acqua et al. 2017; Vacchi et al. 2000). For all these reasons, the Antarctic scallop is listed in 73 

the Vulnerable Marine Ecosystem species (CCAMLR 2009). Due to the relatively low levels of 74 

mineral incorporation and the low amount of organic matrix, its shell is extremely thin and fragile 75 

(Berkman et al. 2004; Halloran and Donachy 1995; Meng et al. 2019 and reference therein). This 76 

kind of shell is a result of an evolution in situ in the high Antarctic areas, related to low-energy 77 

hydrodynamic environments (mostly areas with extensive sea-ice coverage) where the species 78 

can still be found (Schiaparelli and Linse 2006). This fact, in addition to the absence of 79 

durophagous predators over the Antarctic fauna evolution (Aronson and Blake 2001; Watson et 80 

al. 2012) has allowed the evolution of the thin shell of the scallop.  81 

 Adamussium colbecki has an entirely calcitic shell, except for a negligible amount of 82 

aragonite in the lower valve. (Barrera et al. 1990; Denny and Miller 2006; Taviani and Zhang 83 

1998). In particular, the peripheral margin (the edge opposite to the umbo, where growth 84 

occurs) is composed of calcite only (Berkman 1994). From the inner face of each valve, the shell 85 

is made by a foliated layer composed by calcite laths, that continues, toward the external shell 86 

face, developing in a prismatic calcitic layer. For a full and detailed description of the 87 

crystallographic structure of the scallop shell, see Barrera et al. (1990). In light of the particular 88 

traits of A. colbecki shell and the needs to deepen understanding of OA effects on Antarctic 89 

species, we assessed the response of structure and mechanical properties of the A. colbecki shell 90 

to short term (37 days) experimental low pH, investigating if and to what extent this exposure 91 

may alter shell structure, hardness and elasticity. 92 

Material and Methods 93 

Experiment set-up 94 
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 We performed an acidification experiment at the Italian Mario Zucchelli Station (Terra 95 

Nova Bay, Ross Sea), during austral summer 2014-2015. Scuba divers collected adult specimens 96 

of A. colbecki at around 15 m depth in Tethys Bay (74° 41.407’ S; 164° 06.311’ E), close to the 97 

Italian Station. After 2 weeks of acclimation, we started the experiment in running seawater 98 

tanks. Seawater was continuously pumped from -6 m from the littoral area, in front of the Italian 99 

base, to a first tank, where the water was cooled. From here, the water was pumped into two 50 100 

l header tanks (polyethylene), where pH levels were adjusted by bubbling pure-CO2 using a 101 

continuous pH-stat system (IKS Aquastar, Karlsbad, Germany). Two pH levels were nominally 102 

chosen: pH 7.6 and control condition (unmanipulated water at 8.12). Each header tank supplied 103 

2 polyethylene tanks (i.e. 2 experimental units or replicates for each pH level, 20 x 25 x 20 cm), 104 

each through an individual pipe. Four animals were placed in each experimental unit, for a total 105 

of 16 individuals (2 pH x 2 replicates x 4 individuals). We chose adult individuals with 76 ± 3 mm 106 

shell height (SH, the distance from the umbo to the opposite side of the shell) in order to detect 107 

similar ontogenetic performance. 108 

We ran the experiment in flow through, in order to avoid uncontrolled pH oscillations due 109 

to organism respiration. After filling the experimental units at a rate of 150 ml/min, the water 110 

was discharged through a relief hole. All the tanks were covered with transparent lids (made by 111 

the same material of the replicate tanks) to avoid gas exchange and escapes. The cover was only 112 

removed every 2-3 days for about 5 minutes, in order to clean the tank bottom through 113 

siphoning. The animals were not fed, but, since the water intake pumped unfiltered seawater, 114 

diatoms and other detrital material were available in the water. pH electrodes from the pH-stat 115 

system were inter-calibrated every 3-4 days on total scale (pHT) using TRIS buffer solutions with 116 

a salinity of 35 psu (Dickson et al. 2007). Concurrently, pH on total scale was also measured, 117 

together with salinity and temperature, with two different multiprobes, previously calibrated on 118 
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Antarctic littoral surface waters: Ocean Seven 310 CTD (Idronaut, Brugherio, Italy) and C6 Multi-119 

sensor Platform (Turner Design, San Jose, CA, USA). pH values were also periodically measured 120 

in the littoral waters at the collection site. Triplicate seawater samples for total alkalinity (TA) 121 

measurements were collected once a week, poisoned with HgCl2 and stored at +4°C. In Italy, TA 122 

was determined at the Polytechnic University of Ancona (Italy) using an open cell 123 

potentiomentric titration, according to Dickson et al. (2007) procedures and standards. 124 

