
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Lwakatare, Lucy Ellen; Kilamo, Terhi; Karvonen, Teemu; Sauvola, Tanja; Heikkilä, Ville;
Itkonen, Juha; Kuvaja, Pasi; Mikkonen, Tommi; Oivo, Markku; Lassenius, Casper
DevOps in practice

Published in:
Information and Software Technology

DOI:
10.1016/j.infsof.2019.06.010

Published: 01/10/2019

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Published under the following license:
CC BY-NC-ND

Please cite the original version:
Lwakatare, L. E., Kilamo, T., Karvonen, T., Sauvola, T., Heikkilä, V., Itkonen, J., Kuvaja, P., Mikkonen, T., Oivo,
M., & Lassenius, C. (2019). DevOps in practice: A multiple case study of five companies. Information and
Software Technology, 114, 217-230. https://doi.org/10.1016/j.infsof.2019.06.010

https://doi.org/10.1016/j.infsof.2019.06.010
https://doi.org/10.1016/j.infsof.2019.06.010


 

DevOps in Practice: A Multiple Case study of Five Companies

Accepted Manuscript

DevOps in Practice: A Multiple Case study of Five Companies

Lucy Ellen Lwakatare, Terhi Kilamo, Teemu Karvonen,
Tanja Sauvola, Ville Heikkilä, Juha Itkonen, Pasi Kuvaja,
Tommi Mikkonen, Markku Oivo, Casper Lassenius

PII: S0950-5849(17)30279-3
DOI: https://doi.org/10.1016/j.infsof.2019.06.010
Reference: INFSOF 6157

To appear in: Information and Software Technology

Received date: 31 March 2017
Revised date: 5 April 2019
Accepted date: 23 June 2019

Please cite this article as: Lucy Ellen Lwakatare, Terhi Kilamo, Teemu Karvonen, Tanja Sauvola,
Ville Heikkilä, Juha Itkonen, Pasi Kuvaja, Tommi Mikkonen, Markku Oivo, Casper Lassenius, DevOps
in Practice: A Multiple Case study of Five Companies, Information and Software Technology (2019),
doi: https://doi.org/10.1016/j.infsof.2019.06.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

DevOps in Practice: A Multiple Case study of Five Companies

Lucy Ellen Lwakatarea,∗, Terhi Kilamob, Teemu Karvonena, Tanja Sauvolaa, Ville Heikkiläc, Juha Itkonenc, Pasi Kuvajaa, Tommi
Mikkonenb, Markku Oivoa, Casper Lasseniusc

aM3S, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland
bDepartment of Pervasive Computing, Tampere University of Technology, Tampere, Finland

cDepartment of Computer Science, Aalto University, Helsinki, Finland

Abstract

Context: DevOps is considered important in the ability to frequently and reliably update a system in operational state. DevOps
presumes cross-functional collaboration and automation between software development and operations. DevOps adoption and
implementation in companies is non-trivial due to required changes in technical, organisational and cultural aspects.
Objectives: This exploratory study presents detailed descriptions of how DevOps is implemented in practice. The context of our
empirical investigation is web application and service development in small and medium sized companies.
Method: A multiple-case study was conducted in five different development contexts with successful DevOps implementations
since its benefits, such as quick releases and minimum deployment errors, were achieved. Data was mainly collected through
interviews with 26 practitioners and observations made at the companies. Data was analysed by first coding each case individually
using a set of predefined themes and thereafter perform a cross-case synthesis.
Results: Our analysis yielded some of the following results: (i) software development team attaining ownership and responsibility
to deploy software changes in production is crucial in DevOps. (ii) toolchain usage and support in deployment pipeline activities
accelerates the delivery of software changes, bug fixes and handling of production incidents. (ii) the delivery speed to production is
affected by context factors, such as manual approvals by the product owner (iii) steep learning curve for new skills is experienced
by both software developers and operations staff, who also have to cope with working under pressure.
Conclusion:Our findings contributes to the overall understanding of DevOps concept, practices and its perceived impacts, particu-
larly in small and medium sized companies. We discuss two practical implications of the results.

Keywords: DevOps, Continuous Deployment, Agile, Operations, Development

1. Introduction

DevOps, a portmanteau of development and operations, is
an approach where software developers and operations work in
close collaboration [1]. The goal is to improve communication
and integration of development and operations in order to fully
gain benefits of modern software development approaches [2]
that employ rapid releases of new software features to, and sub-
sequently learn from, end users [3].

DevOps concept, emerging in the context of rapid releases,
was introduced in 2009 [4], however most of the problems it ad-
dresses were already identified in previous literature [5],[6],[7].
These prior works identified the problem of poor collaboration
and lack of early involvement of operations team in software
development process, which negatively impact software release
time and quality in production environment [6], [7]. Much of
the recent attention on DevOps comes after mainstream adop-
tion of agile methods because most of them do not cover system
in use (operations) life-cycle phase [8],[9]. As such, different
concepts, such as agile infrastructure [10] and boundary span-
ning [11] were used to address the gap in agile literature but not

∗Corresponding author
Email address: lucy.lwakatare@oulu.fi (Lucy Ellen Lwakatare)

systematically. For instance, agile literature on boundary span-
ning does not explicitly focus on operations unit rather on all
units that interact with, and are external to, development unit
[12], [11]. Early solutions to the problem have focused on es-
tablishing well-defined and formal procedures of involving op-
erations in the development process [5],[11]. Through this, De-
vOps aims at improved delivery speed of changes to production
and automation in software process [13].

Some DevOps practices can be found in prior literature [7].
Hamilton [7] presents a list of best practices that focus on
automation when designing and deploying operations-friendly
large-scale internet services to facilitate quick service delivery
with minimum production incidents and administrative costs.
To identify applicable DevOps practices, and gain a broader un-
derstanding of the nature and characteristics of its activities re-
quires empirical investigation of how DevOps is enacted. Prior
empirical research shows that DevOps is a multifaceted concept
and its practices highly depend on how an organisation has in-
terpreted the DevOps concept [14]. Studies that report success-
ful adoption of DevOps, wherein the benefits of DevOps are
realised, have shown that its implementation involves changes
in organisational structures and roles [15], system architecture
[16], processes and tools amongst others [17]. Details of the

Preprint submitted to Information and Software Technology June 25, 2019



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

context that go beyond system domain [18] are necessary to in-
form and help determined the conditions in which the practices
are best situated.

Deployment pipeline of software changes is where most
of the cross-cutting concerns between software development
and operations intersect [13]. Kerzazi and Adams [19] found
that the DevOps engineer role includes infrastructure activ-
ities, such as deployment pipeline optimisation, among oth-
ers. Deployment pipeline incorporates DevOps practices of
automated deployment procedure and infrastructure-as-code
[13],[20]. Implementing and integrating effective deployment
pipeline to an existing software release process is not only
challenging but requires diverse skill-sets, including that of
operations staff [21],[22],[23]. Three anti-patterns of soft-
ware release process are described by Humble and Farley [2]
to include: deploying software manually, deploying to non-
production-like environments during development, and config-
uring environments manually.

Besides well-known surveys [24], experience reports [22]
and books [2], [25] from industrial leaders and practitioners,
there are relatively few empirical studies on DevOps imple-
mentation in academia. This claim is supported by systematic
literature reviews [20], [1] and a recent empirical study [26]
that suggested there is very little to determine whether DevOps
is indeed beneficial to Software Engineering. This raises the
question of how DevOps is implemented in software companies
besides the innovation leaders, particularly small and medium
companies that have limited resources [27] and organisational
boundaries [28].

The objective of this study is to present detailed descrip-
tions of DevOps implementation in real industrial settings.
Specifically, the paper explores the activities of the deployment
pipeline of five cases from small and medium sized compa-
nies that are developing web-based applications and services.
Three cases were developing software for an internal customer
(other product teams) and the other two cases for an external
customer (a public agency and an independent research organi-
sation). The five companies were selected from a pool of organ-
isations taking part in a larger Finnish national research project
(detailed in Section 3).

The main contributions of this paper are threefold. First, it
provides insights into the concept of DevOps and gives an en-
hanced definition of DevOps that is based on existing literature
and interview data. Second, the paper provides detailed descrip-
tions, including rationales, of DevOps implementation. Cross-
case analysis of the implementation details are used to identify
similar DevOps practices. Third, the paper provides detailed
descriptions of perceived benefits and challenges of DevOps.

The rest of this paper is organised as follows: Section 2,
presents literature review on DevOps. In Section 3, the re-
search approach of the study is discussed. In Section 4,
presents an overview of the cases, including the software de-
velopment context and techniques. In Section 5, findings of
the cross-case analysis are presented. Section 6 discusses the
findings in light of prior literature, in addition to validity and
limitations of the study. Section 7 concludes the paper with
suggestions for future research.

2. Background and Related Work

Modern software development process is increasingly be-
ing characterised by frequent and rapid releases of software
changes that enable fast feedback from end-users [3],[29]. The
need to attain the capability to deliver software frequently, fast
and in an automated manner as soon as changes are checked-
in into the mainline is a major motivation for organisations to
adopt DevOps [4] and continuous practices [3]. This section
presents the DevOps concept and practices, as described in the
literature. Empirical studies describing DevOps practices, ben-
efits and challenges are presented to position this paper with
the related work. As DevOps is intertwined with continuous
practices, we only considered empirical studies that explicitly
mentioned DevOps.

2.1. The DevOps concept

DevOps concept, pioneered by practitioners like Patrick De-
bois [10], aims at tackling inefficiencies in software develop-
ment, release and operations processes that are caused by or-
ganisational split between the processes [9]. In such a context,
the development and the operations units often experience con-
flicting goals of ‘agility vs. stability’ and face several chal-
lenges, including poor information flow and unsatisfactory test
environments [6].

Multivocal ‘grey literature’ studies [30] and [31] found that
terms such as ‘movement’, ‘practices’, ‘culture’, ‘tool’ and
‘philosophy’ are commonly used to refer to the DevOps con-
cept. To minimize ambiguity, Penners and Dyck [32] proposed
a scientific definition of DevOps as:“a mindset, encouraging
cross-functional collaboration between teams — especially de-
velopment and IT operations — within a software development
organization, in order to operate resilient systems and acceler-
ate delivery of changes.”

