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Refrigerators use a thermodynamic cycle to move thermal energy from a cold reservoir to a hot one.
Implementing this operation principle with mesoscopic components has recently emerged as a promising strategy
to control heat currents in micro and nanosystems for quantum technological applications. Here we combine
concepts from stochastic and quantum thermodynamics with advanced methods of optimal control theory to
develop a universal optimization scheme for such small-scale refrigerators. Covering both the classical and the
quantum regime, our theoretical framework provides a rigorous procedure to determine the periodic driving
protocols that maximize either cooling power or efficiency. As a main technical tool, we decompose the cooling
cycle into two strokes, which can be optimized one by one. In the regimes of slow or fast driving, we show how
this procedure can be simplified significantly by invoking suitable approximations. To demonstrate the practical
viability of our scheme, we determine the exact optimal driving protocols for a quantum microcooler, which
can be realized experimentally with current technology. Our work provides a powerful tool to develop optimal
design strategies for engineered cooling devices and it creates a versatile framework for theoretical investigations
exploring the fundamental performance limits of mesoscopic thermal machines.

DOI: 10.1103/PhysRevB.99.224306

I. INTRODUCTION

With the rapid advance of quantum technologies during the
last decade, the search for new strategies to overcome the chal-
lenges of thermal management at low temperatures and small
length scales has become a subject of intense research [1–5].
Solid-state quantum devices based on, for example, supercon-
ducting circuits require operation temperatures in the range of
milli-Kelvins, which must currently be upheld with massive
and costly cryogenic equipment. These systems are among the
most promising candidates to realize a large-scale quantum
computer [6–8]; they also provide a versatile platform for the
design of accurately tunable thermal instruments that can be
implemented on chip and thus make it possible to control
the heat flow between individual components of complex
quantum circuits [9–16]. This technology could significantly
simplify the operation of quantum devices by enabling the
selective cooling of their functional degrees of freedom.

Nanoscale refrigerators play a promising role in the
development of integrated quantum cooling solutions.
Mimicking the cyclic operation principle of their macroscopic
counterparts, which are used in everyday appliances such as
freezers and air conditioners, these mesoscopic machines use
periodic driving fields to transfer heat from a cold object to a
hot one [17–28]. In contrast to continuously operating thermal
devices, like the ones considered in Refs. [29–31], such cyclic
refrigerators do not require a constant flow of matter and are
therefore arguably easier to combine with other components
of complex quantum circuits. Their basic working mechanism
can be understood as a two-stroke process. In the first stroke,
a certain amount of heat is absorbed from the cold body into a
working system, which acts as a container for thermal energy.
The second stroke uses the power input from the external
driving field to inject the acquired heat into a hot reservoir and

restore the initial state of the working system as illustrated in
Fig. 1.

The thermodynamic performance of this cycle is crucially
determined by the driving protocol that is applied to the
working system. Finding its optimal shape is vital for practical
applications and, at the same time, constitutes a formidable
theoretical task. In fact, finding optimal strategies to control
periodic thermodynamic processes in small-scale systems is a
longstanding problem in both stochastic [32–42] and quantum

FIG. 1. Thermodynamic operation cycle of a two-stroke refrig-
erator. Depending on whether the value of the control parameter ω

is smaller or larger than a given threshold ω′, the working system
S couples to a reservoir with temperature Tc or to a hotter one with
temperature Th > Tc. The possible values of the control parameter
are delimited by ωmin and ωmax. In the work stroke, heat is transferred
from the cold reservoir to the working system (blue arrow). The reset
stroke restores the initial state R0, while S is in contact with the hot
reservoir (red arrow). The two strokes are connected by instantaneous
jumps of the control parameter (black arrows).
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thermodynamics [43–48], which involves three major chal-
lenges. First, the intricate interdependence between state and
control variables that governs the dynamics of mesoscopic
devices leads to constraints that can usually not be solved
explicitly. Second, thermodynamic figures of merit such as
cooling power are typically unbounded functions of external
control parameters. The optimal protocol is then determined
by the boundaries of the admissible parameter space and
cannot be found from Euler-Lagrange equations, a situation
known as a bang-bang scenario [49–51]. Third, a periodic
mode of operation requires that the initial configuration of the
device is restored after a given cycle time [47,52]. This con-
straint effectively renders the optimization problem nonlocal
in time, since any change of the driving protocol during the
cycle affects the final state of the working system.

In this article we show how these problems can be handled
in three successive steps forming a universal scheme that
makes it possible to maximize both the cooling power and the
efficiency of mesoscopic refrigerators. The key idea of our
method is to divide the refrigeration cycle into two strokes,
which can be optimized one by one after fixing suitable
boundary conditions, see Fig. 1. Dynamical constraints are
thereby included through time-dependent Lagrange multi-
pliers and bang-bang type protocols are taken into account
systematically by applying Pontryagin’s minimum principle
[49,53] as we explain in the following. This two-step pro-
cedure effectively fixes the shape of the optimal driving
protocol. The extracted heat, which initially depends on the
entire control protocol, is thus reduced to an ordinary function
of time-independent variational parameters, which can be
optimized with standard techniques.

To illustrate our general formalism, we analyze a semiclas-
sical model of a realistic quantum microcooler based on super-
conducting circuits, which can be implemented with current
experimental technology [16,45]. This application demon-
strates the practical viability of our new scheme. Moreover,
since the optimization of our model can be performed essen-
tially through analytical calculations, it also provides valuable
insights into characteristic features of optimal cooling cycles
in mesoscopic systems.

The scope of our two-stroke framework is not limited to
elementary models that can be treated exactly. By contrast,
owing to its general structure, our scheme can be combined
with a variety of established dynamical approximation meth-
ods to become an even more powerful theoretical tool. In this
way, a physically transparent picture can also be obtained of
complicated optimization problems, for which even numeri-
cally exact solutions would be practically out of reach. In the
second part of our paper, we show how such a perturbative
approach can be implemented for the limiting regimes of slow
and fast driving. We round off our work by applying these
techniques to determine the optimal working conditions of a
superconducting microcooler in the full quantum regime.

Our paper is organized as follows. In Sec. II we establish
our two-stroke optimization scheme, which provides the gen-
eral basis for this paper. In Sec. III we use this framework to
optimize the performance of a realistic model for a quantum
microcooler in the semiclassical regime. We further develop
our general theory in Sec. IV by incorporating two key
dynamical approximation methods. In Sec. V we apply these

techniques to extend the semiclassical case study of Sec. III
to the coherent regime. Finally, we conclude and discuss the
new perspectives opened by our work in Sec. VI. Appendices
A and B contain further technical details of our calculations.

II. GENERAL SCHEME

A. Setup

A two-stroke refrigerator consists of three basic compo-
nents: Two reservoirs at different temperatures Tc and Th > Tc

and a controlled working system [31,54]. We start by de-
veloping our general scheme before moving on to specific
applications in Secs. III and V. The internal state of the
working system is described by a vector of N independent
variables Rt , which follows the time evolution equation

Ṙt = F[Rt , ωt ], (1)

with dots indicating time derivatives throughout. The genera-
tor F thereby depends on the specific architecture of the de-
vice and it is assumed to be local in time, i.e., it only depends
on the state vector Rt and the driving protocol ωt at time t .
It may, however, be a nonlinear function of these variables.
The external parameter ωt plays a threefold role; it controls
the dynamics of the state vector, modulates the internal energy
landscape of the working system, and it regulates the coupling
to the reservoirs [55].

The key idea of our two-stroke scheme is to disentangle
these effects. To this end, we assume that the working system
is connected either to the cold or the hot reservoir depending
on whether ωt is smaller or larger than a given threshold value
ω′. A thermodynamic cooling cycle can then be realized as
illustrated in Fig. 1. In the work stroke, the control parameter
ωt changes continuously and does not exceed the threshold
ω′. Thus, the working system is constantly coupled to the cold
reservoir, from which it has picked up the heat

Qc[ωt ] ≡
∫ τ ′

0
J[Rt , ωt ] dt (2)

by the end of the stroke. Here J[Rt , ωt ] is the instantaneous
heat flux flowing into the system. Throughout this paper, we
use calligraphic letters to denote functionals, which depend on
the complete driving protocol ωt , for example the left-hand
side of (2). At the switching time τ ′, ωt is abruptly raised
above the threshold ω′. This operation initializes the reset
stroke, during which the control parameter follows a contin-
uous trajectory without falling below ω′. Hence, the system
is coupled to the hot reservoir throughout this stroke, which
restores the initial state of the system and releases the heat

Qh[ωt ] ≡ −
∫ τ

τ ′
J[Rt , ωt ] dt . (3)

The cycle is completed at the time τ by instantaneously
resetting the control parameter to its initial value.