Temperature, salinity, pHT and total alkalinity were input in the software SWCO2_V2 125 

(http://neon-old.otago.ac.nz/research/kah/software/swco2/index.html) in order to calculate 126 

pCO2 and calcite and aragonite saturation state of the two pH levels. We used the equilibrium 127 

constants of Millero et al. (2006), since the lowest value of their temperature range (0 – 40°C) is 128 

close to Antarctic waters. The experiment lasted 37 days and, at the end of the experiment, A. 129 

colbecki specimens were frozen, carefully stored in order to avoid shell damages, and shipped to 130 

Italy. 131 

Samples preparation 132 

We investigated the outermost portion of the shell peripheral margin (at maximum 200 133 

m from the edge), where longitudinal growth occurs (Wheeler and Wilbur 1977). Unfortunately, 134 

we could not assess growth of the experimental specimens because the scallops were not marked 135 

before the experiment (with chemical mark, such as calcein) nor measured before and after 136 

because common caliper has an error (around 100 to 200 m) that may lead to misled growth 137 

measurements in such a slow growing species (1 to 3 mm*y-1; Heilmayer et al. 2003; Trevisiol et 138 

al. 2010). Therefore, our results need to be considered as encompassing the dissolution of the 139 

pre-existing, recently deposited shell and the response of the shell potentially grown during the 140 

experiment and. This portion is thinner and less dense than the rest of the shell (Lu et al. 2015, 141 
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Meng et al. 2018, 2019) and, consequently, may be more susceptible to dissolution. The A. 142 

colbecki shell peripheral margin is displayed in Fig. 1. 143 

 144 

Figure 1. SEM picture of a manually fractured A. colbecki shell edge section. The arrow indicates 145 

the growth direction. 146 

Before analyses, we cleaned the shells in a bath of NaOH 5% for 5 to 10 minutes and, 147 

afterwards, we gently brushed the whole edge of the shells to remove most epibionts and, at the 148 

end, we rinsed them in alcohol, at increasing percentage, from 70% to 100%. This procedure 149 

allows to remove the water that can be a problem when performing mechanical tests at the 150 

nanoscale. With a small circular saw we cut the upper valve of the shell in two halves along the 151 

maximum growth line, the imaginary line that goes from the umbo to the middle point of the 152 

external edge. For SEM and nanoindentation, we used the two sections at the external shell of 153 

each half, in order to avoid any bias due to not homogeneous growth (either previous or new) 154 

along the edge of the shell. All the analyses were performed at the Department of Chemistry and 155 

Materials Science at Aalto University (Espoo, Finland). 156 

Scanning Electron Microscopy 157 
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 Firstly, we performed Scanning Electron Microscopy (SEM) on the shell edge in order to 158 

investigate the mineralized structure, but also to check for potential damages due to freezing 159 

storage. After manually fracturing the shell peripheral margin edge of the 16 specimens and 160 

obtaining small (about 5 mm x 5 mm) pieces, we mounted them on aluminum stubs and 161 

performed carbon coating. SEM images were taken with a Mira 3 and a Vega 3 (Tescan Brno s.r.o., 162 

Czech Republic).  163 

Nanoindentation 164 

Nanoindentation tests were performed on the outermost 100 m of shell edge of each of 165 

the 16 experimental specimens using a Triboindenter TI950 (Hysitron/Brooker, Minneapolis, MN, 166 

USA) on 5 x 5 mm pieces. We first polished the sections with sandpaper from 800 to 1200 167 