The proposed definition by Penners and Dyck [32] has a con-
sensus with that of [20] with respect to collaboration and com-
munication between development and operations. Some schol-
ars have argued against restricting DevOps to communication
because it is vague considering that developers can use various
sources of information to determine the requirements for soft-
ware deployment and operations [33]. Further, it is argued that
there is no established causal link between the different forms of
collaboration and software release time or quality in production
[13]. In similar line, according to [34], culture, which includes
mind-set, should not be a defining aspect of DevOps; rather, the
focus should be put on the engineering practices when defining
the concept. The definition of DevOps proposed by [13] incor-
porates the later as it emphasises on speeding up the delivery
of quality software that is achieved by employing a set of engi-
neering practices from the time a software developer commits
code to mainline up until when the code is deployed in produc-
tion. Clearly as noted by [32] there is a need to make additional
inquiries from practitioners¢¢ understanding of DevOps if we
are improve the definition but research needs to go beyond that
to investigate its actual behaviour (methods, practices and tools)
and consequences [35]. This research makes an explicit inquiry
of these aspects.

2



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2.2. DevOps practices

DevOps concept is associated with both technical and non-
technical practices. de França et. al. [31] divide DevOps prac-
tices into three categories. The categories describe common
practices done jointly between the development and operations
teams and practices distinct to development and to operations.
The common practices category is further split into collabo-
rative practices involving human interactions and procedural
practices that are mostly automated. We elaborate more on the
common practices in the procedural category herein rather than
on those distinct to development and operations.

DevOps practices done jointly between the development and
operations teams are incorporated into the deployment pipeline,
as the focus is not limited to the design and implementation of
system features, but it also includes the consideration of envi-
ronments and tools that are used to support the development,
deployment and operations of software features [13]. The de-
ployment pipeline, according to Humble and Farley [2], is an
automated manifestation of the entire software process consti-
tuting to all stages of getting software changes from version
control until they are visible to end-users.

DevOps practices in the deployment pipeline involve au-
tomation of the deployment process, including automatic provi-
sioning of the environments aimed at eliminating (or minimis-
ing) manual system hand-overs from development team to oper-
ations team. It may also be done to abstract the inner workings
of the deployment procedures to developers, thus facilitating a
low learning curve [23], [36]. In cloud-based systems, where
the concept DevOps is often associated [37], the automated de-
ployment mechanism is incorporated into the continuous in-
tegration (CI) server with pre-defined triggers to facilitate the
automatic deployment of changes to virtual machines (VM) in
production or other environments in the cloud [13], [25]. When
software changes are available for release, a new VM image is
created with the new system version in a process of baking an
image. As part of the deployment process, configuration man-
agement tools are used to automatically provision, configure
and upgrade existing VM with the newly created image while
applying a selected deployment strategy [13], [38], [37]. Blue-
green deployment and rolling upgrade are two commonly used
deployment strategies in cloud-based systems [13]. The au-
tomated deployment mechanism can use different deployment
strategies, but when created, it ensures the reliability and re-
peatability of system deployment [13], [38]. Several evaluative
and experimental DevOps studies have focused on investigating
reliability issues found by the tools when applying the different
deployment approaches [39],[38]. Other studies have focused
on finding better ways to integrate heterogeneous tools, their as-
sociated artifacts with the different deployment strategies [40].

In addition to deployment process automation, there are other
practices that cross-cut the deployment pipeline and are of con-
cern to both developers and operations personnel. According to
Bass et al. [13], these include monitoring and security. Moni-
toring involves not only gaining insights from the various levels
of the system stack [41], but also from the tools used in the de-
ployment pipeline, as they have failure potential [13] and per-

formance improvement opportunities [42]. Monitoring the exe-
cution of deployment scripts enable the detection of errors dur-
ing deployments in addition to performing system health checks
to detect issues and alert both developers and operations per-
sonnel [13]. Moreover, the deployment pipeline itself must be
secured from malicious attackers and scenarios [13], [43]. This
is in addition to ensuring security conformance during security
audits [13], [44]. According to Schlossnagle [41], characteris-
tics of successful monitoring includes well-articulated business
goals; use of high capable tools and skillset to handle and in-
terpret voluminous data; and data retention to foster culture of
learning and understanding how failures transpire.

2.3. Previous empirical studies
This subsection presents DevOps practices, benefits and

challenges from empirical studies published in academic fo-
rums. A summary of these is presented in contrast with our
study findings in Tables 4, 5 and 6.

DevOps practices. DevOps practices include an automated
system deployment mechanism to eliminate waiting times for
environment provisioning [22], bridge the gap between devel-
opment and operations [45] [46] and make system configura-
tions reproducible [47] [48]. Tools such as Ansible, Chef and
Puppet are reported to be used to facilitate automated provi-
sioning of infrastructure [14][49], and makes transparent to de-
velopers the evolution of infrastructure and configurations [37].
Similarly, continuous monitoring through log aggregation and
monitoring tools has become an integral part of the deployment
pipeline, and are made accessible to developers [23] [16] [37]
[44] [28].

DevOps benefits. Reported benefits of adopting DevOps in-
clude a reduction in the average release cycle time [22] [14]
[50] (e.g., from two weeks to one day [45]), improved quality
[14] [50] and eased tension and collaboration between devel-
opers and operations engineers [22] [16] [37] [14] [15], which
also improved the morale of developers [45].

DevOps challenges. Reported challenges include difficulties
in implementing an automated deployment process when soft-
ware changes involve changes to database [45]. Another chal-
lenge identified was that DevOps adoption necessitates that
both software developers and system administrators learn new
technologies, tools and methods, in addition to performing their
ongoing activities [34] [17] [28] [15]. Furthermore, when De-
vOps adoption is championed from the bottom up, senior man-
agers are to be convinced of the benefits DevOps [17]. Signif-
icant efforts are required to automate the deployment process
fully because it involves making changes to the ways in which
an organisation manages infrastructure [22].

3. Research Methodology

This section describes the research methodology and steps
taken in conducting this study. The study design, data collec-
tion and data analysis are further elaborated in the following
subsections.

3



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3.1. Study design and case selection

The study applies a multiple-case study approach conducted
between January 2016 and January 2017. The multiple-case
study approach was selected because it gave the possibility to
investigate DevOps at multiple levels of analysis and in a real
context [51], [52]. Furthermore, the case study approach fit to
the purpose of our study, which is to identify what is happen-
ing and gain insights into DevOps adoption and implementa-
tion. This is in contrast to the objective of generating theory
and cause-effect relationship, which would require considering
other appropriate research methods such as Grounded Theory
[53] and Experimentation [54]. Multiple case means five devel-
opment teams experienced with DevOps approach were stud-
ied. The research questions used to guide this study were:

• RQ1. What is DevOps according to practitioners?

• RQ2. What key practices are employed in DevOps?

• RQ3. What are the perceived benefits and challenges of
DevOps?

Case selection. A previous study identified that DevOps is
challenging to adopt [55]. Based on this, we wanted to select
companies that had successfully adopted DevOps from a pool
of companies participating in the DIMECC Need for Speed
(N4S) programme 1. Five company representatives nominated
themselves and allowed researchers to conduct the study in their
respective companies. Their motivation to participate in the
study was to share best practices amongst themselves. The se-
lection of a specific team within the company was left to the
company representatives. Background information of the cases
and, later on, interviews with five practitioners from each case
indicated saturation, i.e., no new viewpoints were emerging by
adding new interviewees [52]. The unit of analysis was a soft-
ware development team developing one or more software prod-
ucts or services for an internal or external customer of the com-
pany. The selected five cases are identified with the letters A-E,
owing to the confidentiality that was agreed upon between the
researchers and practitioners.

Design of the interview guide. Workshops were conducted by
researchers to propose research questions, specify data collec-
tion process, identify roles suitable for interviews and develop
an interview guide. The interview guide was developed in sev-
eral iterations and reviewed by all researchers prior to data col-
lection. The review of the interview guide provided a venue for
researchers to request clarity or rationale for each question. The
interview guide consisted of open-ended questions that were
divided into six themes: 1) the background of the case and in-
terviewee, 2) development practices, 3) build and integration
practices, 4) monitoring and infrastructure management prac-
tices, 5) perceived impacts and 6) development culture. The
full list of interview questions can be found in Appendix A.

1The Need for Speed (N4S) programme, executed by forefront Finnish soft-
ware companies and universities, is a nationally funded programme aiming to
create the capability for speedy value delivery based on deep customer insight
(http://www.n4s.fi/en/)

The outputs of the researchers’ workshops were shared with the
company representatives in a teleconference meeting at which
a pilot case for data collection was selected and background in-
formation of the cases to be studied was requested.

3.2. Data collection

Data were collected mainly through interviews with 26 prac-
titioners and observations at companies between March and
May 2016. Table 1 summarises the roles of interviewees and
observations made from the cases. The data collection was first
executed in a pilot case (Case D), and three researchers con-
ducted the interviews with practitioners. Data from the rest of
the cases were collected by at least two researchers, where one
of the researchers had participated in the pilot case data collec-
tion. The latter was done to ensure the lessons learned from the
pilot case were considered during data collection in the other
cases. The experiences and lessons learned from the pilot case
were also shared in a workshop participated by all researchers
prior to data collection for improvements in the interview guide.

Table 1: Interviewees and observations in cases

Case Interviewees Observations

A
Developers (3), project
manager, site manager

Stand-up meeting, team
working environment

B

Developers (3), prod-
uct owners (2), director
of culture and compe-
tences

Team working space, de-
velopment technical en-
vironments

C

Developers (2), prod-
uct owner, head of
development, IT
department-Ops team
lead

DevOps meeting, team
working environment,
development technical
environments

D

Developers (2), product
owner, product owner
of operations team, sys-
tem administrator

Team stand-up meeting,
company’s business
owners stand-up meet-
ing, team working
space

E
Developers (4), team
lead

Team working space, on-
going deployment pro-
cess.

At least five individual interviews were conducted in each
case by researchers using the interview guide. The interviews
were semi-structured with open-ended questions to allow re-
searchers to make further inquiries based on interviewees’ re-
sponses. Most interviews were done face-to-face on the com-
pany’s premises, except for one interview, which was done via
Skype. During the interviews, one researcher mainly asked the
questions while the others took notes. All interviews were voice
recorded and transcribed by professional transcription services.
Each interview took, on average, 1 – 2 hours, except the inter-
views in Case E, which were considerably shorter, taking 30

4



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 2: Description of the themes used to code the interview transcripts

Theme / subtheme Description

Context / organisation Data about organisation structure, roles and responsibilities, internal stakeholders, teams

Context / offering Data about product or service, customer, external stakeholders, business

Feature flow / upstream
Practices employed before system implementation/coding begins e.g., road-mapping, requirements
engineering, concepting

Feature flow / implemen-
tation

Practices employed by the development and operations team before and during deployment of
software system to production

Feature flow / production Practices done after deployment of software system to production

DevOps interactions Explicitly mentioned interactions between development and operations

DevOps understanding Explicitly given description of DevOps concept

Impacts Perceived, real, expected effects of DevOps

Challenges Challenges in the current and DevOps ways of working

Quality
Practices related to ensuring quality and non-functional requirements (performance, reliability,
scalability, security)

Tools
Explicitly mentioned tools and their purpose of use before, during and after system deployment to
production

Rationale and motivation
of DevOps

Rationale given for adopting or using DevOps, including when DevOps was started, by whom and
challenges that teams are solving through DevOps

– 60 minutes. Observations made on company premises also
served as another important data source for triangulation. Ob-
servations were made, and notes taken, of events that took place
on the days of the interviews.