The specific form of the function J[Rt , ωt ] is determined
by the architecture of the refrigerator. For example, if the
working system can be described as an open quantum system
in the weak coupling regime, this quantity can universally be
identified as [56–59]

J[Rt , ωt ] ≡ tr[Ht ρ̇t ]. (4)
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FIG. 2. Maximizing the cooling power of a two-stroke refrigerator in three steps. (a) In step 1, the optimal work protocol (red line) is
determined by variation of the functional (5) for a fixed switching time τ ′. Adding small displacements (blue lines) to the optimal protocol can
only reduce the extracted heat. The reset stroke protocol (gray line) does not play a role here. (b) Step 2 optimizes the reset protocol such that
the initial state of the system is restored, while keeping the optimal work stroke with given initial conditions fixed. The optimal reset stroke (in
red) is thereby distinguished by having the latest possible switching time τ ′. The blue lines are examples of nonoptimal reset stroke protocols
with earlier switching times. (c) The initial values are determined in step 3, which completes the optimal protocol (in red). It is here compared
to the protocols in blue, which are obtained by following steps 1 and 2 for different initial conditions and yield a lower heat extraction.

Here Ht ≡ H[ωt ] denotes the Hamiltonian of the working
system and ρt ≡ ρ[Rt ] is the density matrix describing its
state. Remarkably, our two-stroke scheme enables a general
optimization procedure even without such specifications, as
we will show in the following.

B. Maximum heat extraction

Our first aim is to find the control protocol ω
p
t that maxi-

mizes the heat extraction (2) for a given cycle time τ . To this
end we proceed along the three steps illustrated in Fig. 2.

First, for the optimal work stroke, ωt has to be chosen such
that the extended objective functional for the extracted heat

Qc[Rt ,λt , ωt ] ≡
∫ τ ′

0
{J[Rt , ωt ] − λt · (Ṙt − F[Rt , ωt ])} dt

(5)

becomes stationary, i.e., its functional derivative with respect
to its arguments vanishes [49]. Here we have introduced a
vector of Lagrange multipliers λt to account for the dynamical
constraint (1). This extension of the parameter space makes
it possible to treat the control parameter ωt and the state
Rt as independent variables. Optimizing the functional (5) is
formally equivalent to applying the least-action principle in
Hamiltonian mechanics with Rt and λt playing the role of
generalized coordinates and canonical momenta, respectively
[60]. The corresponding effective Hamiltonian is given by

Hw[Rt ,λt , ωt ] ≡ J[Rt , ωt ] + λt ·F[Rt , ωt ]. (6)

Thus, after fixing the initial conditions Rt=0 = R0 and
λt=0 = λ0, the optimal protocol for the work stroke is
uniquely determined by the canonical equations [49]

Ṙt = ∂Hw

∂λt
, λ̇t = −∂Hw

∂Rt
, and

∂Hw

∂ωt
= 0. (7)

Note that the last equation is purely algebraic. Therefore, the
initial value of the control parameter ω0 is fixed by choosing
R0 and λ0.

Second, since only the work stroke contributes to the
extracted heat, the optimal reset stroke minimizes the reset
time Tr ≡ τ − τ ′, during which the system returns to its initial
state. To implement this condition, we have to minimize the

extended objective functional for the reset time

Tr[Rt ,λt , ωt ] ≡
∫ τ

τ ′
{1 − λt · (Ṙt − F[Rt , ωt ])} dt

≡
∫ τ

τ ′
(Hr[Rt ,λt , ωt ] − λt ·Ṙt ) dt, (8)

with respect to the dynamical variables Rt , λt , and ωt , and
the switching time τ ′. Thus, the optimal reset protocol can be
found by solving the canonical equations

Ṙt = ∂Hr

∂λt
, λ̇t = −∂Hr

∂Rt
, and

∂Hr

∂ωt
= 0, (9)

with respect to the boundary conditions

Rt=τ ′ = R′[R0,λ0], Rt=τ = R0, and

Hr[Rτ ′ ,λτ ′, ωτ ′ ] = 0. (10)

Here R′ is the state vector of the system after the optimal work
stroke, and the end-point condition Rt=τ = R0 replaces the
initial condition for the Lagrange multipliers.

Note that the state Rt has to be continuous throughout the
cycle [33,61], while the Lagrange multipliers λt of the work
and reset strokes are independent variables; they therefore
do not have to satisfy any boundary conditions. The last
requirement in (10) minimizes Tr with respect to the initial
time τ ′ [49]. In practice, the switching time τ ′ and the initial
Lagrange multipliers λτ ′ have to be determined together such
that the conditions (10) are satisfied.

The procedure above leads to the optimal protocol if the
algebraic condition ∂ωt Hr = 0 can be satisfied throughout the
reset stroke. However, the reset Hamiltonian Hr does often not
have a local extremum within the admissible range [ω′, ωmax]
of the control parameter [47,51]. The optimal reset protocol
ω

p
t then has to assume one of the boundary values ω′ or ωmax,

so that it minimizes the effective Hamiltonian Hr. Formally,
we thus replace the last equation in (9) by the more general
requirement

Hr
[
Rp

t ,λ
p
t , ω

p
t

]
� Hr

[
Rp

t ,λ
p
t , ω

]
, (11)

which is also known as Pontryagin’s minimum principle
[49,53]. Here Rp

t and λ
p
t are the optimal trajectories of the

state vector and the Lagrange multiplier, respectively. The
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canonical equations (9) can thus be integrated as follows.
First, for given initial conditions R0 and λ0, the initial value
of the control parameter ω0 has to be determined such that
Hr[R0,λ0, ω0] becomes minimal. If this function does not
have a local minimum within the range [ω′, ωmax], we ei-
ther have ω0 = ω′ or ω0 = ωmax. After fixing ω0, the state
vector and the Lagrange multipliers can be propagated for
a short time dt using the canonical equations. The control
parameter is then updated by minimizing the Hamiltonian
Hr[Rdt ,λdt , ωdt ] with respect to ωdt . Iterating this procedure
until the final time τ yields the optimal trajectories Rp

t , λ
p
t ,

and ω
p
t . This prescription typically leads to protocols that are

either constant or consist of constant pieces connected by
continuous trajectories [50]. In Sec. III we will show how both
of these cases can be handled in practice.

Third and finally, after completing steps 1 and 2, we
arrive at the optimal protocol ω

p
t = ω

p
t [R0,λ0] for fixed initial

conditions R0 and λ0. Inserting this solution into (2) renders
the extracted heat an ordinary function of 2N variables Qc =
Qc[R0,λ0]. The last step of our scheme thus consists of
maximizing this function over the state space of the working
system and the set of admissible Lagrange multipliers, i.e.,
those λ0, for which ω0 = ω0[R0,λ0] falls into the permitted
range [ωmin, ω

′]. We note that maximizing Qc over all initial
conditions R0 and λ0 is equivalent to maximizing Qc over all
switching times τ ′ and all boundary values R0 and R′, since
these quantities are connected by a one-to-one mapping.