(nominal number) and, then, with diamond paste from 6 m to 0.1 m grain size. Differently to 168 

pre-existing literature (e.g. Fitzer et al. 2015, 2016), we did not embed the samples in resin in 169 

order to avoid its effects and potential biases (Presser et al. 2010 and references therein). We 170 

mounted the shell samples, with the section of interest side up, perpendicularly on aluminum 171 

supports. In order to avoid bending, we framed the samples between two small iron blocks in a 172 

sandwich-like arrangement, leaving only 200 m of the sample height exposed from the blocks. 173 

We investigated 3 to 6 areas (20 x 20 m each) per each shell sample and, in each area, we made 174 

5 to 10 indentations, using a standard quasi-static method with a loading, holding and unloading 175 

times of 10, 1 and 10 seconds, respectively. We chose a low force, i.e. 1000 µN, since the lower 176 

is the force, the higher is the chance to detect treatment differences (Presser et al. 2010 and 177 

references therein). For nanoindentation we used a conical tip with 1 m radius and 90° cone 178 

angle. Despite less common than the Berkovich tip, the conical one has already been used for 179 

nanoindentation on mollusk shells (Li and Ortiz 2014; Yao et al. 2010). Indentation curves of 180 

conical tip are less dependent on surface shape and damage (Schwiedrzik and Zysset 2015) and, 181 
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having a larger contact area than the Berkovich one, this kind of tip averages the material 182 

properties in the contact area. This provides more consistent results in case of anisotropic 183 

material and complex structures (such as biologically deposited calcium carbonate) and in case 184 

of potential holes caused by water evaporation and organic matter deterioration due to storage 185 

(Hirvonen et al. 1994). TriboScan software was used to analyze the loading and unloading curves 186 

of the indentation test to yield the nanohardness (H) and the reduced modulus of elasticity (Er) 187 

(Oliver and Pharr 1992). 188 

 Part of the nanoindentation curves revealed presence of pop-in (see Fig. 4), probably due 189 

to surface cracking or inflections (Bruet et al. 2005; Meyers et al. 2009). In order to understand 190 

if these anomalies biased our Er results, we performed additional mechanical test at 300N on 191 

some randomly chosen specimens, either from control pH or 7.6. This lower force corresponds 192 

to a lower indentation depth, where the pop-in did not occur. Afterwards, we compared the 193 

results from the two forces: 1000 and 300N, by means of t-test or Wilcoxon-Mann-Withney 194 

(depending from data distribution shape). Null hypothesis was that Er resulted by using different 195 

forces are statistically equivalent, which would mean that surface cracking or inflections did not 196 

bias our results. As far as H, differences were actually expected, since the amount of force applied 197 

determines, at least in part, the value of the resulting hardness, a phenomenon known as 198 

‘indentation size effect’ (Morris et al. 2011 and references therein). 199 

Vickers indentation 200 

 We investigated the Vickers microhardness (HV) using the Micro Hardness Tester (1000 201 

Plus, Jaten Precision Instrument, Dongguan, China), indenting the surface of the shell edge, since 202 

the pyramidal tip of the Vickers is too large to indent the shell section which thickness ranges 203 

from 100 to 200 m only. We used 3 x 3 mm pieces of the shell external edge that were chosen 204 

next to the pieces we used for the previously described analyses. We selected the smallest 205 
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sample length to minimize the shell arching effect. To determine the right force that allows to 206 

get well defined prints without disrupting the shell, we chose force and dwelling time ranges 207 

from existing literature dealing with Vickers tests on bivalves (e.g. Beniash et al. 2010; Jiao et al. 208 

2015; Lee et al. 2009). After trial tests on expendable samples, we chose 100 g force and 10 s 209 

dwelling time. 7 to 11 indentations were made for each of the 16 experimental specimens, with 210 

a variation coefficient from 2% to 17%. A high variability is expected for such a complex biological 211 

material made by different matrices (organic and mineral) and it is consistent with the variability 212 

found in literature (e.g. Fitzer et al. 2014; Fleischli et al. 2008; Ji et al. 2014). After the test, we 213 

took SEM pictures of the Vickers indentation marks in order to detect potential visual differences 214 

in the material plasticity.  215 

Statistical analyses 216 

Statistical analyses on Er, H and HV, were run using the statistical software R (R Core Team 217 