3.3. Data analysis

The data were analysed using a thematic coding technique
[56]. Data were first coded case by case and later on performing
a cross-case synthesis, often used in multiple case studies [51]
[52]. The analysis steps were done in multiple iterations in the
NVivo 2 server project, accessible by all researchers from three
different universities.

The first step of analysis involved the use of a thematic cod-
ing technique [56] to code the transcripts using a set of prede-
fined themes. The predefined themes were developed by six re-
searchers through a series of rigorous process steps that began
with familiarisation with the data collected and pilot coding.
The initial set of predefined themes was developed after discus-
sion amongst researchers based on the interview guide and data
collected. This was followed by two rounds of pilot coding to
revise the predefined themes. The first round of pilot coding
was done by six researchers who separately coded one similar
transcript to determine a coding agreement level amongst them.
NVivo can calculate a Kappa value of coding agreement be-
tween two sets of codes. As a rule of thumb, a Kappa value
of 0.4-0.75 describes a fair to good agreement, whereas a value
over 0.75 describes excellent agreement. After the first round

2 NVivo is a qualitative data analysis software.

of pilot coding, poor coding agreement values (Kappa less than
0.4) were observed in most themes (8 out of 11). Subsequently,
the researchers had a one-day workshop to compare how differ-
ent researchers had coded the individual themes and discussed
their rationale. By the end of the workshop, the researchers
had created a coding guideline document containing a list of
basic principles and a codebook listing the predefined themes
and their descriptions, showin in Table 2. To ensure the coding
practices had improved, researchers selected another transcript
that was coded in its entirety by five individual researchers. Af-
ter the second round of pilot coding, the researchers were sat-
isfied with the level of coding agreement. The task of compre-
hensive interview coding was distributed amongst the six re-
searchers. Each researcher coded at least four interview tran-
scripts. Weekly teleconference meetings were held to check the
status of the coding process and discuss any emerging issues.

Following the completion of thematic coding, case-wise
summaries of each theme were written and subjected to a cross-
case comparison using the cross-case synthesis method. Cross-
case synthesis was done following recommendations provided
by Yin [51]. Yin [51] recommends the “creation of word ta-
bles that display individual cases according to some uniform
framework ”. In this study, tables (one for context subthemes
and another for feature flow subthemes) were created in Google
Sheets to display case data using a framework developed from
literatures by [27] [2] [13]. The framework described the ac-
tivities that are executed as code changes move through the de-
ployment pipeline and while in production and, in addition, the
rationales given by interviewees for having (or not having) a
particular practice. The parts coded with benefits were read and

5



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

benefits were added to a table case-by-case and further themat-
ically grouped cross-case.

4. DevOps implementation and adoption in each case

This section presents information about teams, processes and
environments used to develop and operate software applications
and services in each case. Table 3 gives a summary of the devel-
opment context and Figure 1 shows the deployment pipelines of
each case. Three cases were end user-facing services, of which
the longest running service (Case C) had been in production
for over a decade. The other two had been initially deployed
between 2015 and 2016 (Cases A, B). At the time of the inter-
views, four cases (Cases A, B, C, F) were using the Amazon
Web Services (AWS) cloud platform and Case D was transi-
tioning to AWS from an internal private VMware-based cloud.

4.1. Case A - Road maintenance reporting tool

The company behind Case A mainly provides digital business
consultancy and solutions to its customers. Case A provides
product-engineering services to a public sector customer in a
fixed-price project that started in 2014. The tool is a web-based
application that displays information about road maintenance
activities gathered from various other systems and is meant to
modernise an existing solution with more advanced features,
such as real-time follow up and map services. Case A con-
sists of six ‘full stack’ developers and one project manager co-
located at their company’s premises. The company has a matrix
organisation structure wherein there exists project teams whose
members also belonged to other focused teams, such as Java
team and integration team. The company has a separate op-
erations team that is managing company’s third party provided
cloud infrastructure and is located in another city and one mem-
ber from the team interacts with Case A members.

Techniques and environments. Product requirements were
specified at the beginning of the project and stored in a product
backlog that is maintained by the project manager in Jira. De-
velopers pick tasks from the backlog and implement new fea-
tures by branching from master branch to a development server.
New software changes are first tested by the developer and then
reviewed by another while in development server. Once code-
review is completed, accepted changes are merged to the mas-
ter branch. New merges to the master branch trigger the CI
server to automatically build and subsequently deploy to the
test environment, where unit tests and end-to-end tests against
test database are executed. If the tests pass, every morning at
6 o’clock, the application was automatically deployed from CI
to a staging environment, that is accessible by the customer.
The project manager and the customer perform additional man-
ual exploratory tests in the staging environment. Case A has
a separate repository for the Ansible projects, which are used
for setting-up test, staging and production environments auto-
matically. Access to management console and APIs of the in-
frastructure is managed by the operations team. Case A mem-
bers interact with operations team through HipChat, particu-

larly when setting-up new environments and accessing mon-
itoring logs from CI server especially during build failures.
For configuration changes that are commited to the repository,
Jenkins automatically runs the playbooks and builds them after-
which the artefacts are archived. The developed product is one
JAR file that gets deployed to the server using a playbook, that
copies the configuration template and the JAR file to the server,
and then calls a system restart.

DevOps introduction and adoption. DevOps approach in Case
A was largely introduced by developers who had the autonomy
and flexibility to improve their ways of working. According
to one developer, the need to improve development workflows
was one motivation for adopting DevOps:

‘First tasks I’ve been involved in when I joined were
DevOps like working habits or techniques. I’ve been
like a consultant in that role...one of the first things I
did was to set-up a development environment that is
very easy to use because it was like Wild West...there
were no Git workflows and the development environ-
ment was installed painstakingly in every worksta-
tion...So we switched to Vagrant...Git-flow and set-
up six private development servers for each person to
develop features by branching from the main branch’.

Prior to this improvement, the team spent huge efforts in merg-
ing code and resolving merge conflits, which were causing
broken builds often. Case A had acquired external cloud
resources— not managed by operation team— for provisioning
the shared development environments, and the team had full
access to infrastructure, including management console. The
latter was supported by the customer and operations team.

4.2. Case B - Occupational Health and Safety Services

The company of Case B specialises in providing digitalisa-
tion services to business customers. Case B provides product-
engineering services — software development, technical exper-
tise and infrastructure — to an independent occupational health
and safety research, development and specialist organisation.
Development work is carried out in a project that started in early
2015, with the goal of implementing the organisation’s digi-
talisation strategy to provide more occupational health-related
services online. Case B is developing three web services, in-
cluding websites about safety at work, occupational health and
a quality portal. Case B has five ‘full stack’ developers, one
technical project manager and one user experience (UX) de-
signer co-located at the customer’s premises with two product
owners employed by the customer organisation. At the time of
the interview, the company had two business units: architecture
office and construction office. The architecture office focuses
on system requirement definition including high-level architec-
ture specification, while system implementation was done by
the construction office. Case B has no separate operations team,
rather the required expertise is said to be embedded inside the
team through developer self-learning or discussion with domain
experts.

6



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 3: Summary of case context description

Aspect Case A Case B Case C Case D Case E

Company
type and size

Digital business
and service con-
sultancy company,
600+ employees

Digitalisation ser-
vice company, 300+

employees

Digital marketing
and sales solution
company, 300+

employees

Public service
broadcasting com-
pany, 2500+ em-
ployees

Cyber security ex-
perts and solution
company, 1000+

employees

System web-based road
maintenance re-
porting tool

websites for safety at
work, occupational
health and quality
portal

web-based service
channel for compa-
nies to order, use,
monitor and man-
age their purchased
services

REST API for me-
dia content

Security cloud ser-
vices

Customer National Transport
Agency

Research organisation
in the field of occu-
pational health and
safety

Product teams in-
side the company

Product teams in-
side the company

Product teams in-
side the company

End users National Transport
Agency, Regional
transport and en-
vironment centres
and road mainte-
nance contractors

Occupational health
providers, re-
searchers, employers
and all people inter-
ested in occupational
health topics

Companies Product team, ex-
ternal developers

Corporate cus-
tomers and exter-
nal developers

Team size 6 ‘full stack’ de-
velopers, 1 project
manager

5 ‘full stack’ devel-
opers, 1 project man-
ager, 1 UX designer

4 developers, 1 UX
designer, 1 product
owner

7 developers, 1
product owner

8 developers, 1
team lead

Release cy-
cle time

Fixed schedule
project of 2 years

2 weeks Not defined Not defined 1–2 weeks

Deployment
frequency

Daily to staging Several times to pro-
duction during two-
week sprint

Daily to produc-
tion

Daily to produc-
tion

Daily to Alpha and
weekly to Beta
environments

Build output JAR file Docker image AWS machine im-
age

Debian package AWS machine im-
age or Docker con-
tainer

Tools Deveo, Jenkins,
Selenium, Ansible,
GrayLog

GitHub, Jenkins,
SonarCube, Ansi-
ble, Docker, Ama-
zon CloudFormation,
Amazon monitoring
services

Bitbucket, Jenkins,
Chef, New Relic

Git, Jenkins, Pup-
pet, New Relic

Bitbucket, Jenkins,
Docker, Amazon
CloudFormation;
Kinesis

Languages Clojure Java, JavaScript,
Node.js, Python

Java, Scala and
Node.js

Clojure, Scala Python, Java and C

Techniques and environments. A list of user stories (tickets)
is maintained by the product owners. During each two-week
sprint, estimated tickets are kept in priority order in a sprint
backlog on the team¢¢s Kanban board. On Kanban board there
are also ‘infrastructure or operations’ related tickets, in addi-
tion to the user story tickets that are kept as small as possible
to implement in shortest time. Tasks are implemented on fea-
ture branches and then merged to the master branch in GitHub.
The CI server tracks changes in the master branch to automat-

ically build a Docker container image. Unit tests are executed
as part of build process and SonarCube is used for checking
code coverage. The image is then automatically installed from
CI to development server. Once in development server, code
changes are reviewed and application tested by another devel-
oper, if there is time. Product owner reviews implemented tick-
ets and perform manual front-end tests in the development en-
vironment. With the permission of the product owner, accepted
changes/tickets are deployed to an acceptance testing environ-

7



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

ment by push of a button. Because the team uses microservice
architecture, components that relate to accepted tickets are first
selected from the different build pipelines. When in acceptance
testing environment, the product owner announces the avail-
ability of new features for testing by other stakeholders in the
client organisation. Again, with permission from the product
owner, the developers deploy to production, which maybe done
several times during (or at most in) a two-week sprint cycle
time. In addition to using Amazon CloudFormation templates,
Case B uses Ansible scripts, which are stored in a version con-
trol where everyone has the possibility to modify them, to au-
tomating deployment and the provisioning of infrastructure.