C. Maximum efficiency

So far we have developed a scheme to maximize the
extracted heat per operation cycle of a general two-stroke
refrigerator. A thorough optimization of a thermal machine,
however, also has to take into account the consumed input,
which, for a cooling device, corresponds to the work W[ωt ]
that the external controller has to supply to drive the heat flux.
To this end, we now show how to find the optimal protocol
ω

η
t , which maximizes the efficiency

η[ωt ] ≡ Qc[ωt ]/W[ωt ]

= Qc[ωt ]/(Qh[ωt ] − Qc[ωt ]), (12)

also referred to as “coefficient of performance” [54]. Note
that here we have used the first law of thermodynamics to
express the work input W[ωt ] in terms of the released and
the extracted heat Qh[ωt ] and Qc[ωt ]. Owing to the second
law, the figure of merit (12) is subject to the Carnot bound

η[ωt ] � ηC ≡ Tc

Th − Tc
, (13)

which is saturated in the reversible limit at the price of van-
ishing cooling power [18]. Hence, for a practical optimization
criterion, we have to fix both the cycle time τ and the heat
extraction Qc[ωt ] = Q∗

c . Maximizing the efficiency (12) then
amounts to minimizing the effective input Qh[ωt ], i.e., the
average heat injected into the hot reservoir per operation
cycle.

The corresponding protocol ωη
t = ω

η
t [Q∗

c ] renders the work
stroke as short as possible such that the maximum amount of
time is left to reduce the heat release in the reset stroke [62].

Hence, in the first step, we have to minimize the working time

Tw[Rt ,λt , ωt , μ]

≡
∫ τ ′

0
{1 − μ(Q∗

c + λt ·Ṙt − Hw[Rt ,λt , ωt ])} dt, (14)

where the time-independent Lagrange multiplier μ has been
introduced to fix the total heat extraction Q∗

c . This variational
problem again leads to the canonical equations (7), which
have to be solved for given initial conditions R0 and λ0 to
find the optimal work protocol. In fact, this protocol also
maximizes the heat extraction for every given time t , i.e.,
we have ω

η
t [R0,λ0] = ω

p
t [R0,λ0] during the work stroke.

However, the switching time τ ′ = τ ′[R0,λ0,Q∗
c ] now has to

be chosen such that the constraint∫ τ ′

0
J[Rt , ωt ] dt = Q∗

c (15)

is satisfied. Hence, the switching time is now determined by
the work stroke rather than the reset stroke.

After completing step 1, the optimal reset protocol is found
by minimizing the functional

Qh[Rt ,λt , ωt ] ≡
∫ τ

τ ′
{−J[Rt , ωt ] − λt · (Ṙt − F[Rt , ωt ])} dt

(16)

for the boundary conditions

Rt=τ ′ = R′[R0,λ0,Q∗
c ] and Rt=τ = R0. (17)

This problem will, depending on the initial conditions, only
admit a proper solution if the device can actually produce
the cooling power Q∗

c/τ in a cyclic mode of operation. It
might therefore be helpful to introduce an intermediate step,
which decides whether or not the cycle can be closed for the
boundary conditions (17). To solve the canonical equations for
the objective functional (16), it might again be necessary to in-
voke Pontryagin’s minimum principle, as we will demonstrate
explicitly in Sec. III D.

Once the reset protocol has been determined, the efficiency
(12) can be reduced to an ordinary function of R0 and λ0.
Maximizing this function under the constraint ω0[R0,λ0] ∈
[ωmin, ω

′] yields the maximal-efficiency protocol ω
η
t [Q∗

c ].
Note that the set of admissible initial conditions is thereby
also restricted by fixing the heat extraction Q∗

c .

D. Discussion

Before moving on to practical applications of the opti-
mization scheme developed in this section, it is instructive
to briefly discuss the two key conditions that our method
relies on. First, it is tailored for situations where the energy
landscape of the cooling device and its interaction with the
external reservoirs are controlled through a single driving
parameter. Second, it requires that the working system fully
decouples from one of the reservoirs in both strokes. Once
these two assumptions are met, our scheme can be used
for most common setups of quantum engineering such as
arbitrary complex multilevel systems in the weak-coupling
limit. Moreover, it might even be applied in the strong-
coupling regime, provided that the dynamics of the working
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system can still be described with a time-local generator of
the form (1) and that the heat functionals (2) and (3) can be
properly identified. This perspective is particularly interesting,
since the potential advantages of strongly coupled thermal
machines are currently subject of an active debate in quantum
thermodynamics, see for example [63–65].

Finally, we would like to point out that the assumption of
perfect decoupling, which might at first seem quite restrictive
but is often well justified in practice [45], can in principle be
relaxed. In fact, our three-step procedure can still be applied as
described above even if the dynamics of the working system
is affected by both reservoirs throughout the cycle. It would
then no longer yield the formally exact optimal protocol but
still a good approximation, provided that the dominant amount
of heat in each of the two strokes is exchanged either with
the hot or the cold reservoir. Whether or not this modification
improves the overall quality of the optimization depends on
the properties of the specific system and must be assessed on
a case-by-case basis.

III. QUANTUM MICROCOOLER I:
SEMICLASSICAL REGIME

A. System

We will now show how our general theory can be applied to
a concrete problem of quantum engineering. Specifically, we
optimize the performance of a quantum microcooler, which
can be implemented with superconducting components, see
Fig. 3(a). The core of this device is an engineered two-level
system with Hamiltonian [18]

Ht ≡ h̄�

2
σx + h̄ωt

2
σz. (18)

Here h̄ denotes the reduced Planck constant, σx and σz are
Pauli matrices, � corresponds to the device-specific tunneling
energy, and ωt is the tunable energy bias, which plays the role
of the external control parameter. This system is embedded
in an electronic circuit, which couples it either to a cold or
a hot reservoir depending on the value of ωt . Thus, applying
a suitable periodic control protocol ωt makes it possible to
realize a two-stroke cooling cycle, as illustrated in Fig. 3(b).

B. Step-rate model

For a quantitative description of the microcooler, we con-
sider the model shown in Fig. 3(a), which makes it possible
to determine the optimal control protocol analytically. To
this end, we here focus on the semiclassical limit, where
the tunneling energy � is negligible and the Hamiltonian
commutes with itself at different times. The periodic density
matrix of the working system is then fully determined by the
level populations and can be parametrized as

ρt ≡ 1
2 (1 + Rt σz ). (19)

The state variable Rt thereby obeys the Bloch equation [58]

Ṙt = F [Rt , ωt ] ≡ −	+[ωt ] Rt − 	−[ωt ] with

	±[ωt ] ≡ γ [ωt ](1 ± exp[−h̄ωt/T [ωt ]]). (20)

Here the Boltzmann factors appear due to the detailed balance
condition, which fixes the relative frequency of thermal

FIG. 3. Quantum microcooler. (a) Sketch of the experimental
setup described in Refs. [16,18,45]. A superconducting qubit is cou-
pled to two resonant circuits with different resonance frequencies.
Each circuit contains a metallic island acting as a mesoscopic reser-
voir with temperature Tc and Th > Tc, respectively. An additional bias
circuit is used to control the level splitting of the qubit by varying
the applied magnetic flux. (b) Scheme of the thermodynamic cooling
cycle. The two central diagrams show the energy levels of the qubit as
a function of the external bias ω and the corresponding populations at
the beginning of each stroke. By the end of the work stroke, the qubit
has picked up the heat Qc from the cold island. The level splitting
is then instantaneously increased to tune the qubit into resonance
with the hot island. During the following reset stroke, the initial
level populations are restored, while the heat Qh flows into the hot
reservoir. The cycle is completed by setting the level splitting back
to its initial value, thus reconnecting the qubit to the cold island.

excitation and relaxation events [54]. The corresponding
temperature is determined by the reservoir coupled to the
system, i.e.,

T [ω � ω′] ≡ Tc and T [ω > ω′] ≡ Th, (21)

where ω′ corresponds to the threshold energy of the device.
Note that Boltzmann’s constant is set to 1 throughout. The
factor γ [ω] in (20) accounts for the finite energy range of the
coupling mechanism between working system and reservoirs,
which depends on the specific design of the circuit. For the
sake of simplicity, we here use an idealized model, where the
rates (20) feature a step-type dependence on ω, i.e., we set

γ [ω] ≡ γ = const for 0 < ω � ωmax (22)

and γ [ω] ≡ 0 otherwise. Hence, the two-level system
is decoupled from its environment if ω falls outside its
admissible range. Note that we have set ωmin to zero.