2013). We used Linear Mixed Model (LMM) included in the ‘lme4’ package (Bates et al. 2015) for 218 

normally distributed data, and Generalized Linear Mixed Model (GLMM) included in the package 219 

‘nlme’ (Pinheiro et al. 2018) for not normally distributed observations. Both models account for 220 

random effect which is, in our case, represented by the individuals in the same tank (pseudo-221 

replicates) and for nested design (the tank level nested in the pH level). ANOVA analysis was not 222 

considered since it does not allow for pseudoreplicates. 223 

Results 224 

 The experimental set up, including the acidification system, provided stable seawater 225 

parameters for the whole experimental duration (Table 1), while Fig. 2 shows the pH variability 226 

both in the field and in the two reservoirs that fed the replicates. Data from the field stopped on 227 

2nd January, when the fragility of the sea ice did not allow to perform seawater sampling; 228 

measures started again on 23rd January.  229 
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Table. 1. Mean and standard deviation of the sea water variables for the two pH treatments, 230 

measured throughout the experiment. pHT = pH on total scale; TA = total Alkalinity;  = 231 

saturation state of calcite (C) and aragonite (A). 232 

Nominal 
treatment 

Temperature 
(°C) 

Salinity 
(psu) 

pHT 
TA 

(mol/kgSW) 
pCO2 
(ppm) 

C A

control pH 
-0.395 

± 0.12 

33.06 

± 0.02 

8.12 

± 0.05 

2208.5 

± 75.7 

381.7 

± 31.2 

2.63 

± 
0.33 

1.65 

± 
0.21 

7.6 
-0.369 

± 0.12 

33.09 

± 0.02 

7.625 

± 0.02 

2254.6 

± 89.2 

1091.4 

± 55.9 

0.89 

± 
0.03 

0.56 

± 
0.02 

 233 

Fig. 2. Trend of pH values measured in the littoral at the collection site of the animals (rhombus) 234 

and in the two reservoir tanks: ctrl (empty circles) and pH 7.6 (filled circles) 235 

Scanning Electron Microscopy 236 

 Representative sections of the shell edge of A. colbecki individuals maintained under 237 

control pH (a, c and e) and under pH 7.6 (b, d and f) are displayed in Fig. 2. SEM images allowed 238 

to exclude the presence of cracks due to the freezing storage, assuring reliability of the results in 239 
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the mechanical analyses at the microscale. Crystal grains in the two treatments account for 240 

similar shape, dimension and deposition pattern (Fig. 3). 241 

 242 
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Figure 3. Representative SEM images of manually fractured A. colbecki shell sections in 243 

correspondence of the outermost portion of the peripheral margin; (a), (c) and (e): specimens 244 

from control pH; (b), (d) and (f): specimens from pH 7.6. In each panel, a box indicates the portion 245 

displayed below. Scale bars are indicated in each panel. 246 

Nanoindentation 247 

 Means and standard deviations of the Er and H are reported in Table 2, along with the 248 

indentation depth. 249 

Table 2. Means and standard deviations of the nanoindentation results, obtained through the 250 

tests performed at 1000N loading force, on A. colbecki shell edge sections of specimens from 251 

control (ctrl) and acidified (7.6) pH condition. Er = reduced modulus and H = nanohardness. 252 

Nominal pH N. specimens N. obs Er (GPa) H (GPa) Indentation depth (nm) 

Ctrl 8 173 66 ± 7 3.1 ± 0.5 68.9 ± 8.0 

7.6 8 166 68 ± 5 3.3 ± 0.4 65.5 ± 5.6 

Overall mean 16 339 67 ± 6 3.2 ± 0.5 67.2 ± 7.2 

 Since Er and H observations resulted to be at the limit of normal distribution (Kolmogorov-253 

Smirnov for Er: N = 339, p-value = 0.051 and H: N = 339, p-value = 0.054), we ran both LMM and 254 

GLMM. Both models indicated that low pH did not affect shell mechanical properties (LMM: F1,2 255 

= 2.937, N = 339 8, p-value = 0.289 and GLMM: t-value311 = 60.998, N = 339 8, p-value = 0.245 for 256 