DevOps introduction and adoption. Case B’s customer
project is considered a prime example of a successful imple-
mentation of DevOps practices, made possible by the cus-
tomer’s willingness to adopt an AWS infrastructure and diverse
skillest embedded into the team. According to director of com-
petence and culture at the company and developers in Case B,
adoption of DevOps in customer projects varies and it has not
been adopted in many customer projects of the company. Adop-
tion of DevOps is considered to be difficult when customer has
an external operational service provider as well as multiple sup-
pliers due to problems such as development team’s limited ac-
cess to production. Specific to Case B, DevOps adoption is
elaborated in the following statement given by a developer:

‘We’ve made some small changes. But not in such a
way that we decided that now we’ll start using De-
vOps. [our company] has guys who have a back-
ground in things like that, in fact, some have been
involved in this project as support. So when we face
a situation that there is a problem with infra and we
don’t have experience on that we can contact these
guys or they can come to the site and help if the cus-
tomer allows it. And that’s how it was before the
launch. We had one traditional sys admin person. But
they were a part of the team, showed us how these
things should be done’

4.3. Case C - External Business Customer Access Point
The company of Case C offers digital marketing and sales so-
lutions that provide timely business and contact information.
Case C develops and maintains a web application serving as
a self-service channel for companies’ to order, use and mon-
itor their purchased services. For the business customers, the
application acts as a control panel to acquire and manage dif-
ferent services ordered from the company of Case C. Case C
consists of four developers and one UX designer co-located to-
gether with a product owner. The company’s development unit
has altogether 22 software developers assigned into five differ-
ent software development teams. The developers are hired from
different consulting companies. The company has a separate
operations team (IT organisation) consisting of four members,
two of which are software developers. Their responsibility is to
manage the infrastructure, including cost and user rights man-
agement, building automation and giving support to develop-
ment teams.

Techniques and environments. The product owner maintains
and prioritises development tasks in a product backlog. Tasks
in the backlog are kept as small as possible, so they are easy
to develop and push to production. Developers can freely pick
tasks from the backlog and begin work in local branches. Code
commit to master branch in Bitbucket trigger CI server to build
application package. After the application package is built, it is
first promoted and then deployed to subsequent environments
by a manually clicking a button click in CI. The deploy to test
and production buttons execute CI job, which deploys the ap-
plication to test or production environments. The production
deployment job starts a new instance, installs the required soft-
ware and security updates, creates a AWS image and starts a
new instances based on that image. Chef is used for infrastruc-
ture automation.

DevOps introduction and adoption. The introduction of De-
vOps into the company was motivated by the business need to
reduce their services’ time-to-market. As such, the transforma-
tion towards DevOps started in 2011, when the company de-
cided to move from on-premise infrastructure to a cloud-based
infrastructure offered by Amazon. The use of AWS and its
underlying technologies minimised the need for a large sepa-
rate operations team, as software deployment and infrastruc-
ture management, including configurations, could be done also
by the development team once the automation in deployment
pipeline was implemented.

4.4. Case D - REST APIs

The company of Case D is a media company, offering radio
and television programmes across all telecommunication net-
works. The company is also offering broadcasting programmes
and other content services online. Case D develops REST APIs
that are plugged into the company’s front-end web services. Al-
most 20 APIs are developed and maintained by Case D. The de-
velopment team consists of seven developers, hired from con-
sulting company, whose number may rise to about 15 devel-
opers at peak times. In addition to other development teams,
the company has a separate operations team that is building and
supporting company’s VMware infrastructure. The operations
team consists of five members led by product owner, who also
serves as a software architect in the company.

Techniques and environments. The developers have one task
at a time in progress. No work estimation or process track-
ing is used. The team¢¢s progress is visualised with a Kanban
board managed with daily meetings. There are no specific re-
lease cycles. There is trust that small changes will not break
anything and if they do, they will be fixed. Freeze periods are
used to ensure functionality of the services during holidays and
weekends. Every piece of code ready to be put into the mas-
ter branch in the version control system is reviewed by a sec-
ond developer to ensure code quality and to maintain coding
guidelines. Commits to the master branch, kept deployable and
working, are done daily. A CI server validates the code with
unit and integration tests and stores a Debian package to an in-
ternal repository. The build status is monitored on a radiator

8



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 1: Deployment pipelines of studied cases

at the team’s premises. From the repository, version-controlled
deployment scripts built in-house are manually triggered in or-
der for deployment to test or production environment. Puppet
is used to provision the environments.

DevOps introduction and adoption. The introduction of De-
vOps in Case D was largely driven by enthusiastic practitioners
within the company. Adoption of DevOps practices into the en-
tire company has not yet been realised. However, DevOps is
reported to be infiltrating across the different parts of the com-
pany mainly due to enthusiastic practitioners who are consid-
ered as change agents to company’s ways of working. Accord-
ing to one of the enthusiastic practitioner, the first step taken
in DevOps adoption was giving development teams access to
the production environment after ensuring all necessary legal
requirements were met. This was followed by the team gaining
the ability to manage configurations and implement infrastruc-
ture codes of the APIs. Much of the DevOps transformation
is further motivated by the company’s decision to move to the
AWS cloud in the near future.

4.5. Case E - Background Services for Products

The company of Case E is a European cyber security com-
pany providing antivirus, security software and VPN services.
Case E cloud team develops cloud-based background services
that are used by products developed by the company and its
external partners. The services have different purposes, use dif-
ferent technologies and are developed with different program-
ming languages. Typically, the individual services are stateless

and not large, but may need to handle a large number of si-
multaneous requests. Case E consists of eight developers and a
team leader. Most team members are highly experienced, have
worked in the different parts of the company for several years,
and posses a diverse set of technical skills. The team is consid-
ered at the cutting edge of development methods and technolo-
gies.

Techniques and environments. The requirements are recorded
in a ticket-tracking tool. Development is done in feature
branches that live no more than two weeks to avoid merge con-
flicts. After passing the local (unit) testing, a pull request is
created to review and make possible changes. Once completed,
the pull request is merged to the master branch and automati-
cally built in the CI. Once built, the code is deployed on an al-
pha server and monitored. Client product team members do the
alpha testing, typically using test automation. Some services
have system tests that are executed in the AWS environment.
If all performance and stability patterns look good, the code is
pushed to a production server as a beta service for a limited user
base and, if everything goes well, finally to general use. The ca-
dence of beta releases depends on the maturity of the system.
It may be two weeks for mature services or a few days for new
services, but critical fixes may be completed and published in
one hour or less.

DevOps introduction and adoption. The organisation has been
gradually transitioning to DevOps and specific to Case E, it in-
volved them taking the responsibility for the deployments and
operations of those services. One motivation for introducing

9



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

DevOps according to team lead was breaking the aligning goals
of development and operations:

‘It originated roughly four years ago. We had oper-
ations team and systems development team. Those
were working really close with each other, but also
teams were having different goals and targets. Suc-
cess and failures were measured in different ways.
Operations was more about keeping systems up and
not disturbing anything, and on the development side
it was about speed of development and getting things
into production. Those were competing goals and
that created friction. So we actively started breaking
those things’

5. Results

This section presents findings of cross-case analysis that
identifies similarities in the descriptions of DevOps concept,
practices and perceived impacts. Table 4 summarises com-
mon observed DevOps practices and other software develop-
ment practices. Commonly perceived benefits and challenges
are summarised in Table 5 and Table 6 respectively. From the
perceived impacts, attention is given to the explanations since
they are generally applicable and thus difficult to argue as a
mere result of only applying DevOps.

5.1. A shared understanding of the DevOps concept (RQ1)
DevOps, according to the majority of the interviewees, means
ownership and responsibility of software development team to
design, implement, test, deploy and maintain in production the
web applications and services. The main goal is to make soft-
ware changes visible in production fast was to allow quick feed-
back of the changes. Operations personnel support develop-
ment teams in activities related to automation of deployment
pipelines, sharing knowledge of security, scalability and per-
formance issues, and jointly resolving incidents. Interaction
between software development and operations personnel was
mostly informal and on as-needed basis (A, C, D).

‘DevOps means the team has the complete control
over the infrastructure, and the deployment and, ev-
ery possible thing that can be automated is auto-
mated’ (Developer, Case A)

‘DevOps in my opinion is that, persons who are
developing the applications are also the same ones
to maintain them in production. If something goes
wrong then the same persons are investigating the
problems and fixing them’ (IT department-Ops team
lead, Case C)

‘DevOps is when you have full responsibility of the
software you are developing in production ’ (PO of
operations team, Case D)

‘It means giving the team more responsibility and
control...that you don’t handover to operations your
deployment. It’s gaining confident in your deploy-
ment procedure and your ways of working’ (Devel-
oper, Case E)

Culture and mind-set. For most of the cases, the culture was
that of trust, team empowerment and cooperation. In Cases B,
C and D, development culture was quite inclusive and open to
learning. There was a recognition of value in having developers
who were consultants from various companies, co-located with
the customer and other members responsible for service devel-
opment. This enabled frequent interactions, information flows
and building of trust and team spirit, which were seen essen-
tial in DevOps. In all Cases, the developers had the freedom
and management support to learn, choose, improve or influence
suitable development practices in the project. At the company
level, there was a strong culture of sharing knowledge in train-
ing groups dedicated to different themes, e.g., a DevOps train-
ing group where members meet and discuss topics, problems,
etc. related to that theme —similar to community of practice in
agile.

In all cases except Case A, the development mind-set was
that of getting features to production as fast as possible and
fixing them later on. In Case D, the head of the API team
especially emphasised delivery speed over processes, bureau-
cracy and even quality. Delivering early and often, diving into
production and fixing later on describe their DevOps mind-
set. In Case C, the mind-set emphasised the ability to take
risks while allowing failures without blame. This was visible
in frequent production deployments, in addition to focusing on
building a deployment pipeline that allowed reverting and cor-
rective actions rather than the comprehensiveness of, e.g., test
suites. This was also evident in management’s emphasis on
people making decisions, acting fast and correcting direction
later rather than waiting and planning. In Case E, the mind-
set was to get something useful to the customers fast. Thus,
development focused on working on small features and getting
them into production as soon as possible. Contrary to the other
cases, the mind-set in Case A, also supported by management,
was to deliver on time and with good quality instead the ‘deploy
and fix later’ mind-set. The development team greatly valued
quality and focused on ensuring high quality before presenting
changes to customer.

