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CONFORMAL MODULUS AND PLANAR DOMAINS WITH STRONG
SINGULARITIES AND CUSPS∗

HARRI HAKULA†, ANTTI RASILA‡, AND MATTI VUORINEN§

Abstract. We study the problem of computing the conformal modulus of rings and quadrilaterals with strong
singularities and cusps at their boundary. We reduce this problem to the numerical solution of the associated Dirichlet
and Dirichlet-Neumann-type boundary values problems for the Laplace equation. Several experimental results, with
error estimates, are reported. In particular, we consider domains with dendrite-like boundaries where an analytic
formula for the conformal modulus can be derived. The boundary value problems are solved using an hp-finite
element method.

Key words. conformal capacity, conformal modulus, quadrilateral modulus, hp-FEM, numerical conformal
mapping
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1. Introduction. The conformal modulus is an important tool in geometric function
theory [1]. It is defined as the Dirichlet energy or H1-seminorm of the Laplacian under
certain boundary conditions and thus closely related to certain physical quantities which also
occur in engineering applications such as resistance values of integrated circuit networks; see,
e.g., [22, 24].

Consider a rectangle with vertices (0, 0), (1, 0), (1, h), (0, h) and solve first −∆u1 = 0
with u1 = 1 along the edge (0, 0), (1, 0) and u1 = 0 along the edge (1, h), (0, h), and
∂u1/∂n = 0 otherwise, and second, the conjugate problem, −∆u2 = 0 with the Dirichlet
and Neumann conditions interchanged along the edges. It is clear that the modulus of the
quadrilateral corresponding to u1 isR1 = h and that of the conjugate problemR2 = 1/h, with
the reciprocal identity R1R2 = 1. Remarkably, this identity holds for all simply connected
domains since by definition they can be mapped onto such a rectangle. Notice that for
symmetric cases, the conformal modulus is identically equal to one.

For instance, the famous L-shaped domain is defined with six vertices. The construction
above states that any four vertices can be chosen to divide the boundary into Dirichlet and
Neumann parts. In Figure 1.1 an example of such an L-shaped configuration is given with the
numerically computed moduli up to machine precision (the Dirichlet boundaries are indicated
with dashed lines in Figure 1.1a). We arrive at two important observations: first, the errors of
the H1-seminorms of the resulting potentials can be estimated reliably without any a priori
knowledge of the exact potential, and second, the quality of any 2D discretization used in
the numerical solution of a PDE can be assessed using the reciprocal relation—an especially
useful result when the boundary is not smooth.

We consider both simply and doubly connected bounded domains. By definition such a
domain can be mapped conformally either onto a rectangle or onto an annulus, respectively.
For the numerical study of these two cases, we define the modulus h as follows. In the simply
connected case, as outlined above, we fix four points on the boundary of the domain, call a
domain with these fixed boundary points a quadrilateral, and require that these four points are
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a) Domain with Dirichlet boundaries
indicated.

b) Potential function. c) Potential function of the conjugate
problem.

FIG. 1.1. Conformal modulus: unit L-shaped domain.
R1 = 0.5773502691896245, R2 = 1.7320508075688785; R1R2 = 1.

mapped onto the vertices (0, 0), (1, 0), (1, h), (0, h) of the rectangle. In the doubly connected
case we require that the annulus is {(x, y) : exp(−h) < x2 + y2 < 1}. Doubly connected
domains are also called ring domains or simply rings. Surveys of state of the art methodologies
in the field are presented in the recent books by N. Papamichael and N. Stylianopoulos [22] and
by T. Driscoll and L. N. Trefethen [28]. Various applications are described in [16, 17, 24, 29].
In the past few years, quadrilaterals and ring domains of increasing complexity have been
studied by several authors [5, 6, 10, 23, 27].

a) Carbon fibre composite geometry. Image data
courtesy of I.Babuška/UT Austin.

b) Dendritic growth. Image courtesy of G.M.
Stone/UC Berkeley and LBNL.