Er; LMM: F1,2= 0.673, N = 339 8, p-value = 0.441 and GLMM: t-value311 = 29.695, N = 339 8, p-257 

value = 0.358 for H). No difference between treatments were present in the indentation depth 258 

as well (Kolmogorov-Smirnov, N = 339, p-value = 0.297; LMM: F1,2 = 1.933, N = 339 8, p-value = 259 

0.299). 260 
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 261 

Figure 4. Nanoindentation curves, performed at 1000 N on A. colbecki shell sections. (a) regular 262 

curve with no pop-in; (b) a curve characterized by the presence of pop-in events (black arrows). 263 

Dashed lines represent the initial unloading stiffness, while dashed arrow (in ‘a’ only) points to 264 

the ideal unloading behavior in a perfectly elastic material (see Oliver and Pharr 1992, for details). 265 

 While some of the curves resulted to be fully regular (such as in Fig. 4a), others displayed 266 

pop-in behavior, in coincidence with one or more indentation depth points (Fig. 4b). This 267 

happened in all the samples, without differences between treatments. As mentioned in M&M 268 

section, we performed additional tests at 300N on some individuals (n = 5): results are 269 

displayed in Table 3. Pop-in behavior was still present in the curves obtained using 300N (Fig. 270 

5), indicating that it did not depend on indentation force or depth. For each individual, not 271 

significant differences were observed in Er (at 300 vs 1000N; p-value ranging from 0.792 to 1). 272 

Pooling together the samples according to pH level, the Er values were comparable (p-value = 273 

0.490 for the control samples and 0.892 for the samples in pH 7.6), as well as pooling all the 274 

samples together (irrespective of pH level; p-value = 0.663). Conversely, H resulted to be 275 

significantly lower at the lower force, the p-values ranging from 2.2*10-16 to 7.36*10-6. Usually, 276 

the hardness should have increased along with the decrease in the indentation depth, following 277 
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what is called indentation size effect. This is obviously not the case: the lower value of hardness 278 

closer to the surface is likely to arise from the surface roughness and/or a larger portion of softer 279 

organic material close to the surface. The similar behavior of H, in the first 100 nm, is reported 280 

for indentation performed on other mollusk shells (Romana et al. 2013; Song et al. 2015). 281 

Table 3. Means and standard deviation of the nanoindentation results, obtained through the 282 

tests performed at 300N loading force, on A. colbecki shell sections experimentally exposed to 283 

control (ctrl) and acidified (7.6) pH condition. Er = reduced modulus and H = nanohardness 284 

(calculated by the TriboScan software). 285 

Nominal pH 
N. 

specimens 
N. obs Er (GPa) H (GPa) 

Indentation depth 
(nm) 

Ctrl 2 50 66 ± 6 2.3 ± 0.5 26.4 ± 4.6 

7.6 3 59 69 ± 6 2.9 ± 0.5 43.2 ± 21.1 

Overall mean 5 109 68 ± 6 2.6 ± 0.6 35.5 ± 17.9 

 286 

 287 

Figure 5. Nanoindentation curves, performed at 300N on A. colbecki shell section. Pop-in is 288 

indicated by black arrow. Dashed line represents the initial unloading stiffness, while dashed 289 

arrow points to the ideal unloading behavior in a perfectly elastic material (see Oliver and Pharr 290 

1992, for details). 291 
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Vickers indentation 292 

 For Vickers indentations, we found an overall value of 204 ± 35 HV, which corresponds to 293 

2.0 ± 0.3 GPa; mean HV for control pH was 197 ± 35, while for pH 7.6 was 209 ± 34, corresponding 294 

to 1.9 ± 0.3 and 2.1 ± 0.3 GPa, respectively. Observations from Vickers tests resulted to be 295 

normally distributed (Kolmogorov-Smirnov, N = 8, p-value = 0.596), so we used LMM, which 296 

provided a lack of significance between control and pH 7.6 (F1,2 = 0.143, N = 134, p-value = 0.586). 297 

The Vickers indentation marks are shown in Fig. 6. The shape and sharpness of the indentation 298 

are similar between treatments; none of the samples (either from control or pH 7.6) displayed 299 

any fracture propagations.  300 

 301 
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Figure 6. Representative SEM images of Vickers indentation marks on the surface of A. colbecki 302 

shell edge; (a) and (c): specimens from control pH; (b) and (d): specimens from pH 7.6. Scale bars 303 

are indicated in each figure. 304 

Discussion 305 

Adamussium colbecki is one of the key benthic species in the Antarctic littoral area, 306 

including Terra Nova Bay and investigations on how this scallop will cope with future climate 307 

change that foresees calcium carbonate undersaturation in the Antarctic marine environment 308 