Under weak-coupling conditions, the instantaneous heat
flux into the qubit is given by (4). The average amount of heat
that the microcooler extracts from the cold reservoir in one
cycle of duration τ then becomes

Qc[ωt ] ≡
∫ τ ′

0

h̄ωt

2
Ṙt dt =

∫ τ ′

0

h̄ωt

2
F [Rt , ωt ] dt, (23)
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FIG. 4. Maximizing the cooling power of a quantum microcooler in three steps. (a) The plot shows the flow of the effective Hamiltonian
vector field (28), which determines the optimal dynamics of the system during the work stroke. The black line marks the boundary of the
physical region of the effective phase space, where the level splitting ω is positive. The red line separates solutions with positive (unshaded) and
negative (shaded) cooling power. (b) The state trajectories during the optimal work and reset stroke, (31) and (36), are plotted in blue and red,
respectively, for typical initial conditions. Their intersection point determines the optimal switching time τ ′. The solid line shows the combined
optimal state trajectory, which excludes the dashed parts. (c) The maximum heat extraction Qc[R0, ω0] is plotted over the admissible range (37)
of initial conditions, which is bounded by the dashed black curves corresponding to R0 = − tanh[h̄ω0/(2Tc )], R0 = − tanh[h̄ωmax/(2Th)] and
ω0 = ω′. Brighter colors indicate a larger amount of extracted heat. The global maximum Qmax

c is shown with a dot. All panels were created
with the parameter values ω′ = 2 Tc/h̄, ωmax = 5 Tc/h̄, Th = 2 Tc, and τ = 3/γ .

where τ ′ ∈ [0, τ ] denotes the length of the work stroke. Ac-
cordingly, the average heat injected into the hot reservoir is
given by

Qh[ωt ] ≡ −
∫ τ

τ ′

h̄ωt

2
F [Rt , ωt ] dt . (24)

C. Maximum heat extraction

The extracted heat (23) can be maximized using the general
scheme of Sec. II B. To this end, we first have to determine
the optimal work stroke, which is described by the effective
Hamiltonian [66]

Hw[Rt , λt , ωt ] = −(ωt + λt )(	
+[ωt ]Rt + 	−[ωt ]). (25)

The corresponding canonical equations follow from (7) and
are given by

Ṙt = −	+[ωt ] Rt − 	−[ωt ],

λ̇t = 	+[ωt ](ωt + λt ), and

ωt = (Tc/h̄) − λt − (Tc/h̄)W0

[
e1−h̄λt /Tc

1 + Rt

1 − Rt

]
, (26)

where we have explicitly solved the last equation for ωt . We
used that γ [ωt ] = γ and T [ωt ] = Tc throughout the work
stroke and W0 denotes the upper branch of the Lambert W
function, which is defined as the solution to

x ≡ W [x]eW [x] for x � −1/e. (27)

Upon eliminating ωt , the canonical equations (26) reduce to
an autonomous system of first-order differential equations,(

Ṙt

λ̇t

)
=

(
�R[Rt , λt ]

�λ[Rt , λt ]

)
≡ �[Rt , λt ]. (28)

The flow of the Hamiltonian vector field �[R, λ] is plotted
in Fig. 4(a). As a key observation, we find that the sign
of Ṙt = �R[Rt , λt ], which determines the direction of the
instantaneous heat flux Jt = h̄ωt Ṙt/2, does not change along
the optimal trajectories. Hence, since our aim is to maximize

the heat extraction from the cold reservoir, the initial values
R0 and λ0 have to be chosen such that

Ṙ0 = �R[R0, λ0] > 0. (29)

Solving (28) under this condition and inserting the result into
the third canonical equations (26) yields the protocol

ω
p
t = Tc

h̄
ln

[
2 − 2C1 W−1[C2e−γ t ]

C1 W−1[C2e−γ t ]2
− 1

]
(30)

and the corresponding state trajectory

Rp
t = C1(1 + W−1[C2e−γ t ])2 − C1 − 1. (31)

Here W−1 denotes the lower branch of the Lambert W function
and the constants C1 and C2 can be expressed in terms of
the initial values R0 and ω0, see Appendix A. We note that
the results (30) and (31) can also be obtained using a brute-
force approach, where the dynamical constraint (20) is solved
explicitly rather than being enforced through a Lagrange
multiplier. (For further details see Appendix A.) However, this
approach crucially relies on the one-to-one correspondence
(20) between the derivative Ṙt of the state variable and the
control parameter ωt . It is therefore not generally applicable.

To close the optimal cycle, the reset stroke has to restore
the initial state R0 of the system in minimal time. According
to Pontryagin’s principle, the corresponding protocol can be
found by minimizing the effective Hamiltonian

Hr[Rt , λt , ωt ] = 1 + λt F [Rt , ωt ], (32)

with respect to ωt . The variables Rt and λt thereby have to
obey the canonical equations

Ṙt = F [Rt , ωt ] and λ̇t = 	+[ωt ] λt (33)

and the additional constraint

Hr[Rτ ′ , λτ ′ , ωτ ′] = 0 (34)

at the yet undetermined optimal switching time τ ′.

224306-6



TWO-STROKE OPTIMIZATION SCHEME FOR MESOSCOPIC … PHYSICAL REVIEW B 99, 224306 (2019)

This problem can be approached as follows. First, we
observe that (34) implies

λτ ′ = −1/F [Rτ ′ , ωτ ′ ] = −1/Ṙτ ′ . (35)

Since Rt increases monotonically during the work stroke, it
has to decrease during the reset. Consequently, we have to
choose λτ ′ > 0. Minimizing the effective Hamiltonian (32)
at the switching time τ ′ is then equivalent to minimizing
F [Rτ ′ , ωτ ′]. Second, the generator F is a monotonically de-
creasing function of ωτ ′ for any admissible value of Rτ ′ . Thus,
it follows that ωτ ′ = ωmax, i.e., the control parameter abruptly
jumps to its maximum at the beginning of the reset stroke.
Third, owing to (33), the sign of the Lagrange multiplier is
conserved along its optimal trajectory. Therefore, the same
argument applies at any later time t > τ ′ and we can conclude
that ω

p
t = ωmax throughout the reset stroke. We note that this

result could have been inferred directly from the Bloch equa-
tion (20) and the observation ∂ωt F [Rt , ωt ] < 0, which entails
that the reset can always be accelerated by increasing ωt .
However, here we have chosen to follow the formal scheme
of Sec. II to illustrate the use of Pontryagin’s principle.

Finally, we have to make sure that the state Rt is continuous
throughout the cycle. To this end, its trajectory during the reset
stroke,

Rp
t = R0 e	+(τ−t ) + (	−/	+)(e	+(τ−t ) − 1), (36)

with 	± ≡ 	±[ωmax], has to match the optimal work-stroke
trajectory (31) at τ ′, see Fig. 4(b). Numerically solving this
condition yields the switching time τ ′ and completes the
optimal protocol ω

p
t [R0, ω0] [67]. Inserting this protocol back

into the functional (23) together with (31) and (36) gives the
maximal heat extraction Qc[R0, ω0].

This function must now be maximized over the admissible
range of initial values R0 and ω0, which is restricted by the
conditions

R0 < − tanh [h̄ω0/(2Tc)],

R0 > − tanh [h̄ωmax/(2Th)], (37)

and the requirement that ω0 � ω′, see Fig. 4(c). The con-
straints (37) follow from (29) and (36), respectively. They
ensure that the heat extraction Qc[R0, ω0] is positive and
that the initial state of the system can be restored during
the reset. To determine the maximal extracted heat Qmax

c and
the corresponding initial values, we employ a constrained
optimization algorithm [68], which finds Qmax

c either inside
the admissible range (37) or on the boundary ω0 = ω′.

Figure 5(a) summarizes the results of this section. The first
plot shows the optimal cooling power Qmax

c /τ as a function of
the cycle time τ for different values of the high temperature
Th. We find that Qmax

c /τ generally decreases with τ . Hence,
for a large cooling power, the device must be operated fast. For
similar recent findings, the reader may consult Refs. [28,48].
Furthermore, the cooling power becomes successively smaller
as Th increases. This result confirms the natural expectation
that the microcooler becomes less effective when it has to
work against a larger temperature gradient.