5.2. DevOps practices situated in context (RQ2)

5.2.1. Automated deployment mechanism
Deployment scripts facilitated the automatic installation of soft-
ware to a target environment by software development teams.
Deployments scripts were mostly triggered from the CI system.
Software developers in all cases had access and could mod-
ify the scripts, which were also version-controlled. The access
and visibility of the deployment scripts by software developers
was seen positive and ensured knowledge transfer to developers
about the deployment process.

Deployment to a non-production environment was mostly
automated after the completion of a build while to production
it was mostly manually triggered as it involved getting confir-
mation from product owner or project manager (cases A, B).
Production deployments could be executed by any developer,
but often only after notifying other team members of such an
intention (Cases C, D, E). The notification served the purpose

10



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 4: Key practices employed by the studied cases

Key practices Findings of the study Supporting empirical
DevOps literature

DevOps practices found in deployment pipeline

Automated
deployment

Deployments triggered from Jenkins (Case A, B, C, E) and using a company-
tailored shell script (Case D)

[22] [37] [45], [14]
[49] [46]

Infrastructure
as code

Version-controlled provisioning scripts or templates for management and con-
figuration of infrastructure using Ansible (Case A), Chef (Case C), Puppet (Case
D) and Amazon CloudFormation (Case B and E)

[47] [48]

Continuous
monitoring

Monitoring of system health checks by developers using tools such as New
Relic, Kinesis and Amazon monitoring tools and communicated via radiators,
email alerts, PagerDuty and chat applications

[23] [37] [44] [16] [28]
[57] [45] [14]

Existing key development practices

Trunk-based
development

Frequent merges of branches to the mainline in all cases to minimise effort and conflicts resulting from code
merges. In Case D, feature branches were released and thus maintained for some APIs

Change-based
code review

Code reviews done prior to merging code to the mainline in Cases A, D and E and after merging to the
mainline in Case B. Main purpose was to ensure quality and an opportunity to share information about coding
styles and standards. Factors in code review considered important included knowledge of the reviewer, size
of code changes to be reviewed and review environment support

Continuous
Integration

CI server to execute unit tests and build system into deployable packages was implemented in all cases using
Jenkins. Additional automated integration tests for some specific software components was done for Case E.
Radiators are used to communicate the status of builds

Agile, lean
practices (and
their adapta-
tions)

No explicit agile method in cases, except for Case B, which was using Scrum. However, implicit adaptation
to agile Scrum and lean Kanban. From Scrum practices, e.g., daily/weekly stand-up meetings, retrospectives
and task estimation. From lean, task tracking and a Kanban board were used in all cases. Rationale for not
using Scrum in its entirety was to be more efficient and less constrained to the procedures

of avoiding duplicity. For example, in Case E, the team consid-
ered it important to avoid baking another image immediately
after a previous one had just been created.

The cases employed different deployment strategies, such as
blue-green deployment (Cases C and E), rolling upgrade (Case
B) and canary deployment (Case E). Roll-back mechanism was
said to be in place in Cases B, C, D and E. The deployment pro-
cedure was not explicitly documented except in Case B, where
the procedure was documented in a Confluence wiki. In Case
E, some software developers, particularly new members of the
team, documented the deployment steps for themselves.

Automatic deployment to production environment from code
commit for web services that were developed primarily for
other product teams (Case D, E) did not extensively rely first on
approvals from product owners as compared to the contracted
web applications incorporating user interfaces (Case A, Case
B). Canary deployment used in Case E ensured testing in pro-
duction environment with the users.

‘Features that change the output or bring some new
data or expectations we usually inform the guys, who
have ordered it, to try it out in testing because they
might have different tools and things that they test
’(Developer, Case E)

For the contracted web applications, PO or the customer needed
to approve almost all changes often done at the end of the sprint
and before deployment to production environment.

‘There’s some room for improvement on my part so
that I could react to, and test, the features in the test-
ing environments more quickly. Of course, neither
of our product owners is a full-time product owner
who could completely focus on the task. So if a few
post-its remain and I don’t have time to test them on
the same day, one could think about some kind of a
back-up arrangement’(PO, Case B)

Tooling and culture of team empowerment, trust and teams¢¢
shared responsibility for the ownership of the developed web
applications and services observed in teams ensured that soft-
ware changes to production are delivered quickly..

‘It has been almost five years we have worked that de-
velopers are responsible also to production. If there is
something wrong, somebody will participate in solv-
ing the problem and, developers have all the required
permissions to access production and deploy new ver-
sions’(IT department-Ops team lead, Case C)

11



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5.2.2. Infrastructure-as-code
Provisioning and configuring of environments repeatedly and
reliably was done as a part of the deployment process using
tools, such as Amazon CloudFormation (Case B,E), Chef (Case
C), Puppet (Case D) and Ansible (Cases A and B). Docker was
used in automated deployment procedure for some services in
Case E and was trialed on some selected products in Cases C
and D. Docker (Cases B) and Vagrant (Case A) were used to
provide virtualisation in the local development environments.

The use of IaC on AWS cloud environment (Case B, C and
E) and VMware cloud environment (Case D) provided an im-
portant feature, which is immutability of resources. This meant
that environment resources, such as instances of production en-
vironment, could be newly provisioned and quickly set-up us-
ing machine image (Case B, C, E) or scripts (Case D). This
minimised human error and ensured predictability and reliabil-
ity of application deployments.

‘Automation of server installations we have been do-
ing enabled to have development environments the
same. Most are made such that they are easy to re-
place and build. You can rely that you can build any
server again if something horrible happens. It’s also
quite nice because, otherwise, I wouldn’t be able to
maintain these many servers’ (Sys admin, Case D)

Networking services to the virtualised resources required some
careful consideration. It was reported by a software developer
of Case E that Docker, a technology for lightweight virtual ma-
chine, was used when working on network services, which sim-
plified operations. In Case D, both software developers and op-
erations staffs reported of poor automation of network services
in infrastructure was affecting the deployment procedures.

‘If we are working on network services, for these we
often have Docker-based system’(Developer, Case E)

‘The network has been a bit flaky at times. That’s
something we cannot control and have to rely on out-
side help to resolve’(Developer, Case D)

In Cases A, C and D, provisioning scripts were initially devel-
oped by operations personnel who then made them accessible
to developers. In Cases A, C, D and E, the provisioning scripts
were version-controlled and in Cases A, D and E, changes to
configuration parameters were sometimes reviewed by another
developer (Case E) or system administrator (Cases A, D). While
provisioning scripts or templates once created are reused and
that information for editing them is readily available from docu-
mentation, software developers saw it as a competence of oper-
ations staff which overtime they could acquire through learning
and interactions with operations staffs.

5.2.3. Monitoring as a continuous activity performed by the de-
velopment team

Developers were actively monitoring the web applications and
services they developed, both in production and in CI environ-
ments. Monitoring was performed for various purposes, includ-
ing providing visibility to the success or failure of the deploy-
ment and quality of web applications and services (Cases B, C,

D, E). Development teams monitored the systems in production
to be sure they were running, as well as to receive information
on the usage behaviour of the services (Cases C, D, E). Moni-
toring tools, such as New Relic, Kinesis and Graylog were used
to provide monitoring automation, and the tools were config-
ured to alert the teams in case of incidents or anomalies. Mon-
itored data were provided in the form of graphs with patterns
and trends displayed on wall radiators found at the team¢¢s
workspace (Cases D, E) or on dashboards accessed via the de-
velopers’ workstations (Case C). Outside working hours, on
weekends and public holidays, the teams in Cases C, D and
E did not report to have a formal process for monitoring the
services.

Alerts of incidents were sent to both operations staffs and
developers using tools such as PagerDuty (Cases C, E, D;
planned). Both developers and operations were responsible for
reacting to alerts (Cases C, D, E). In Case C, one developer (on
weekly rotation) was assigned to be on call and was responsi-
ble for reacting to production alerts. The role rotated amongst
all developers and if the developer assigned to be on call was
not available, the alerts were sent to all developers. Monitoring
activity was observed to be mostly established for the web ser-
vices developed internally (Case C, D, E) and least practised in
contracted web applications (Case A, B).

‘We have a department that has information screens
about the hosted servers, and they react when the disc
space is going to run out. If we had a standard setup
that would be integrated to monitoring services, we
could use some kind of Ansible role, to setup the
servers so that they report to the monitoring services
and the team here would see the monitoring data. But,
the monitoring is completely, in the hands of the IT’
(Developer, Case A)

5.3. Perceived benefits and challenges of DevOps practices

5.3.1. Perceived benefits
B1. Improved delivery speed of software changes. An im-
proved speed in the delivery of software changes was the most
commonly perceived benefit of DevOps. Cases B, C, D and E
were able to implement and deliver features to production in
shorter time periods with longest being two weeks. At best,
the speed was reported to have improved from months to days.
Improved speed made it possible to get fast feedback from pro-
duction environment. The employed DevOps practices were
seen as enablers and could facilitate continuous deployment of
changes whenever necessarily e.g., during bugs fixes.