FIG. 1.2. Examples of realistic domains with cusps and strong singularities.

Many interesting applications involving novel designs with elaborate boundaries with
cusps and singularities have emerged. In this paper we present both benchmark problems
and a computational methodology for evaluating and ensuring proper discretizations for the
numerical simulations of such problems. Some specific application classes are: (with cusps) the
modeling of carbon fibre composites [4] and conformal mappings in the study of metamaterials
[3, 26], (dendrite boundaries) the dendritic growth in two-metal electrodeposition—a primary
failure mechanism in many battery chemistries [20, 21]—and self-similar structures in fractal
antenna designs [18]. We emphasize that the citations are only representative and do not cover
the whole fields.

In the study of metamaterials one of the interesting configurations is where two domains
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with different material properties have minimal interfaces, in other words, with cusps in the
domain. Similarly, in fibre composites, cusps form naturally when two fibres are in contact;
see Figure 1.2a). Recently, Bergweiler and Eremenko [8] have studied quadrilaterals with
characteristics of precisely this type. We use their work as a foundation and compute the
canonical conformal mappings numerically using the algorithm presented in [13].

The fractal antenna design problem belongs to the class of ring problems of dendrite type
(i.e., continua without loops) [30]. Of course, it is also interesting to compute the effect on the
capacity of dendritic growth in capacitors; see Figure 1.2b). As the main new result of this
paper, a new class of ring domains is introduced. This class of ring domains of dendrite type
is characterized by a triplet of parameters (r,m, p), its construction is recursive, and yet its
conformal modulus can be explicitly given. By varying the parameter values or the recursion
level of the construction, one can increase the computational challenge, and therefore, this
family of domains forms a valuable set of test problems. Using standard techniques, the ring
problem can be reinterpreted as a quadrilateral one, and thus, the reciprocal error estimate is
also available.

Our numerical solution method of choice is the hp-finite element method (FEM) as
implemented in [14]. Through our experiments we relate the reciprocal error estimate to
known hp-error estimation techniques, in particular, to the auxiliary subspace error estimation
(often called hierarchic error estimation), and show numerically that the convergence rates are
similar with constants depending on the domain aspect ratios.

The paper is organized as follows: in Section 2 the definitions of the basic concepts are
given. Domains with cusps are discussed in Section 3 with a detailed numerical study of the
reciprocal error and its relation to standard error estimates. The dendrite problem is the focus
of Section 4. Finally, conclusions are drawn in Section 5.

2. Preliminaries. In this section central concepts to our discussion are introduced. The
quantities of interest from function theory are related to numerical methods, and the error
estimators arising from the basic principles are defined.

2.1. The conformal modulus. A simply connected domain D in the complex plane C
whose boundary is homeomorphic to the unit circle is called a Jordan domain. A Jordan
domain D, together with four distinct points z1, z2, z3, z4 in ∂D, which occur in this order
when traversing the boundary in the positive direction, is called a quadrilateral and denoted by
(D1; z1, z2, z3, z4). If f : D → fD is a conformal mapping onto a Jordan domain fD, then f
has a homeomorphic extension to the closureD (also denoted by f ). We say that the conformal
modulus of (D; z1, z2, z3, z4) is equal to h > 0 if there exists a conformal mapping f of D
onto the rectangle [0, 1]× [0, h], with f(z1) = 1 + ih, f(z2) = ih, f(z3) = 0, and f(z4) = 1.
Later, we also consider non-Jordan domains D, where the boundary is to be understood in the
sense of the Carathéodory boundary extension theorem. If there is no danger of confusion,
we call such domains, with four points z1, z2, z3, z4 chosen from the Carathéodory boundary
of D, quadrilaterals [25].