Figure 5(b) illustrates the general behavior of our model
during the optimal cycle. In the work stroke, the state variable
Rp

t monotonically increases, while the control parameter ω
p
t

FIG. 5. Microcooler at optimal cooling power. (a) Maximum
cooling power in units of γ Tc as a function of the dimensionless cycle
time γ τ for different temperatures of the hot reservoir Th. (b) Optimal
control protocol for Th = 2 Tc and τ = 2 γ −1. The inset shows the
corresponding trajectory of the state variable Rt . Here we have used
ω′ = 2 Tc/h̄ and ωmax = 5 Tc/h̄.

monotonically decreases until the switching time is reached;
at this point, no more heat can be extracted from the cold
reservoir in a cyclic mode of operation, i.e., the work stroke
has reached the maximal length. In the reset stroke, the control
parameter is constantly at its maximum, while Rt returns to its
initial value following an exponential decay.

D. Maximum efficiency

Having maximized the extracted heat of our microcooler
model, we now focus on its thermodynamic efficiency (12).
The optimal protocol ω

η
t [Q∗

c ], which maximizes this figure
of merit for a fixed heat extraction Q∗

c , can be found using
the scheme developed in Sec. II C. During the work stroke
we have ω

η
t [R0, ω0] = ω

p
t [R0, ω0], that is, for 0 � t � τ ′ and

fixed initial values R0 and ω0, the protocol ω
η
t [Q∗

c ] is given by
(30). The switching time τ ′ can thus be determined from the
constraint

∫ τ ′

0

h̄ωt

2
F [Rt , ωt ] dt = Q∗

c (38)

using (30) and (31).
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The optimal reset stroke has to restore the initial state of
the system while at the same time minimizing the dissipated
heat Qh[ωt ]. To this end, the control protocol has to be chosen
such that the effective Hamiltonian

Hr[Rt , λt , ωt ] = (ωt + λt )(	
+[ωt ]Rt + 	−[ωt ]) (39)

becomes minimal at every time τ ′ � t � τ , while λt and
Rt obey the corresponding canonical equations. For a given
initial value λ0 of the Lagrange multiplier, this problem can
be solved using the procedure described in Sec. II C. However,
the situation is in practice complicated by the fact that λ0 is de-
termined only implicitly by the end-point condition Rτ = R0.
It would still be possible to carry out the iteration scheme for
every admissible value λ0 and then pick the optimal protocol
that closes the cycle. This approach can, however, be expected
to be numerically costly and hard to implement with sufficient
accuracy.

In the following we describe a more practical way of
finding the optimal reset protocol. To this end, we first note
that the Hamiltonian (39) is, up to its sign, identical with (25).
Thus, if Hr admits a local minimum with respect to ωt in
the range [ω′, ωmax], the canonical equations can be solved
exactly and the reset protocol reads

ωt = Tc

h̄
ln

[
2 − 2C1 W0[C2e−γ t ]

C1 W0[C2e−γ t ]2
− 1

]
, (40)

where C1 and C2 are constants. Note that, in contrast to (30),
this solution must involve the upper rather than the lower
branch of the Lambert W function to ensure that the state
variable decreases during the reset, i.e., Ṙt = F [Rt , ωt ] < 0.
According to Pontryagin’s principle, the protocol ω

η
t either

follows the monotonically increasing trajectory (40) or takes
on one of the boundary values ω′ or ωmax. Consequently, if
we assume that the optimal protocol does not jump within
the reset stroke, it must have the general form shown in
Fig. 6(b). Specifically, ω

η
t must be constant at ω′ until a

certain time τ1, then follow (40) until it reaches ωmax, and
finally remain constant until the end of the stroke. Since each
protocol of this type is uniquely determined by the departure
time τ1, this procedure induces a one-to-one mapping between
τ1 and the state of the system at the end of the reset stroke,
Rτ = Rτ [τ1]. This map can be determined analytically from
the corresponding Bloch equation. The only numerical oper-
ation that is required to determine the optimal reset protocol
thus consists of solving the condition Rτ [τ1] = R0 for τ1 [69].

The method described above makes it possible to find the
protocol ω

η
t [R0, ω0,Q∗

c ] that maximizes the efficiency of the
cooling cycle for given R0, ω0, and Q∗

c . Inserting this protocol
into (12) and optimizing the resulting function η[R0, ω0,Q∗

c ]
with respect to the initial values R0 and ω0 finally yields the
maximal efficiency at given cooling power.

This figure of merit is plotted in Fig. 6 together with the
corresponding optimal protocol; it approaches the Carnot
limit (13) for Q∗

c → 0 and monotonically decays as Q∗
c

becomes larger. Thus, increasing the heat extraction of the
microcooler inevitably reduces its maximal efficiency. This
result aligns well with recent discoveries of universal trade-off
relations between the extracted heat and the efficiency of
mesoscopic thermal devices [39,40,44,70–73]. Furthermore,
Fig. 6(a) shows that not only the maximal cooling power

FIG. 6. Microcooler at optimal efficiency. (a) Maximum effi-
ciency as a function of the given heat extraction Q∗

c . The horizon-
tal axis has been rescaled with the maximum heat extraction for
Th = 2 Tc, Qmax

c , and the vertical axis with the Carnot efficiency
ηC for the same temperatures. The dashed line shows how the effi-
ciency at maximal cooling power decays as the temperature gradient
becomes larger. (b) Optimal control protocol leading to maximal
efficiency for fixed heat extraction Q∗

c = 0.9Qmax
c . The inset shows

the corresponding trajectory of the state variable Rt . Throughout
this figure, we have set ω′ = 3 Tc/h̄, ωmax = 5 Tc/h̄, Th = 2 Tc, and
τ = 8 γ −1. For these parameter values, the maximum extracted heat
at Th = 2 Tc is Qmax

c ≈ 0.297 Tc.

but also the overall efficiency decays as the temperature
of the hot reservoir becomes larger. Hence, increasing the
temperature bias is generally detrimental to the performance
of the microcooler.

IV. APPROXIMATION METHODS

A. Rationale

Our two-stroke scheme makes it possible to systematically
optimize realistic models for mesoscopic thermal machines,
as we have shown in the previous section for a supercon-
ducting microcooler. To explore the optimal performance of
even more complex devices, it is often helpful to first focus
on limiting regimes, where dynamical approximation methods
can be used to simplify computational tasks. In this section
we develop such schemes for the key limits of slow or fast
driving. We thereby further extend our general framework and
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prepare the stage to investigate the thermodynamic perfor-
mance of mesoscopic refrigerators in the coherent regime.

B. Adiabatic response

We consider a slowly operated two-stroke refrigerator by
assuming τ, τ ′ � 1/γ , where γ is the typical relaxation rate
of the working system. Except for short transient periods at
the beginning of each stroke, the system then follows the
instantaneous equilibrium state Req[ωt ], which is defined by
the condition

F[Req[ωt ], ωt ] ≡ 0. (41)

In particular, we have

Rτ ′ 	 Req[ωw] and Rτ 	 Req[ωr], (42)

where ωw and ωr are the values of the control parameter at
the end of the work and the reset stroke, respectively. We note
that this approximation can be systematically refined by in-
cluding finite-time corrections. To this end, the time-evolution
equation (1) has to be solved perturbatively by expanding
the state vector Rt in powers of the adiabaticity parameter
ε ≡ 1/(γ τ ) [74]. However, to keep our analysis as transparent
and simple as possible, we here neglect contributions of order
ε. The relations (42) significantly reduce the interdependence
of work and reset stroke, and thus simplify our optimization
scheme as follows.

To maximize the heat extraction (2), the work protocol
has to be found by solving the canonical equations (7) for
fixed initial conditions R0 and λ0. Since Rt does not change
during the quenches of ωt , we now have R0 = Req[ωr], i.e., the
initial state of the system is determined by one parameter ωr.
Moreover, to restore this state after the work stroke, it suffices
to set ωt = ωr for a short time Tr 	 1/γ ≡ ετ . Hence, in the
zeroth order with respect to ε, we have τ 	 τ ′ and the reset
stroke does not have to be optimized separately. In fact, the
optimal protocol ω

p
t is obtained by extending the work stroke

over the entire cycle time τ and maximizing the resulting heat
extraction over N + 1 parameters given by λ0 and ωr.