‘We have automated processes. Whenever we imple-
ment something new, it doesn’t take too much time
for the customer to get and test it’ (Developer, Case
A)

‘A few years ago we had new versions of product
out in production four times a year and then once
a month. When we started to use DevOps this was
done on weekly and daily basis. Most important

12



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 5: Perceived benefits in DevOps

Findings of perceived benefits from this study Finding from literature

B1. Improved delivery speed of software changes Improved speed in the develop-
ment and deployment of software changes to production environment

Improved release cycle time [22] [45]
[14] [50] [46]

B2. Improved productivity in operations work. Decreased communication prob-
lems, bureaucracy, waiting overhead due to removal of manual deployment hand-offs
and organisational boundaries; Lowered human error in deployment due to automation
and making explicit knowledge of operation-related tasks to software development

Eased tension and increased collab-
oration between development and
operations [22] [37] [16] [45] [14]
[15]

B3. Improvements in quality. Increased confidence in deployments and reduction
of deployment risk and stress; Improved code quality; Improved product value to cus-
tomer resulting from production feedback about users and usage

Improved software quality [45] [14]
[46]

B4.Improvements in organisational-wide culture and mind-set. Enrichment and
wider dissemination of DevOps in the company through discussions and dedicated
training groups ‘communities of practice’

thing is that we are getting things done, quickly’ (IT
department-Ops team lead, Case C)

‘We deploy into production daily and try to keep the
tasks small so that we can deliver those quickly and
often’ (Developer, Case D)

B2. Improved productivity of operations work. All cases had
perceived the benefit of having removed manual steps and hand-
offs in deployment process. Full ownership of the developed
web application and service by software development teams
was reported to remove barriers, bureaucracy and waiting over-
head (Cases A, B, C, D). Developers feel less frustration due to
the reduction in arbitrary policies, waiting, inefficient tasks and
developing wrong features. Cases B, C and D reported automa-
tion as a way to create documentation and to remove tacit infor-
mation in operations-related tasks, thus making knowledge ex-
plicit and transparent to developers. As a result, the teams relied
less on external experts while also lowered the risks of human
error in deployments. Three cases (Cases B, C, D) perceived
a lessened maintenance workload for an operations team, as it
was shared with a development team. This was mostly facil-
itated by tools in infrastructure automation and the use of the
cloud-based virtualisation of the server infrastructure. Thus,
the responsibilities of the operations teams shifted from server
maintenance to developing the infrastructure tools and automa-
tion that supported the development teams.

‘At the company, up until four years ago, we had this
traditional approach that there was a team that made
software and another team that handled the opera-
tions. So the biggest change was that we empowered
development teams, to run their software in produc-
tion and we kind of scraped that whole development
and operations barrier’ (PO of operations, Case D)

B3. Improvements in quality. All cases perceived DevOps to
increase production quality and reduce deployment risks and
stress. Three cases (Cases B, C, D) further mentioned that De-
vOps directly improved software quality due to high confidence

in deployment to production, which in turn was facilitated by
the high degree of automation and the capability to roll back
the changes. Automation in testing and deployment contributed
to the positive impact on the overall quality of the production
code. Deployment in small increments increased production
quality, as the quality and risks of small changes were easier to
control than were those of large changes with long deployment
intervals. The ability to make fast deployments in small incre-
ments, together with the fast feedback cycle, further shortened
the lead-time of fixes for production problems. Feedback from
production provided transparency about the product on the mar-
ket, the customers and the users of the product to development
teams. Faster feedback guided development more rapidly to-
wards and allowed the product management and customers to
follow the progress of in-production features in a realistic way
(Case B, C, D, E).

‘There is the feeling of security of what we push into
production. We push into production in such small
chunks that it is possible to reliably test that every-
thing is okay. In the previous projects, I have always
been nervous about that since so many changes were
pushed into production at once’ (Developer, Case B)

‘Two biggest points are speed of development and
quality of the software...The quality of the code and
services is going up in a very significant way. That is
usually shown in customer feedback and our incident
amounts have been falling rapidly’ (PO of operations
teams, Case D)

B4. Improvements in organisational culture and mind-set. De-
vOps culture and mind-set, which were enriched with coloca-
tion, were observed in the wider dissemination of DevOps ap-
proach across the organisation. In Case A, a wider dissem-
ination of knowledge related to DevOps was made possible
through training groups ‘communities of practice’ across the
company. Case B saw colocation of the development team with
the customer to be an enrichment of the organisation and in sup-
port of the DevOps mind-set. Case D saw the benefit on a wider

13



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

organisational level, where other teams had started to learn and
copy DevOps practices from the team, and things were getting
done fast. In Case E, the mind-set was shared and supportive
towards the DevOps approach, both from management and de-
velopment team members.

5.3.2. Perceived challenges
C1. Insufficiencies in infrastructure automation. In Cases A
and D, provisioning scripts were considered error-prone and,
according to developers, they did not work in some environ-
ments. Moreover, in Case D, the automation of the network in
was said to be difficult in addition to dealing with legacy sys-
tem. In Case C, the data platform handling customer data was
causing the team to display erroneous reports to end users, as it
was not being updated correctly. The data platform was being
managed by the operations team and, according to the head of
operations, the problem was due to incorrect updates to service
index of search engine data that is loaded every night. As this
was impacting the quality of service, meetings between opera-
tions and development were frequently held, one of which was
observed by the researchers of the study.

‘Networks are pretty hard. Some of the databases are
pretty hard too because the old relational databases
haven’t been designed to be clustered’ (sys admin,
Case D)

‘Every single week, some of the reports are missing
data. Data run has stopped during the night because
system has run out of memory or something like that.
Then you always have to manually do so much work
and check if you have all the data there or not, and
has been, incredibly frustrating time’ (PO, Case C)

C2. High skills and knowledge demands. DevOps practices
require that, in the least, the team as a whole has all neces-
sary skills and knowledge to develop, integrate, test and deploy,
which includes provisioning and upkeep target environments
and infrastructure. A well-established deployment pipeline
helps new members to get up to speed fast, but eventually, they
need to learn on how to update the deployment pipeline, which
was perceived to require a distinct set of skills. In Case D, the
transition to DevOps was considered especially demanding, as
many new technologies and platforms were in use at the same
time. In Case E, the team was considered on the cutting edge
in terms of development skills and knowledge, but even they
struggled with the learning curve of the DevOps approach. In
addition to the requirement to be able to do everything, from
low-level optimisation to deployment scripts, they were respon-
sible for developing multiple services with different technolo-
gies and platforms. In Case B, DevOps was considered to de-
mand much expertise from the team and to be risky if, for ex-
ample, information security problems were created due to a lack
of expertise. In Case A, the time and effort new developers re-
quired to get up to speed was considered a challenge, especially
when the existing experts were unavailable to provide guidance
due to other tasks.

‘Being responsible for everything from even low level
bug fixing, optimization all the way to the service,
deploy to cloud wherever, it’s a very large field to
grasp. There are some things where I have to rely
on my team members to remember how to do cer-
tain things or how some things have been built be-
cause even though we try to document what we do,
it’s never perfect’ (Developer, Case E)

C3. Project and resource constraints. In Case A, the project
was based on a fixed price contract with a pre-defined schedule
and requirements. This meant that the team had to deliver all
agreed-upon functionalities by the agreed-upon deadline. This
not only delayed deployment to production until the end of the
project, but also left little time for improving test automation
and piloting production deployments, which in turn affected
the quality of the system. Furthermore, any changes to the re-
quirements of the project required a re-negotiation of the offi-
cial project scope, which was frustrating for the team. In Case
D, the development and operations teams were relatively small
in number compared to their workload. For the developers, it
meant much context switching between the 20 APIs under de-
velopment. For the customers, the development was too slow.
The operations team suffered from the lack of time to offer their
support to developers, as they were also serving other teams.
In Case C, development resource constraints meant that even
important work was sometimes buried in the backlog due to a
constant stream of new, even more important work.

C4. Difficulties in monitoring. In Case B, the development
team did not monitor the containers in the containerised service.
They could only monitor the servers and the overall availabil-
ity of the service, but had no visibility of the internal health of
the containerised microservices. In a similar vein, they did not
have a centralised log of the containerised microservices. In-
stead, the logs of the containers need to be viewed one by one.
Moreover, in Cases D and E, it was perceived to be quite dif-
ficult to know well in advance what metrics to monitor. Often,
new monitoring metrics were introduced after the team experi-
enced severe breaks in production (Case D).

C5. Balancing between speed and quality. In Case C, exter-
nal deadlines sometimes forced the team to publish updates
that had quality issues. Determining the right level of quality
was observed to be challenging for the developers. In Case D,
some customers were unhappy with the speed of the develop-
ment team. The reason for the seemingly slow development
speed was the high refactoring load. The development team
had to spend almost half of their time on refactoring tasks. In
Case A, the customer pressured the development team to im-
plement new features instead of fixing bugs in the existing fea-
tures. Due to the lack of emphasis on quality, the same bugs
sometimes needed to be fixed multiple times in different fea-
tures and the overall quality of the system was considered low.
In Cases C and D, the development team strove to create a high-
quality system, but the product owners preferred functionality
to high quality. This sometimes caused some dissatisfaction on

14



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 6: Perceived challenges in DevOps

Findings of perceived challenges from this study Findings from literature

C1. Insufficiencies in infrastructure automation Difficulties in automation of deployment process [22], [45]

C2. High demand for skills and knowledge Steep learning curve for operations personnel and developers
[34] [28] [15] [17]

C3. Project and resource constraints C6. Difficulties in convincing senior management about De-
vOps [23],[17]

C4. Difficulties in monitoring, especially for microservice-
based applications and in determining useful metrics

C7. Lack of common understanding of DevOps concept [14]

C5. Difficulties in determining a right balance between the
speed of new functionality and quality

C8. Blurred responsibilities between development and opera-
tions [15]

the teams, as they did not like to produce low-quality software
because of speed.

6. Discussion

This sections discusses the findings of the study in light of exist-
ing literature. Implications to practice, validity and limitations
of the study are also discussed.

Our findings show toolchain use and support for the activi-
ties of the deployment pipeline in all cases, while also applying
the principles and practices of trunk-based development, code
reviews, CI and Agile and lean. Prior work [49] observed tool
usage in software delivery to be affected by the state of current
workflows, manual work and relevancy of tools. This study
makes a similar observation, but, in addition observed that tool
acquaintance by software development and operations teams
limited usage because it required significant effort, time and in-
vestment. Steep learning curve, particularly among developers
for operations tasks, was identified as the most common chal-
lenge perceived by all cases and is reported in prior work [15].

Automation of the deployment process is a common DevOps
practice in literature [45]. Mäkinen et al [49] inquired for pos-
sible explanations to the observed great dierence between com-
panies¢¢ capability to deliver and the actual release cycle. This
study suggests two explanations that may apply in small and
medium sized companies. First reason is the practice of hav-
ing product owner manually test and approve new software fea-
tures prior to deployment in production. Second reason relates
to the selected deployment strategy, such as canary release that
exposes software changes incrementally to a portion of users
before deploying them to entire user base. As noted by [38], ],
certain deployment approaches used with the tools pose some
reliability concerns. Their comparison of heavily baked image
and lightly baked image deployment approaches showed that
typically, heavily baked image approaches cause delays in de-
ployment, even for minor changes [38]. Although we did not
explore the implication of deployment approaches in detail, it
was observed in studied cases that image baking took a long
time (15 minutes in Case E) even for critical bugs could not be
xed in less time. Studies, such as [39] [38] evaluate in detail

dierent deployment approaches and reliability issues imposed
by tools.