It follows immediately from the definition that the conformal modulus is invariant under
conformal mappings, i.e.,

M(D; z1, z2, z3, z4) = M(fD; f(z1), f(z2), f(z3), f(z4)),

for any conformal mapping f : D → f(D) such that D and f(D) are Jordan domains.
For a curve family Γ in the plane, we use the notation M(Γ) for its modulus [19]. For

instance, if Γ is the family of all curves joining the opposite a-sides within the rectangle
[0, a] × [0, b], a, b > 0, then M(Γ) = b/a. If we consider the rectangle as a quadrilateral Q
with distinguished points a+ ib, ib, 0, a, we also have M(Q; a+ ib, ib, 0, a) = b/a; see [1, 19].
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Given three sets D,E, F , we use the notation ∆(E,F ;D) for the family of all curves joining
E with F in D.

2.2. The modulus of a quadrilateral and Dirichlet integrals. One can express the
modulus of a quadrilateral (D; z1, z2, z3, z4) in terms of the solution of the Dirichlet-Neumann
problem as follows. Let γj , j = 1, 2, 3, 4, be the arcs of ∂D between (z4, z1), (z1, z2),
(z2, z3), and (z3, z4), respectively. If u is the (unique) harmonic solution of the Dirichlet-
Neumann problem with the boundary values of u equal to 0 on γ2, equal to 1 on γ4, and with
∂u/∂n = 0 on γ1 ∪ γ3, then by [1, p. 65/Thm 4.5]:

M(D; z1, z2, z3, z4) =

∫∫
D

|∇u|2 dx dy.

The function u satisfying the above boundary conditions is called the potential function of the
quadrilateral (D; z1, z2, z3, z4).

2.3. The modulus of a ring domain and Dirichlet integrals. Let E and F be two
disjoint compact sets in the extended complex plane C∞. Then one of the sets E, F is
bounded, and without loss of generality, we may assume that it is E. If both E and F are
connected and the set R = C∞ \ (E ∪ F ) is connected, then R is called a ring domain. In
this case R is a doubly connected plane domain. The capacity of R is defined by

capR = inf
u

∫∫
D

|∇u|2 dx dy,

where the infimum is taken over all nonnegative, piecewise differentiable functions u with
compact support in R ∪ E such that u = 1 on E. It is well known that there exists a
unique harmonic function on R with boundary values 1 on E and 0 on F . This function is
called the potential function of the ring domain R, and it minimizes the above integral. In
other words, the minimizer may be found by solving the Dirichlet problem for the Laplace
equation in R with boundary values 1 on the bounded boundary component E and 0 on
the other boundary component F. A ring domain R can be mapped conformally onto the
annulus {z : e−M < |z| < 1}, where M = M(R) is the conformal modulus of the ring
domain R. The modulus and capacity of a ring domain are connected by the simple identity
M(R) = 2π/capR. For more information on the modulus of a ring domain and its applications
in complex analysis, the reader is referred to [1, 16, 17, 22].

2.4. Hyperbolic metrics. The hyperbolic geometry in the unit disk is a powerful tool
of classical complex analysis. We shall now briefly review some of the main features of this
geometry which are necessary for what follows. First of all, the hyperbolic distance between
x, y ∈ D is given by [7]

ρD(x, y) = 2 arsinh

(
|x− y|√

(1− |x|2)(1− |y|2)

)
.

In addition to the unit disk D, one usually also studies the upper half plane H as a model of
hyperbolic geometry. For x, y ∈ H we have (with x = (x1, x2)) [7]

ρH(x, y) = arcosh

(
1 +
|x− y|2

2x2y2

)
.

If there is no danger of confusion, we denote both ρH(z, w) and ρD(z, w) simply by ρ(z, w).
We assume that the reader is familiar with some basic facts about these geometries: geodesics,
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the hyperbolic length-minimizing curves, are circular arcs orthogonal to the boundary in each
case.