McNeil and Matear 2008) are necessary. The bulk of papers dealing with effects of OA on polar 309 

organisms point out the problem of aragonite undersaturation foreseen for incoming decades 310 

(by 2030; e.g. McNeil and Matear 2008). Yet, since A. colbecki shell is made by calcite, for our 311 

purpose we should consider calcite undersaturation, that occurred throughout the experiment 312 

in the treatment at pH 7.6 (Table 1). Calcite undersaturation is also foreseen for Antarctic waters 313 

for 2100 (McNeil and Matear 2008). 314 

 Potential effects of ocean acidification (OA) on mechanical properties are linked to both 315 

impaired calcification and dissolution that may affect the integrity of the mineral and/or the 316 

organic matter that binds calcite crystals. While we cannot state if and to what extent new shell 317 

has been deposited during our experiment, we cannot exclude that growth occurred either. 318 

Micro- and nanoindentation encompass the response of both dissolution of the pre-existing shell 319 

and the impaired calcification in potential new deposited shell. In fact, dissolution caused by 320 

corrosive seawater has been reported to occur even in short term experiments (Beniash et al. 321 

2013; Green et al. 2004, 2009; Melzner et al. 2011; Welladsen et al. 2010; Zhao et al. 2017) and 322 

it may alter shell mechanical response at the micro and the nano-scale (e.g. Beniash et al. 2010; 323 

Liu et al. 2017; Meng et al. 2018). 324 
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 Measurements of pH in the littoral area showed a remarkable variation during the short 325 

summer season, starting with the lowest lower value (7.78) at the beginning of December. The 326 

increase of pH value is consistent with the sympagic bloom, a process that was also visible in the 327 

aquaria water (per. obs.). Unfortunately, the fragility of the sea ice (but still present, precluding 328 

the chance to use the boat) did not allow the continuity of the field measurements. Most 329 

probably, pH kept increasing until the primary production peak, as shown by measurements 330 

performed during summer in other sites of the Ross Sea (Kapsenberg et al. 2015; McNeil et al. 331 

2010; Roden et al. 2013). The field pH variability is probably due to the absence of gas exchange 332 

plus the respiration processes under the sea ice when this is still present, and the following sea 333 

ice melting that allows gas exchange and the sympagic algae bloom (Schram et al. 2015).  334 

 In our samples, no difference in the crystals texture was observed in the SEM images; the 335 

SEM images also excluded any damage due to freezing and thawing storage procedure. 336 

Mechanical tests, both at the nano- and microscale, also indicate that A. colbecki shell mechanical 337 

properties were not affected by a short-term acidification. Actually, Er and H measured at pH 7.6 338 

were slightly higher, both at 1000 and 300N. This is similar to what Fitzer et al. (2015) found in 339 

the shell portion that grew under experimental exposure in Mytilus edulis. Yet, since statistical 340 

analyses indicated no differences between treatments, we cannot argue any relation with the pH 341 

level and the differences in the means between treatments could be due to natural inter-342 

individual variability. 343 

 Variability was to some extent observed in the Vickers indentation marks, that revealed 344 

some levels of asymmetry. A possible reason is the high variability of the biological material, also 345 

characterized by a remarkable plasticity, as shown by calcite crystal sliding under load 346 

compression (similar to what is shown in Lee et al. 2009, despite being a polished surface). 347 

Another reason may be a slight ‘arc effect’, still present despite choosing the smallest possible 348 
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sample size. However, these characteristics are present in the ctrl control as well as in the low 349 

pH group, so that it is probably an intrinsic behavior of the material; in fact, similar asymmetry is 350 

present in some of the Vickers prints in literature (e.g. Chen et al. 2013). However, our results 351 

are consistent with literature reporting microhardness value of bivalves shell in general (e.g. Jiao 352 

et al. 2015; Liang et al. 2016; Yang et al. 2010; Yang et al. 2011) and, in particular, with Fleischli 353 

et al. (2008) who reported similar microhardness for another Pectinidae, Pecten maximus. 354 