Our second optimization criterion requires us to minimize
the dissipated heat (3) for given cooling power Q∗

c/τ . To this
end, both strokes have to be taken into account. Specifically,
after finding the optimal work protocol ωt [ωr,λ0] as before,
we first have to determine the switching time τ ′[ωr,λ0,Q∗

c ]
such that Qc[ωt ] = Q∗

c , cf. (15). To find the optimal reset
protocol, the objective functional (16) has to be minimized
using fixed initial conditions Rτ ′ = Req[ωw] and λτ ′ for the
state variables and Lagrange multipliers, respectively. Here
ωw is determined by ωr and λ0; λτ ′ has to be chosen such
that the cycle condition ωτ = ωr is satisfied. Owing to this
constraint, the optimal protocol ω

η
t [ωr,λ0,λτ ′,Q∗

c ] effectively
depends on 2N free parameters, which have to be eliminated
by minimizing the corresponding heat release Qh[ωr,λ0,λτ ′].
Though generally nontrivial, this procedure is still signifi-
cantly simpler than the full optimization, which involves N
boundary conditions to ensure that Rτ = R0. By contrast, here
only one constraint has to be respected. The continuity of the
state Rt is then enforced by the adiabaticity condition (42).

C. High-frequency response

Having understood how to optimize a two-stroke refrig-
erator in adiabatic response, we now consider the opposite
limit τ, τ ′ 
 1/γ . In this regime, the state vector Rt changes
only slightly during the individual strokes, since the working
system is unable to follow the rapid variations of the control
parameter ωt . Therefore, we can use the approximations

Rt 	 R0 + tṘ0 = R0 + tF[R0, ω0] and

Rt 	 Rτ ′ + (t − τ ′)Ṙτ ′ = Rτ ′ + (t − τ ′)F[Rτ ′ , ωτ ′] (43)

to describe the work and the reset stroke, respectively. The
initial states R0 and Rτ ′ are thereby fully determined as func-
tions of ω0 and ωτ ′ by the requirement that Rt is continuous
throughout the cycle. Thus, inserting the expansions (43) into
(2) and (3) and neglecting second-order corrections in 1/ε ≡
γ τ yields

Qc[ωt ] 	 τ ′J[R0, ω0] ≡ Qc[τ ′, ω0, ωτ ′] and

Qh[ωt ] 	 (τ ′ − τ )J[Rτ ′ , ωτ ′] ≡ Qh[τ ′, ω0, ωτ ′ ]. (44)

These expressions show that both the extracted and the
released heat of the device now depend only on the switching
time τ ′ and the initial values of the work and the reset
protocols ω0 and ωτ ′ . Consequently, any control protocol ωt

can be mimicked with a step profile

ωHF
t [τ ′, ω0, ωτ ′ ] = ω0 + (ωτ ′ − ω0)�[t − τ ′], (45)

where � denotes the Heaviside function. In particular, the
optimal protocols ω

p
t and ω

η
t [Q∗

c ] adopt the form (45) in
the fast-driving limit. For ω

p
t , the free parameters τ ′, ω0,

and ωτ ′ must be determined by maximizing Qc[τ ′, ω0, ωτ ′ ].
Analogously, ω

η
t [Q∗

c ] is found by minimizing Qh[τ ′, ω0, ωτ ′ ]
under the constraint Qc[τ ′, ω0, ωτ ′ ] = Q∗

c .
The high-frequency approximation provides a simple yet

powerful tool to explore the performance limits of mesoscopic
refrigerators. In fact, due to the universal form (45) of the
high-frequency protocol, our general scheme can be reduced
to relatively simple three-parameter optimizations. Moreover,
the approximations (43) and (44) can be systematically re-
fined by including higher-order corrections in 1/ε, and thus
introducing more and more variational parameters given by
the higher derivatives of ωt at t = 0 and t = τ ′.

D. Semiclassical microcooler revisited

Before moving on to the full quantum regime, we now
illustrate our approximation scheme for the semiclassical mi-
crocooler. For the sake of brevity, we here focus on maximum
cooling power as our optimization criterion.

In the adiabatic limit, the reset stroke does not have to be
considered explicitly and the optimal protocol ω

p
t is given by

(30) for 0 � t � τ . The two constants C1 and C2 thereby have
to be chosen such that the extracted heat Qc[ωt ] = Qc[C1,C2]
becomes maximal. This condition is equivalent to optimizing
the reset level ωr ∈ [ω′, ωmax] of the control parameter and the
initial value λ0 of the Lagrange multiplier, as described in the
first part of Sec. IV B.

The resulting optimal cooling power is shown in Fig. 7
as a function of the dimensionless cycle time γ τ , which
corresponds to the inverse adiabaticity parameter 1/ε. This
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FIG. 7. Quantum microcooler at slow and fast driving. The plot
shows the maximum cooling power Qmax

c /τ in units of γ Tc as a
function of the inverse adiabaticity parameter 1/ε = γ τ . In the limits
γ τ � 1 and γ τ 
 1, the exact result from Sec. III C (solid line)
approaches the adiabatic (dashed line) and high-frequency (dotted
line) approximations, respectively. The parameters in this figure are
the same as in Fig. 5(a), i.e., the blue curves in both plots are
identical.

plot confirms that our adiabatic response scheme is indeed
accurate for ε 
 1. In fact, the adiabatic approximation for
Qmax

c /τ departs from the exact result obtained in Sec. III C
only at 1/ε ≡ γ τ 	 10.

In the fast driving regime, the cooling power is maximized
by a step protocol with the general form (45). The variational
parameters ω0, ωτ ′ , and τ ′ can be determined exactly by
maximizing the heat extraction (23) after inserting (43) and
(45) and neglecting second-order corrections in 1/ε = γ τ . We
find that the optimal switching time is given by

τ ∗[ω0, ωτ ′] ≡
√

	+
0 	+

τ ′ − 	+
τ ′

	+
0 − 	+

τ ′
τ (46)

as a function of the levels ω0 and ωτ ′ of the protocol ωHF
t . Here

we have used the abbreviation 	+
t ≡ 	+[ωt ]. The optimal

reset level is ω∗
τ ′ = ωmax and the optimal work level follows

from maximizing the cooling power

Qmax
c /τ = max

ω0

{h̄ω0γ (1 − 2 τ ∗[ω0, ω
∗
τ ′ ]/τ )}. (47)

Note that this expression is independent of ε, since here
we consider only the lowest order of the high-frequency
expansion. Still, as shown in Fig. 7, the exact optimal cooling
power approaches the constant value (47) for 1/ε � 1, thus
confirming the validity of our approximation scheme for the
fast-driving regime.

V. QUANTUM MICROCOOLER II: COHERENT REGIME

As a key application of our approximation methods, we
will now show how the cooling power of the microcooler
illustrated in Fig. 3 can be optimized in the full quantum
regime. To this end, we first recall the qubit Hamiltonian (18),

Ht ≡ h̄�

2
σx + h̄ωt

2
σz, (48)

which describes the working system of this device. If the
tunneling energy � is not negligible, the periodic state that
emerges due to cyclic variation of the control parameter ωt

features coherences between the two energy levels of the
qubit. The corresponding density matrix must therefore be
parametrized in the general form

ρt ≡ 1
2 (1 + Rt ·σ ), (49)

where σ ≡ (σx, σy, σz )ᵀ is the vector of Pauli matrices and the
state vector Rt fulfills the Bloch equation [18,45]

Ṙt = F[Rt ,�t ]

≡

⎡
⎢⎣
−	+

t
�2

t +�2

2�2
t

−ωt −	+
t

ωt �

2�2
t

ωt − 1
2	+

t −�

−	+
t

ωt �

2�2
t

� −	+
t

2�2
t −�2

2�2
t

⎤
⎥⎦ Rt − 	−

t

�t

⎡
⎣�

0
ωt

⎤
⎦.