Let z1, z2, z3, z4 be distinct points in C. We define the absolute (cross) ratio by

|z1, z2, z3, z4| =
|z1 − z3| |z2 − z4|
|z1 − z2| |z3 − z4|

.

This definition can be extended for z1, z2, z3, z4 ∈ C∞ by taking the limit. An important
property of Möbius transformations is that they preserve the absolute ratios, i.e.,

|f(z1), f(z2), f(z3), f(z4)| = |z1, z2, z3, z4|,

if f : C∞ → C∞ is a Möbius transformation. In fact, a mapping f : C∞ → C∞ is a Möbius
transformation if and only if f is sense-preserving and preserves all absolute ratios.

For both (D, ρD) and (H, ρH) one can define the hyperbolic distance in terms of the abso-
lute ratio. Since the absolute ratio is invariant under Möbius transformations, the hyperbolic
metric also remains invariant under these transformations. In particular, any Möbius transfor-
mation of D onto H preserves the hyperbolic distances. A standard reference on hyperbolic
metrics is [7].

2.5. hp-FEM. In this work the natural quantity of interest is always related to the
Dirichlet energy. Of course, the finite element method (FEM) is an energy-minimizing method
and therefore an obvious choice. The continuous Galerkin hp-FEM algorithm used throughout
this paper is based on our earlier work [14]. A brief outline of the relevant features used in
the numerical examples below is: Babuška-Szabo-type p-elements, curved elements with a
blending-function mapping for exact geometry, rule-based meshing for geometrically graded
meshes, and in the case of an isotropic p distribution, a hierarchical solution for all p. The
main new feature considered here is the introduction of hierarchical error estimates (using
auxiliary subspace techniques) for the error estimation. Hierarchical error estimates have been
studied by many authors; we refer the reader to [9] and the references therein.

For the types of problems considered here, theoretically optimal conforming hp-adaptivity
is hard. The main difficulty lies in the mesh adaptation since the desired geometry or the expo-
nential grading is not supported by standard data structures such as Delaunay triangulations.
Thus, the approach advocated here is a hybrid one, where the problem is first solved using an a
priori hp-algorithm after which the quality of the solution is estimated using error estimators
specific both for the problem and the method, provided the latter are available. For instance,
the exact solution or for problems concerning the conformal modulus, the so-called reciprocal
error estimator are employed. The a priori algorithm is modified if the error indicators suggest
modifications. If this occurs, the solution process is started anew.

In the numerical examples below, the computed results are measured with both kinds
of error estimators giving us high confidence in the validity of the results and the chosen
methodology.

2.5.1. Hierarchical error estimation. Consider the abstract problem setting with V
the standard piecewise polynomial finite element space on some discretization T of the
computational domain D. Assuming that the exact solution u ∈ H1

0 (D) has finite energy, we
arrive at the approximation problem: find û ∈ V such that

a(û, v) = l(v) (= a(u, v)), ∀v ∈ V,

where a(·, ·) and l(·) are the bilinear form and the load potential, respectively. Additional
degrees of freedom can be introduced by enriching the space V . This is accomplished via the
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introduction of an auxiliary subspace or “error space” W ⊂ H1
0 (D) such that V ∩W = {0}.

We can then define the error problem: Find ε ∈W such that

(2.1) a(ε, v) = l(v)− a(û, v) (= a(u− û, v)), ∀v ∈W.

In 2D the space W that is the additional unknowns can be associated with element edges and
interiors. Thus, for hp-methods this kind of error estimation is natural. The main result on this
kind of estimators is Theorem 2.1.

THEOREM 2.1 ([12]). There is a constant C depending only on the dimension d, the
polynomial degree p, the continuity and coercivity constants C and c, and the shape-regularity
of the triangulation T such that

c

C
‖ε‖1 ≤ ‖u− û‖1 ≤ C

(
‖ε‖1 + osc(R, r, T )

)
,

where the residual oscillation depends on the volumetric and face residuals R and r and the
triangulation T .