 Calcite Er and H may be slightly affected by the orientation of the crystals with respect to 355 

the nanoindenter tip, but we positioned the samples in such an arrangement that assured the 356 

full perpendicularity of the surface with respect to the nanoindenter tip. Our results are 357 

consistent with the Er and H values that other authors found for biogenic calcite (Bignardi et al. 358 

2010; Fleischli et al. 2008; Presser et al. 2010; Zhang et al. 2011). This consistency provides 359 

further evidence that the choice of not embed the samples in resin did not affect the tests, rather, 360 

it avoided potential biases (Presser et al. 2010 and references therein). Conversely, a more 361 

necessary step in the sample preparation is represented by a perfect polishing of the surface: in 362 

fact, preliminary trials performed on less polished samples provided not reliable measurements, 363 

suggesting that a finely flat surface is a much more important requirement for this kind of 364 

procedure. Similarly, the choice of the tip is fundamental: preliminary trials with Berkovich tip 365 

did not provide reliable and consistent Er or H values (in the range of 10 ÷ 20 and 0.2 ÷ 1 GPa, 366 

respectively) while the conical tip was the best solution for this kind of material.  367 

 The presence of minor pop-in along the loading curve is a behavior already observed in 368 

shells (Bruet et al. 2005; Li and Ortiz 2014; Romana et al. 2013) and can be due to nanocracking 369 

in the surface that comes into contact with the nanoindenter tip. Meyers et al. (2009) showed 370 

that nanocracks can happen in dried organic samples because of the age hardening of the organic 371 

matter. The organic material in the shell is originally soft and ductile, but as it dries, it becomes a 372 
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high-toughness ceramic-organic composite (Meyers et al. 2008). Qian et al. (2005) and Zhu et al. 373 

(2008) state that generation of cracking can largely reduce the elastic modulus values in the tests, 374 

but our additional tests at 300N confirmed those at 1000N. Lower applied force (300N) 375 

corresponds to a lower indentation depth (down to 30 nm, in our case) and the hardness should 376 

be higher, following the indentation size effect (Morris et al. 2011 and references therein). 377 

Instead, the hardness we measured using lower force resulted to be lower. Rather than a reverse 378 

size indentation effect that can be due to artifacts occurring during indentation (Pharr et al. 379 

2010), our case seems to be a typical behavior of hardness at very small depths, such as in our 380 

range (down to ~ 80 nm, at 1000 N). In fact, the same behavior is reported for the shell 381 

nanoindentation of other invertebrates (e.g. Romana et al. 2013; Song et al. 2015) and for other 382 

totally different crystalline materials (e.g. Wei et al. 2004). 383 

 Exposure to acidified conditions in bivalves provides a high variability in the response of 384 

shell structure and mechanical properties. Fitzer et al. (2014) found a significant effect of low pH 385 

exposure in the crystal deposition in the shell of adult Mytilus edulis, following a six months 386 

exposure. Milano et al. (2016) found a strong dissolution pattern in the calcitic shell of 387 

Cerastoderma edulis specimens maintained at low pH for about three months, but this alteration 388 

was not reflected at the nanoscale, where the hardness was not statistically different among pH 389 

levels. Beniash et al. (2010) reported changes in the mineralization of the foliated layer (calcite) 390 

of Crassostrea virginica at the microscale, but only in juveniles exposed to high pCO2 for 20 weeks, 391 

while adults did not report alteration (although after only 2 weeks of exposure). Stemmer et al. 392 

(2013) did not detect changes at the microscale in the bivalve Arctica islandica after 90 days of 393 

exposure to different pCO2 concentrations, indicating that this bivalve shows an adaptation to a 394 

wide range of pCO2. Dickinson et al. (2012) and Ivanina et al. (2013) found significant effects of 395 

OA in the microhardness, but only in combination with temperature and/or salinity, while 396 
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Dickinson et al. (2013) reported a significant effect of low pH alone on Vickers hardness. While 397 

the Dickinson et al. (2013) experiment lasted 21 weeks, Timmins-Schiffman et al. (2014) reported 398 

the same effect after only 4 weeks (a duration comparable to our experiment). 399 