This study observed that it can be difficult to fully automate
the deployment process due to context factors, such as the ex-
istence of legacy technologies and faulty network with relia-
bility issues. The decision to move to an externally provided
cloud infrastructure in studied case was seen in a positive light
to tackle the issues. The negative aspect of the public cloud is
that it imposes some technological and architectural restrictions
to the system, which according to Cito et. al., [37] can be seen
as a positive thing by developers in enforcing best practices and
putting more focus on delivering customer value. Similar to our
study, cloud infrastructure to a large extent is a major enabler
of DevOps implementation; however, the use of public cloud
remains challenging [22] and require acceptance of the client
(for consulting companies) or regulations (for public entities).

Based on our study results, we build on our previous [30] en-
hancement of DevOps definition originally proposed by [32]:
“DevOps is a mind-set change substantiated with a set of
automated practices to encourage cross-functional collabora-
tion between teams–especially development and IT operations–
within a software development organisation, in order to operate
resilient systems and accelerate the delivery of changes. ”

Our analysis identied the following practical implications of
DevOps adoption and implementation. First, as steep learn-
ing curve among software developers and operations stas is to
be expected in DevOps implementation. Companies can facil-
itate and motivate learning through the practice and culture of
knowledge sharing across different. Secondly, the responsibil-
ity of product owner to manually test and approve new software
features before deployment in production signicantly affects the
delivery speed. At the same time, the product owners, who have
other parallel ongoing tasks, want adjustment to this responsi-
bility. Therefore, it is important that value-adding activities be
identied to adjust the responsibilities of product owners while
also ensuring trust to development team and investments in au-
tomated test.

6.1. Validity and limitation of the study
The study acknowledges several threats to validity, against

which some mitigation strategies were employed. Three cate-

15



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

gories of validity threats are discussed: construct validity, ex-
ternal validity and reliability [51] [52].

Construct validity. Construct validity is concerned with having
researchers measure what was intended to be measured. In this
study, threats to construct validity are related to whether the se-
lected cases actually apply DevOps and whether the interview
questions were interpreted in the same way by all interviewees
and interviewers. Threats to the selection of the cases were mit-
igated by clearly specifying the goals of the study jointly with
company representatives, who then selected appropriate cases
based on the understanding of their organisations. In addition,
having at least 10 researchers develop and review each ques-
tion in the interview guide, as well as having pilot interviews to
share and improve on the guide helped to equip the researchers
to adapt to the questions, depending on the role of interviewee.

External validity. External validity is used to define the domain
to which the study ndings are applicable and thus generalizable.
Threats to external validity in this study originate from the par-
ticipating cases being from one domain, i.e., web applications
and services, and small and medium company size. Further-
more, some experiences may not be observed in large compa-
nies and system domain due to large system scale, characteris-
tics and other context factors. Our ndings are not meant to be
generalized rather provide insights into DevOps practices and
their perceived benets and challenges requiring practitioners to
evaluate their applicability in their contexts.

Reliability. The reliability of the study findings is concerned
with the operability of the study design, such that it can be re-
peated with the same results. Researcher bias was minimised
by involving at least six researchers in all data collection and
analysis steps. Furthermore, the respective companies were in-
volved to allow them to give feedback in different phases of the
research.

7. Conclusion and Future work

This paper has presented a multiple-case study of DevOps
implementation in five different software development con-
texts. As main contributions, the paper provides an enhanced
definition of DevOps that gives emphasis to automation prac-
tices in addition to collaboration between software development
and operations. Additionally, the detailed description of De-
vOps adoption and implementation presented in this paper have
shown that DevOps provides ability, ownership and responsi-
bility of software development teams to deploy software in pro-
duction environment fast and often particularly for small and
medium companies. In this context the capability comes with
their ability to acquire new skills of operations-related tasks
while at the same time cope with working under pressure. We
identified that DevOps implementation in companies is a long-
term activity that requires a supportive culture and mind-set in
addition to the technical practices. Such cross-function collab-
oration is most effective when supported by senior management
and customer.

We propose the following research areas based on our study
findings:

• Validation practices for deployment scripts Complex in-
frastructures that involve manual steps were observed to
cause reliability issues. Deployment scripts are at times
erroneous, and there were no other means to validate them
other than developers monitoring during deployment. Fu-
ture research should consolidate knowledge of other pos-
sible technologies or practices for validating deployment
scripts.

• Balancing between speed and internal code quality (tech-
nical debt) in a commercial context DevOps requires a
comprehensive functional testing pipeline, but internal
code quality might be deprioritised in favour of develop-
ment speed. Because functional testing protects the out-
ward visible quality, a low internal quality may not cause
visible issues for a long time, but could become prob-
lematic at some point. Future research should investigate
refactoring practices and the trade-offs in the balance be-
tween quality and speed in a non-open source context.

Acknowledgement

This work was supported by TEKES as a part of the N4S
project of DIMECC (Digital, Internet, Materials and Engineer-
ing Co-Creation). We would like to also acknowledge and
thank the companies and company representatives for their con-
tributions and involvement in the study.

Appendix A: Interview guide

Introduction

• Role and daily responsibilities
• Years of experience

Management overview of the development process

• How are development and operations activities organised?
• How many teams do you have? Sizes of the teams?
• How are responsibilities given/shared to the teams?
• How would you describe <the case >, is it typical or spe-

cific in the organization?
• What kind of development process do you use?
• How are requirements and features specified, by whom?
• How are prioritization and decisions made?
• How are the features released to production, how often?
• How are the release decisions made? By whom?
• When and why did you start to implement DevOps?
• Who was/is the driver of DevOps implementation?
• What does DevOps mean in your organization?
• What kind of impacts do you see so far? Any hard data?
• What has been challenging in DevOps?
• How far along are you now in DevOps?
• What advice would you give for DevOps implementation?
• Decribe the case in detail e.g., product, teams, DevOps use

Development

• How is the project team organised?

16



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

• Who do you interact with the most? When? How?
• How are product requirements determined and incorpo-

rated in product development process?
• How often do you release the software and for what types

of software changes?
• Can you describe the work-flows/practices until deploy-

ment and operational use in production
• What tools are used to support development work?
• When do you consider an implementation to be done?

Integration and deployment

• Describe in detail at which stages and levels software
changes are integrated, built and tested?
• What tools are used to support building and testing?
• What practices, other than testing, contribute to quality?
• What is the process of deploying/delivering to customers?
• How is quality assured in the deployment pipeline?
• What are the most important challenges regarding quality?

Infrastructure management and monitoring

• Who (what team) is responsible for managing and main-
taining infrastructure?
• Does development team have access to resources in pro-

duction?
• How are non-functional requirements and information

about configurations communicated to developers?
• How do you provision and manage different environments

of your application?
• How are software changes deployed in production?
• What monitoring is performed in production?

Perceived impacts of DevOps

• What does DevOps mean to you?
• What impacts have you seen after introducing DevOps?

Do you have any data to support this?
• Considering current practices in this team, How do they

differ compared to before introducing DevOps?
• What have been the main benefits of DevOps?
• Are there any drawbacks in using DevOps?
• What are the main challenges of using DevOps?

Culture and mind-set

• Is your company culture supporting the DevOps approach?
• How would you describe your development culture and

mind-set at organisation and team?
• How is management support for the development practices

and culture visible?

Declaration of Competing Interest

All authors have participated in (a) conception and design, or
analysis and interpretation of the data; (b) drafting the article or
revising it critically for important intellectual content; and (c)
approval of the final version.

• This manuscript has not been submitted to, nor is under
review at, another journal or other publishing venue.

• The authors have no affiliation with any organization with
a direct or indirect financial interest in the subject matter
discussed in the manuscript

References

References

[1] F. Erich, C. Amrit, M. Daneva, A Mapping Study on Cooperation between
Information System Development and Operations, in: International Con-
ference on Product-Focused Software Process Improvement, Springer,
2014, pp. 277–280. doi:10.1007/978-3-319-13835-0_21.

[2] J. Humble, D. Farley, Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation, 1st Edition, Addison-
Wesley Professional, Boston, 2010.

[3] P. Rodrı́guez, A. Haghighatkhah, L. E. Lwakatare, S. Teppola, T. Suoma-
lainen, J. Eskeli, T. Karvonen, P. Kuvaja, J. M. Verner, M. Oivo, Continu-
ous Deployment of Software Intensive Products and Services: A System-
atic Mapping Study, Journal of Systems and Software 123 (2017) 265–
291.

[4] J. Humble, J. Molesky, Why enterprises must adopt DevOps to enable
continuous delivery, Cutter IT Journal 24 (8) (2011) 6–12.

[5] B. Tessem, J. Iden, Cooperation between developers and operations in
software engineering projects, in: Proceedings of the International Work-
shop on Cooperative and Human Aspects of Software Engineering, ACM,
2008, pp. 105–108. doi:10.1145/1370114.1370141.

[6] J. Iden, B. Tessem, T. Päivärinta, Problems in the interplay of develop-
ment and IT operations in system development projects: A Delphi study
of Norwegian IT experts, Information and Software Technology 53 (4)
(2011) 394–406.

[7] J. Hamilton, On Designing and Deploying Internet-Scale Services, in:
Proceedings of the 21st Large Installation System Administration Con-
ference, USENIX Association, Dallas, Texas, 2007, pp. 231–242.

[8] P. Abrahamsson, J. Warsta, M. Siponen, J. Ronkainen, New directions on
agile methods: a comparative analysis, in: 25th International Conference
on Software Engineering, 2003. Proceedings., IEEE, 2003, pp. 244–254.
doi:10.1109/ICSE.2003.1201204.

[9] O. Gotel, D. Leip, Agile Software Development Meets Corporate Deploy-
ment Procedures: Stretching the Agile Envelope, in: Agile Processes in
Software Engineering and Extreme Programming, Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2007, pp. 24–27.

[10] P. Debois, Agile Infrastructure and Operations: How Infra-gile are You?,
in: Agile 2008 Conference, IEEE, 2008, pp. 202–207. doi:10.1109/

Agile.2008.42.
[11] D. E. Strode, S. L. Huff, B. Hope, S. Link, Coordination in co-located

agile software development projects, Journal of Systems and Software
85 (6) (2012) 1222 – 1238.

[12] G. van Waardenburg, H. van Vliet, When agile meets the enterprise, In-
formation and Software Technology 55 (12) (2013) 2154 – 2171.

[13] L. Bass, I. Weber, L. Zhu, DevOps: A Software Architect’s Perspective,
Addison-Wesley Professional, 2015.