For this class of error estimators there are no known proofs of p-robustness (see [11]), but
the results shown below add to the growing body of evidence that the indicator has the desired
characteristics also in the standard hp-method setting.

The solution ε of (2.1) is called the error function. It has many useful properties for both
theoretical and practical considerations. In particular, the error function can be numerically
evaluated and analysed for any finite element solution. This property will be used in the
following. By construction the error function is identically zero at the mesh points. In
Figure 4.3 one instance of a contour plot of the error function (with a detail) is displayed. This
gives an excellent way to get a qualitative view of the solution which can be used to refine
the discretization in the hp-sense. In general, evaluation of the error function requires the
solution of a linear system of equations. In practice this is not an expensive computation as
Theorem 2.2 indicates.

THEOREM 2.2 ([12]). The global stiffness matrix for W is spectrally-equivalent to its
diagonal.

Let us denote the error indicator by a pair (e, b), where e and b refer to added polynomial
degrees on edges and element interiors, respectively. It is important to notice that the estimator
requires the solution of a linear system. Assuming that the enrichment is fixed over the set of
p problems, it is clear that the error indicator is expensive for small values of p but becomes
asymptotically less expensive as the value of p increases. Following the recommendation
of [12], our choice in the sequel is (e, b) = (1, 2) unless specified otherwise.

REMARK 2.3. In the case of (0, b)-type or pure bubble indicators, the system is not
connected, and the elemental error indicators can be computed independently and thus in
parallel. Therefore in practical cases one is always interested in the relative performance of
(0, b)-type indicators.

2.6. The reciprocal identity and error estimation. Let Q be a quadrilateral defined
by the points z1, z2, z3, z4 and by boundary curves as in Section 2.1 above. The following
reciprocal identity holds:

(2.2) M(Q; z1, z2, z3, z4)M(Q; z2, z3, z4, z1) = 1.

As in [14, 15], we shall use the test functional∣∣M(Q; z1, z2, z3, z4)M(Q; z2, z3, z4, z1)− 1
∣∣,

which by (2.2) vanishes identically, as an error estimate.
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As noted above, the error function ε can be analysed in the sense of FEM-solutions. Our
goal is to relate the error function given by auxiliary space techniques and the reciprocal
identity arising naturally from the geometry of the problem. Let us first define the energy of
the error function ε as

(2.3) E(ε) =

∫∫
D

|∇ε|2 dx dy.

Using (2.3) the reciprocal error estimation and the error function ε introduced above
can be connected as follows: Let a1 and a2 be the moduli of the original and conjugate
problems, ε1, ε2, and ε̂1 = E(ε1), ε̂2 = E(ε2) the errors and their energies, respectively.
Taking ε̂ = max{|ε̂1|, |ε̂2|} we get via direct computation:

|1− (a1 + ε̂1)(a2 + ε̂2)| ≤ |a1ε̂2 + a2ε̂1 + ε̂1ε̂2| ≤ 2 ε̂max{a1, 1/a1}+O(ε̂2).

Neglecting the higher-order term one can solve for ε̂ and compare this with the estimates given
by the individual error functions.

3. Domains with cusps. Let us recall Figure 1.2a). In general the cusps are either at the
corners of enclosed regions or between two touching fibres. In terms of reference problems,
the former case is idealized with hyperbolic quadrilaterals and the latter with BE-quadrilaterals
(after Bergweiler and Eremenko).

3.1. Hyperbolic quadrilateral. Let Qs be the quadrilateral whose sides are circular
arcs perpendicular to the unit circle with vertices eis, e(π−s)i, e(s−π)i, and e−si. We call
quadrilaterals of this type hyperbolic quadrilaterals as their sides are geodesics in the hyperbolic
geometry of the unit disk. We approximate the values of the modulus of Qs.