(50)

Here the rates 	±
t ≡ 	±[�t ] are defined as in (20) with ωt

replaced by the instantaneous level splitting

�t ≡
√

�2 + ω2
t , (51)

which we will treat as the effective control parameter of the
system from here onwards.

In order to extend our step-rate model to the coherent
regime, we have to take into account that �t cannot vanish for
finite �. Therefore, the lower bound 0 in the coupling factor
(22) has to be replaced with �min = �. Furthermore, also the
threshold frequency �′, which now takes the role of ω′ in the
switching condition (21) for the reservoir temperature, has to
be larger than �.

Upon inserting (48) and (49) into the weak-coupling ex-
pression (4) for the instantaneous heat flux, the mean heat
extraction in the coherent regime becomes a functional of �t ,

Qc[�t ] ≡
∫ τ ′

0
J[Rt ,�t ] dt

≡ −
∫ τ ′

0

(
h̄	+

t

2

(
�Rx

t + ωt R
z
t

) + h̄	−
t

2
�t

)
dt, (52)

which could, in principle, be optimized by applying the three-
step procedure of Sec. II B. This endeavor can be expected to
be technically quite involved, since the periodicity constraint
Rτ = R0 now leads to three independent boundary conditions
for the reset stroke, while only a single parameter is available
to control the time evolution of the state Rt . However, to
understand how the optimal performance of the microcooler
changes in the quantum regime, it is sufficient to determine
the impact of the tunneling energy � on its maximum cooling
power. For this purpose, it is not necessary to carry out the full
optimization procedure. Instead, we can focus our analysis on
the limits of slow and fast driving, where our approximation
schemes enable a simple and physically transparent approach.

In the adiabatic-response regime, only the work stroke
needs to be optimized [75]. To this end, we first integrate the
canonical equations corresponding to the effective Hamilto-
nian

Hw[Rt ,λt ,�t ] = J[Rt ,�t ] + λt ·F[Rt ,�t ] (53)
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for the given initial conditions

R0 = Req[�r] = −	−[�r]

	+[�r]

(
�

�r
, 0,

√
�2

r − �2

�r

)ᵀ
(54)

and λ0, see Appendix B. The parameters �r and λ0 then have
to be determined by maximizing the heat extraction Qc[�t ] =
Qc[�r,λ0]. This task is a priori challenging, since the initial
Lagrange multipliers λx

0 and λ
y
0 are left unbounded by physical

constraints. To overcome this problem, we use an iterative
algorithm, which tracks the maximum of Qc[�r,λ0] as � is
increased in small steps starting from its semiclassical value
� = 0. This approach relies on the implicit assumption that
the global maximum of the function Qc[�r,λ0] follows a con-
tinuous trajectory in the four-dimensional space of variational
parameters, which is justified a posteriori by the physical
consistency of our results.

In the high-frequency regime, the cooling power is maxi-
mized by the step protocol

�HF
t [τ ′,�0,�τ ′ ] = �0 + (�τ ′ − �0)�[t − τ ′]. (55)

As in the semiclassical case discussed in Sec. IV D, the
variational parameters τ ′, �0, and �τ ′ can be determined
by maximizing the corresponding cooling power in first or-
der with respect to 1/ε = γ τ . The resulting expression for
Qc[τ ′,�0,�τ ′ ] is rather involved and we do not show it
here. The optimal variational parameters can however be
determined numerically. We note in particular that this opti-
mization yields �∗

τ ′ = �max.
Figure 8 shows the result of our analysis. In both the

adiabatic and the high-frequency limit, the maximum cooling
power monotonically decreases from its semiclassical value to
0 as � increases. This behavior can be explained as follows.
The tunneling energy � corresponds to the minimal gap be-
tween the energy levels of the working system, see Fig. 3. In-
creasing this parameter reduces the amount of thermal energy
that can be absorbed during the work stroke. As � approaches
a certain critical value, the capacity of the working system to
pick up heat from the cold reservoir becomes too small for the
device to operate properly. The optimal protocol then keeps
the system practically in equilibrium at the low temperature
Tc throughout the work stroke and the cooling power becomes
zero. Since this general picture can be expected to prevail
also for intermediate driving speed, we can conclude that to
engineer a powerful microcooler, the tunneling energy of the
qubit must be kept as small as possible.

VI. DISCUSSION AND OUTLOOK

Our work provides a systematic scheme to optimize peri-
odic driving protocols for mesoscopic two-stroke machines.
Though developed here specifically for refrigerators, this
general framework can easily be adapted to other types of
thermal devices. Reciprocating heat engines, for example,
use a periodically driven working system to convert thermal
energy into mechanical power [31,59,76,77]. Within our two-
stroke approach, this process can be described as a reversed
cooling cycle. That is, the system picks up heat from a hot
reservoir in the first stroke and returns to its initial state while
being in contact with a cold reservoir in the second stroke.
To achieve optimal performance, the engine has to generate

FIG. 8. Optimal cooling power of the coherent microcooler as a
function of the tunneling energy �. (a) Maximum cooling power in
the adiabatic regime (γ τ = 10) for different temperatures of the hot
reservoir. (b) Maximum cooling power in the high-frequency regime
(independent of γ τ ). Here we have used �′ = 1.5 Tc/h̄, �max =
3 Tc/h̄, and h̄γ = Tc. For comparison with the semiclassical model,
the cooling power has been normalized with its value at � = 0 and
Th = 2 Tc in both plots.

as much work output as possible from a given amount of
thermal input energy. Owing to the first law, this optimization
criterion is equivalent to minimizing the dissipated heat during
the reset while keeping the heat uptake during the work stroke
fixed. The corresponding optimal control protocol can thus be
determined using the three-step procedure of Sec. II C.

The performance figures of mesoscopic thermal devices,
such as power and efficiency, can generally not be opti-
mized simultaneously. Instead, they are subject to univer-
sal trade-off relations as several recent studies have shown
[30,71,72,78,79]. As one of its potential key applications, our
two-stroke scheme makes it possible to test the quality of these
constraints under practical conditions. Furthermore, covering
both classical and quantum systems, the framework developed
in this article might open a new avenue to systematically ex-
plore the impact of coherence on the performance of thermo-
dynamic cycles, a central topic in quantum thermodynamics,
see for example Refs. [25,59,78,80–85].

To facilitate future investigations in these directions, our
scheme can be combined with a variety of dynamical approx-
imation methods. In Sec. IV, for example, we have shown how
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adiabatic and high-frequency expansion techniques can be
included. To this end, we have solved the dynamical constraint
perturbatively assuming that the external driving is either slow
or fast compared to the relaxation time of the working system.
This approach makes it possible to circumvent the use of
Lagrange multipliers and thus reduces the amount of dynam-
ical parameters in the optimization problem. An alternative
strategy could use the variational equations in the extended
parameter space as a starting point. Specifically, the canonical
structure of these equations makes it possible to implement
a variety of tools that were originally developed for the de-
scription of classical Hamiltonian systems including adiabatic
gauge potentials [86], shortcuts to adiabaticity [87,88], or
nonlinear generalizations of the Magnus expansion [89].

Integrating such advanced methods into our general frame-
work will inevitably require a reliable reference to assess
their practicality and accuracy. Such a testbed is provided in
Sec. III, where we have developed a simple and physically
transparent model of a quantum microcooler, whose opti-
mal operation cycle can be determined exactly. In fact, this
case study provides both a demonstration that our theoretical
framework is directly applicable to ongoing experiments with
engineered quantum systems and a valuable benchmark for
further advances in theoretical optimization methods.
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APPENDIX A: ALTERNATIVE OPTIMIZATION SCHEME
FOR THE SEMICLASSICAL MICROCOOLER

In Sec. III C we have derived the optimal work protocol
(40) for the semiclassical microcooler by enforcing the dy-
namical constraint (20) with a Lagrange multiplier. Here we
present an alternative method to obtain the result (40), which
exploits the one-to-one correspondence between the control
parameter and the derivative of the state variable in this model.