  The robustness of A. colbecki shell and other bivalves in literature may result from a trade-400 

off of the energy re-allocation among body parts and functions. In fact, shell deposition can 401 

demand up to 75% of the assimilated energy and up to four times the energy required for 402 

reproduction (Sokolova et al. 2012). Cummings et al. (2011) showed that, in L. elliptica, the 403 

expression of chitin synthase increases as pH decreases. If A. colbecki activates resilience 404 

mechanisms as well and their additional energy demand would affect other functions is not 405 

known, but this would be in agreement with Dell’Acqua et al. (2019) who reported an effect of 406 

OA in the reproductive tissue of the scallop at pH 7.6.  407 

Moreover, since the most expensive process in the shell deposition and maintenance is 408 

the organic matrix production (Digby 1968; Mount et al. 2004; Palmer 1992; Wheeler 1992), the 409 

low level of organic content in the shell of A. colbecki (Halloran and Donachy 1995) may help the 410 

scallop in maintain the shell integrity during low pH exposure. It is also worth to notice that our 411 

study was carried out during the summer season, when the coastal phytoplankton bloom was 412 

regularly occurring, clearly detected in the unfiltered aquaria water (pers. obs.). Many studies 413 

already showed that food availability strongly determines the response of bivalves to OA (Ramajo 414 

et al. 2016a, 2016b; Sanders et al. 2013; Thomsen et al. 2013) and A. colbecki, being able to feed 415 

on phytoplankton entering the aquaria, probably gained enough energy to face the stress given 416 

by low pH exposure. Nothing can be inferred in case of food low availability, such as during winter 417 

time, when pH lowering is supposed to be exacerbated (McNeil and Matear, 2008).  418 

 Despite High Antarctic waters display less variability than temperate and tropical regions 419 

(e.g. Cornwall et al. 2013; Hofmann et al. 2011; Wotton et al. 2008), they still account for a 420 
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notable seasonal pH variability (Kapsenberg et al. 2015; McNeil et al. 2010; Roden et al. 2013) 421 

which may have had a role in littoral species preadaptation, as already recognized in the 422 

resilience ability of S. neumayeri (Collard et al. 2013; Kapsenberg and Hofmann 2014; Morley et 423 

al. 2016). This kind of preadaptation may not mean a complete robustness to OA, but, rather the 424 

ability to reallocate energy where most needed, as seen in S. neumayeri and A. colbecki 425 

(Dell’Acqua et al. 2019). Local preadaptation may have a genetic fingerprint (Sunday et al. 2014) 426 

and could differ among populations of the same species, especially when they have low or no 427 

connection (Guidetti et al. 2006). However, OA could exacerbate littoral pH oscillation 428 

(Kapsenberg et al. 2015; McNeil and Matear 2008) and the consequences of a prolonged natural 429 

low pH exposure needs to be further investigated.  430 

 Being our experiment a short-term exposure,  we cannot infer an A. colbecki response 431 

after a long-term exposure. Interestingly, short-term experiments are not supposed to account 432 

for adult acclimation, especially in a slow growing species, in opposite with long-term exposures 433 

(Suckling et al. 2015): still, we found no effects of OA in our short-term experiment that should 434 

have not allowed for acclimation. 435 

Conclusions 436 

 Our study shows that A. colbecki shell structure and mechanical properties are resistant 437 

to a short-term OA exposure, both at the micro- and at the nanoscale, suggesting potential 438 

robustness of this benthic key species in light of future calcium carbonate undersaturation. 439 

 The scallop shell accounts for a very low amount of organic matrix, whose production is 440 

the most expensive process in shell deposition. A. colbecki shell robustness may reflect either a 441 

lower energy requirement for shell repair and maintenance, or the ability to reallocate energies 442 

among body functions/organs, thanks to a preadaptation history: this ability can be enhanced by 443 

conspicuous levels of food availability. As A. colbecki is strongly patchily distributed, with low or 444 
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no connection between populations, further studies should consider to test the response of 445 

different populations, possibly also exposed to different food level conditions. Additionally, 446 

longer term experiments, performed at low levels of food availability (to mimic winter time) are 447 

necessary. 448 
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