[14] F. Elberzhager, T. Arif, M. Naab, I. Süß, S. Koban, From agile de-
velopment to devops: Going towards faster releases at high quality –
experiences from an industrial context, in: 9th International Confer-
ence on Software Quality, Springer, 2017, pp. 33–44. doi:10.1007/

978-3-319-49421-0_3.
[15] K. Nybom, J. Smeds, I. Porres, On the impact of mixing responsi-

bilities between devs and ops, in: 17th International Conference on
Agile Processes in Software Engineering, and Extreme Programming
(XP) , Proceedings, Springer, 2016, pp. 131–143. doi:10.1007/

978-3-319-33515-5_11.
[16] A. Balalaie, A. Heydarnoori, P. Jamshidi, Microservices Architecture En-

ables DevOps: Migration to a Cloud-Native Architecture, IEEE Software
33 (3) (2016) 42–52. doi:10.1109/MS.2016.64.

[17] S. Jones, J. Noppen, F. Lettice, Management challenges for DevOps adop-
tion within UK SMEs, in: Proceedings of the 2nd International Work-
shop on Quality-Aware DevOps, ACM Press, 2016, pp. 7–11. doi:

10.1145/2945408.2945410.
[18] P. Clarke, R. V. OConnor, The situational factors that affect the software

development process: Towards a comprehensive reference framework, In-
formation and Software Technology 54 (5) (2012) 433 – 447.

[19] N. Kerzazi, B. Adams, Who Needs Release and DevOps Engineers, and
Why?, in: International Workshop on Continuous Software Evolution and
Delivery, ACM Press, 2016, pp. 77–83.

17



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[20] R. Jabbari, N. bin Ali, K. Petersen, B. Tanveer, What is DevOps?, in:
Proceedings of the Scientific Workshop Proceedings of XP 2016, ACM
Press, 2016, pp. 1–11. doi:10.1145/2962695.2962707.

[21] M. Leppanen, S. Makinen, M. Pagels, V.-P. Eloranta, J. Itkonen, M. V.
Mantyla, T. Mannisto, The Highways and Country Roads to Continuous
Deployment, IEEE Software 32 (2) (2015) 64–72. doi:10.1109/MS.

2015.50.
[22] L. Chen, Continuous Delivery: Overcoming Adoption Challenges, Jour-

nal of Systems and Software.
[23] G. G. Claps, R. Berntsson Svensson, A. Aurum, On the Journey to

Continuous Deployment: Technical and Social Challenges Along the
Way, Information and Software Technology 57 (2015) 21–31. doi:

10.1016/j.infsof.2014.07.009.
[24] PuppetLabs, 2016 State of DevOps Report, Tech. rep. (2016).

URL https://puppet.com/resources/whitepaper/

2016-state-of-devops-report

[25] J. Davis, R. Daniels, Effective DevOps: building a culture of collabora-
tion, affinity, and tooling at scale, ” O’Reilly Media, Inc.”, 2016.

[26] F. M. A. Erich, C. Amrit, M. Daneva, A qualitative study of devops usage
in practice, Journal of Software: Evolution and Process 29 (6) (2017)
e1885–n/a, e1885 smr.1885. doi:10.1002/smr.1885.

[27] B. Adams, S. McIntosh, Modern Release Engineering in a Nutshell –
Why Researchers Should Care, in: 2016 IEEE 23rd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER),
IEEE, 2016, pp. 78–90.

[28] D. Cukier, DevOps patterns to scale web applications using cloud ser-
vices, in: In Proceedings of the 2013 conference on Systems, program-
ming, & applications: software for humanity, 2013, pp. 143–152.

[29] M. V. Mäntylä, B. Adams, F. Khomh, E. Engström, K. Petersen, On rapid
releases and software testing: a case study and a semi-systematic litera-
ture review, Empirical Software Engineering 20 (5) (2015) 1384–1425.
doi:10.1007/s10664-014-9338-4.

[30] L. E. Lwakatare, P. Kuvaja, M. Oivo, An Exploratory Study of DevOps:
Extending the Dimensions of DevOps with Practices, in: The Eleventh
International Conference on Software Engineering Advances, IARIA,
Rome, 2016, pp. 91–99.

[31] B. B. N. de França, H. Jeronimo, G. H. Travassos, Characterizing De-
vOps by Hearing Multiple Voices, in: Proceedings of the 30th Brazil-
ian Symposium on Software Engineering, ACM Press, 2016, pp. 53–62.
doi:10.1145/2973839.2973845.

[32] R. Penners, A. Dyck, Release Engineering vs. DevOps-An Approach to
Define Both Terms, Full-scale Software Engineering.
URL https://www2.swc.rwth-aachen.de/docs/teaching/

seminar2015/FsSE2015papers.pdf{#}page=53

[33] L. Bass, R. Jeffery, H. Wada, I. Weber, L. Zhu, Eliciting operations re-
quirements for applications, in: 1st International Workshop on Release
Engineering, IEEE, 2013, pp. 5–8.

[34] J. Smeds, K. Nybom, I. Porres, DevOps: A Definition and Perceived
Adoption Impediments, in: 16th International Conference on Agile Soft-
ware Development, Springer, Helsinki, 2015, pp. 166–177.

[35] D. Stahl, T. Martensson, J. Bosch, Continuous practices and devops: be-
yond the buzz, what does it all mean?, in: 2017 43rd Euromicro Con-
ference on Software Engineering and Advanced Applications, 2017, pp.
440–448. doi:10.1109/SEAA.2017.8114695.

[36] Z. Babar, A. Lapouchnian, E. Yu, Modeling devops deployment choices
using process architecture design dimensions, in: 8th IFIP Working Con-
ference on The Practice of Enterprise Modeling, Springer, 2015, pp. 322–
337. doi:10.1007/978-3-319-25897-3_21.

[37] J. Cito, P. Leitner, T. Fritz, H. C. Gall, The making of cloud applications:
an empirical study on software development for the cloud, in: 10th Joint
Meeting on Foundations of Software Engineering, ACM Press, 2015, pp.
393–403.

[38] L. Zhu, D. Xu, A. B. Tran, X. Xu, L. Bass, I. Weber, S. Dwarakanathan,
Achieving Reliable High-Frequency Releases in Cloud Environments,
IEEE Software 32 (2) (2015) 73–80. doi:10.1109/MS.2015.23.

[39] W. Hummer, F. Rosenberg, F. Oliveira, T. Eilam, Testing idempotence for
infrastructure as code, Middleware 2013.

[40] J. Wettinger, V. Andrikopoulos, F. Leymann, Automated Capturing and
Systematic Usage of DevOps Knowledge for Cloud Applications, in:
IEEE International Conference on Cloud Engineering, IEEE, 2015, pp.
60–65. doi:10.1109/IC2E.2015.23.

[41] T. Schlossnagle, Monitoring in a devops world, Communications of the
ACM 61 (3) (2018) 58–61. doi:10.1145/3168505.

[42] C. Vassallo, F. Zampetti, D. Romano, M. Beller, A. Panichella, M. D.
Penta, A. Zaidman, Continuous delivery practices in a large financial or-
ganization, in: IEEE International Conference on Software Maintenance
and Evolution, 2016, pp. 519–528.

[43] L. Bass, R. Holz, P. Rimba, A. B. Tran, L. Zhu, Securing a Deployment
Pipeline, in: 2015 IEEE/ACM 3rd International Workshop on Release
Engineering, IEEE, 2015, pp. 4–7. doi:10.1109/RELENG.2015.11.

[44] A. A. Ur Rahman, L. Williams, Software security in devops: Synthesizing
practitioners’ perceptions and practices, in: Proceedings of the Interna-
tional Workshop on Continuous Software Evolution and Delivery, ACM,
2016, pp. 70–76.

[45] M. Callanan, A. Spillane, DevOps: Making It Easy to Do the Right Thing,
IEEE Software 33 (3) (2016) 53–59. doi:10.1109/MS.2016.66.

[46] M. Fazal-Baqaie, B. Güldali, S. Oberthür, Towards DevOps in Multi-
provider Projects, in: 2nd Workshop on Continuous Software Engineer-
ing, Vol. 1806, CEUR-WS.org, Hannover, 2017, pp. 18–21.
URL http://ceur-ws.org/Vol-1806/paper03.pdf

[47] T. Schneider, Achieving Cloud Scalability with Microservices and De-
vOps in the Connected Car Domain, in: CEUR workshop proceedings on
continuous software engineering, CEUR-WS.org, 2016, pp. 138–141.
URL http://ceur-ws.org/Vol-1559/

[48] C. Tang, T. Kooburat, P. Venkatachalam, A. Chander, Z. Wen,
A. Narayanan, P. Dowell, R. Karl, Holistic configuration management at
Facebook, in: Proceedings of the 25th Symposium on Operating Systems
Principles, ACM Press, 2015, pp. 328–343. doi:10.1145/2815400.

2815401.
[49] S. Mäkinen, M. Leppänen, T. Kilamo, A.-L. Mattila, E. Laukkanen,

M. Pagels, T. Männistö, Improving the delivery cycle: A multiple-case
study of the toolchains in Finnish software intensive enterprises, Infor-
mation and Software Technology 80 (2016) 175–194. doi:10.1016/j.
infsof.2016.09.001.

[50] Y. Liu, C. Li, W. Liu, Integrated solution for timely delivery of customer
change requests: A case study of using devops approach, International
Journal of U-and E-Service Science and Technology 7 (2) (2014) 41–50.

[51] R. K. Yin, Case Study Research: Design and Methods, 5th Edition, SAGE
Publications, 2013.

[52] P. Runeson, M. Höst, Guidelines for Conducting and Reporting Case
Study Research in Software Engineering, Empirical Software Engineer-
ing 14 (2) (2008) 131–164. doi:10.1007/s10664-008-9102-8.

[53] K. J. Stol, P. Ralph, B. Fitzgerald, Grounded theory in software engineer-
ing research: A critical review and guidelines, in: 2016 IEEE/ACM 38th
International Conference on Software Engineering, 2016, pp. 120–131.

[54] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in software engineering, Springer Science & Business
Media, 2012.

[55] L. E. Lwakatare, T. Karvonen, T. Sauvola, P. Kuvaja, H. H. Olsson,
J. Bosch, M. Oivo, Towards DevOps in the Embedded Systems Domain:
Why is It So Hard?, in: 49th Hawaii International Conference on System
Sciences, IEEE, 2016, pp. 5437–5446.

[56] V. Braun, V. Clarke, Using thematic analysis in psychology, Qualita-
tive Research in Psychology 3 (2) (2006) 77–101. doi:10.1191/

1478088706qp063oa.
[57] M. Shahin, M. A. Babar, L. Zhu, The Intersection of Continuous Deploy-

ment and Architecting Process, in: Proceedings of the 10th ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement, ACM Press, 2016, pp. 1–10. doi:10.1145/2961111.

2962587.

18