We proceed as follows. First, solving Eq. (20) for ωt yields

ωt = Tc

h̄
ln

[
γ (1 − Rt )

Ṙt + γ (1 + Rt )

]
. (A1)

Upon inserting this expression into (23), the objective func-
tional becomes

Qc[Rt ] =
∫ τ ′

0
J[Rt , Ṙt ] dt, (A2)

where the effective Lagrangian

J[Rt , Ṙt ] ≡ Tc

2
Ṙt ln

[
γ (1 − Rt )

Ṙt + γ (1 + Rt )

]
(A3)

does not explicitly depend on time. Consequently, the
corresponding effective Hamiltonian is a constant of motion

given by

4γ C1 ≡ Ṙ2
t

Ṙt + γ (1 + Rt )
. (A4)

Using (20), C1 can be expressed in terms of the initial values
R0 and ω0 as

C1 = 1

1 − R0

(
R0 cosh

[
h̄ω0

2Tc

]
+ sinh

[
h̄ω0

2Tc

])2

. (A5)

This expression shows that C1 is non-negative.
Furthermore, for C1 = 0, (A4) and (A5) imply Rt = R0 =
− tanh[h̄ω0/(2Tc)] and ωt = ω0, that is, the system is in
equilibrium throughout the cycle and the average heat
extraction (A2) becomes zero.

Second, solving (A4) for Ṙt gives

Ṙt = 2γ [C1 ±
√

C1(C1 + 1 + Rt )], (A6)

where only the positive branch of the square root leads to
Ṙt > 0 and thus positive heat extraction. Since we require
that the control parameter ωt , which is given by (A1) in
terms of Rt , does not jump during the work stroke, both Rt

and Ṙt must be continuous. We can thus neglect the negative
branch in (A6). Note that this choice implies the constraint
Ṙ0 = F [R0, ω0] > 0 on the initial values R0 and ω0, cf. (29)
and (37).

Third, solving the differential equation (A6) under this
condition yields

Rp
t = −1 + C1{(1 + W−1[C2e−γ t ])2 − 1}, (A7)

where the dimensionless constant C2 is given by

C2 = W −1

[
2(1 − R0)

(1 + R0) eh̄ω0/(kTc ) − (1 − R0)

]
, (A8)

with W −1[x] ≡ xex. Thus, we have recovered the result (31)
of the main text.

APPENDIX B: OPTIMAL WORK STROKE
OF THE COHERENT MICROCOOLER

The optimal work stroke of the coherent microcooler dis-
cussed in Sec. V is described by the effective Hamiltonian

Hw[Rt ,λt ,�t ] = Tc

2
λt ·F[Rt ,�t ]

− h̄	+
t

2

(
�Rx

t + ωt R
z
t

) − h̄	−
t

2
�t , (B1)

where we rescaled the Lagrange multipliers λt by a factor of
Tc/2 compared with (53) for convenience. The corresponding
canonical equations for the state variables and Lagrange
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multipliers are given by

Ṙt = F[Rt ,�t ]

≡

⎡
⎢⎣

−	+
t

�2
t +�2

2�2
t

−ωt −	+
t

ωt �

2�2
t

ωt − 1
2	+

t −�

−	+
t

ωt �

2�2
t

� −	+
t

2�2
t −�2

2�2
t

⎤
⎥⎦Rt − 	−

t

�t

⎡
⎣�

0
ωt

⎤
⎦

(B2)

and

λ̇t =

⎡
⎢⎣

	+
t

�2
t +�2

2�2
t

−ωt 	+
t

ωt �

2�2
t

ωt
1
2	+

t −�

	+
t

ωt �

2�2
t

� 	+
t

2�2
t −�2

2�2
t

⎤
⎥⎦λt + h̄	+

t

Tc

⎡
⎣�

0
ωt

⎤
⎦,

(B3)

respectively. We recall that the energy bias ωt and the level
splitting �t are related by ωt =

√
�2

t − �2.
The evolution equations (B2) and (B3) are coupled by the

algebraic constraint

∂

∂�t
Hw[Rt ,λt ,�t ] = 0. (B4)

This differential-algebraic system could, in principle, be inte-
grated by solving the algebraic constraint for �t = �[Rt ,λt ].
Equations (B2) and (B3) would then become an ordinary
system of differential equations, which could be integrated
using standard techniques. This approach has been used for
the semiclassical microcooler in Sec. III C. However, owing
to its complicated structure, solving the constraint (B4) for �t

is hard to implement in practice.
Instead, it is more convenient to transform the Bloch equa-

tions into a co-rotating frame. To this end, we define the trans-
formed Bloch vector rt by replacing the static parametrization
(49) with

ρt ≡ 1
2Vt (1 + rt ·σ )V †

t . (B5)

Here Vt denotes the unitary matrix

Vt ≡
(

cos[ϕt/2] − sin[ϕt/2]

sin[ϕt/2] cos[ϕt/2]

)
(B6)

with tan[ϕt ] ≡ �/ωt , which diagonalizes the instantaneous
Hamiltonian Ht . In fact, the vectors Rt and rt differ by
a rotation in the x-z plane by the angle ϕt . This change
of coordinates separates the population and the coherence
degrees of freedom of the density matrix, which are now
parametrized by rz

t and rx,y
t , respectively. Note that, in contrast

to Rt , the transformed Bloch vector rt is not continuous at
the jumps of the control protocol �t ; if Vt−dt and Vt are the
rotation operators corresponding to the Hamiltonian before
and after the jump, respectively, the accompanying jump in
rt is determined by the condition

rk
t = tr[V †

t Vt−dt (rt−dt ·σ )V †
t−dtVt σk]/2. (B7)

In the following, we will show how the optimal work
protocol can be calculated in the rotating frame. To this end,
we first observe that the transformed Bloch equation reads

ṙt =
⎡
⎣ −	+

t /2 −�t −ϕ̇[�t , �̇t ]
�t −	+

t /2 0
ϕ̇[�t , �̇t ] 0 −	+

t

⎤
⎦rt −

⎡
⎣ 0

0
	−

t

⎤
⎦.

(B8)

As an artifact of the time-dependent parametrization (B5), the
right-hand side of (B8) now depends on the time derivative of
the control parameter �̇t . Our general optimization scheme
can, however, still be applied without major modifications
since �̇t has no physical significance here.

The transformed vector of Lagrange multipliers �t satisfies
the evolution equation

�̇t =
⎡
⎣ 	+

t /2 −�t −ϕ̇[�t , �̇t ]
�t 	+

t /2 0
ϕ̇[�t , �̇t ] 0 	+

t

⎤
⎦�t + h̄�t

Tc

⎡
⎣ 0

0
	+

t

⎤
⎦

(B9)

in the rotating frame and the algebraic constraint (B4) be-
comes

h̄�

Tc

{
2�x

t (1 − e−Wt ) + (
2Wt rx

t + �z
t r

x
t + �x

t rz
t

)
(1 + e−Wt )

+ 2Tc

h̄γ
Wt

(
�

y
t rz

t − �z
t r

y
t

)}

= h̄�t

Tc

h̄ωt

Tc

{
2
(
1 + rz

t

) − 2Tc

h̄γ

(
�

y
t rx

t − �x
t ry

t

)

− e−Wt
[
2
(
1 − rz

t

)(
1 − Wt − �z

t

) + �x
t rx

t + �
y
t ry

t

]}

(B10)

in the new variables, where Wt = h̄�t/Tc.
In order to obtain a closed system of differential equations,

we have to express �̇t in terms of rt , �t , and �t . To this end,
we take the time derivative of the algebraic constraint (B10)
and then use (B8) and (B9) to eliminate ṙt or �̇t . The resulting
expression can be rewritten in the form

�̇t = �̇[rt ,�t ,�t ]. (B11)

The relation (B11) enables the following strategy to find
the optimal time evolution. We first choose initial values
(r0,�0,�0), which are compatible with the algebraic con-
straint (B10). For this purpose, we note that (B10) is a linear
equation in rt and �t . Therefore, it is straightforward to
determine, for example, �z

0 if all other initial values are given.
Equations (B8), (B9), and (B11) then form an autonomous
system of seven first-order differential equations, which can
be treated as a standard initial value problem. By construction,
the resulting solution complies with the algebraic constraint
(B10) at any time t � 0.
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