Next we find a lower bound for the modulus of a hyperbolic quadrilateral. Let
0 < α < β < γ < 2π. The four points 1, eiα, eiβ , eiγ determine a hyperbolic quadrilat-
eral whose vertices agree with these points and whose sides are orthogonal arcs terminating
at these points [14, 19]. We consider the problem of finding the modulus (or a lower bound
for it) of the family Γ of curves within the quadrilateral joining the opposite orthogonal arcs
(eiα, eiβ) and (eiγ , 1) within the quadrilateral [19]. It is easy to see that we can find a Möbius
transformation h of D onto H such that h(1) = 1, h(eiα) = t, h(eiβ) = −t, h(eiγ) = −1,
for some t > 1. The number t can be found by setting the absolute ratios |1, eiα, eiβ , eiγ |
and |1, t,−t, 1| equal and by solving the resulting quadratic equation for t because Möbius
transformations preserve absolute ratios. The image quadrilateral has four semicircles as its
sides, the diameters of which are [−1, 1], [1, t], [−t, t], [−t,−1], and the family h(Γ) has a
subfamily ∆ consisting of the radial segments

[eiφ, teiφ], φ ∈ (θ, π − θ), sin θ =
t− 1

t+ 1
.

Obviously, for θ = 0 we obtain an upper bound. Therefore

π

log t
≥ M(h(Γ)) ≥ M(∆) =

π − 2θ

log t
.

3.1.1. Numerical experiments. Similarly as before, the examples of this section are
outlined in Table 3.1 and Figures 3.1, 3.2. The meshes are refined in exactly the same fashion
so that any differences in convergence stem only from the difference in the geometric scaling.
As shown in Figure 3.3 the convergence in the reciprocal error is exponential but with a
better rate for the symmetric case. Moreover, for the symmetric domain both error estimates
coincide.
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a) Case 1: s = π/4. b) Case 2: s = 3π/8.

FIG. 3.1. Hyperbolic quadrilateral: refined meshes.

a) Case 1. b) Case 2.

FIG. 3.2. Hyperbolic quadrilateral: conformal maps.

3.2. Circular quadrilaterals. Above we have studied the quadrilaterals
Q = Q(D; z1, z2, z3, z4) where D is a Jordan domain. We next study a slight general-
ization where D is simply connected but non-Jordan; see Section 2.1. In this case some
of the points zj may be "double points" on the boundary. The modulus of the following
quadrilateral has been obtained by W. Bergweiler and A. Eremenko [8], who studied this
question in connection to an extremal problem of geometric function theory introduced by
A. A. Goldberg in 1973.

3.2.1. Example I. Consider the strip from which the closed unit disk is removed:

D1 = {z : −3 < Re z < 1} \ D.

Let the four vertices zj , j = 1, 2, 3, 4, on the boundary of D1 be 1,∞,∞, 1, in counter-
clockwise order. Then, all the angles at the vertices are equal to 0.

First we map the domain in question to a bounded domain so that the line {z : Re z = 1}
maps to the unit circle and the real axis remains fixed. After the Möbius transformation we
may assume that we are computing in the unit disk D. For convenience, consider the disks
D(1 − t, t) and D(−1 + s, s) internally tangent to the unit circle at the points −1 and 1,
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a) Case 1. b) Case 2. c) Case 2 (conjugate).]

FIG. 3.3. Hyperbolic quadrilateral: estimated errors; log-plot: error vs p; solid line = reciprocal estimate,
dashed line = auxiliary space estimate.

TABLE 3.1
Tests on hyperbolic quadrilaterals. The errors are given as |dlog10 |error|e|.

Case Method Errors Sizes M(Qs)

1 hp, p = 12 12 10225 1
2 hp, p = 16 11 17985 3.037469188986459

respectively, with s, t ∈ (0, 1/3). The corner points of the quadrilateral are 1,−1,−1, 1 with
a zero angle at each of the corners. We denote the respective radii of the disks by s and t.

We have computed numerically the modulus of the family of curves joining the two disks
within the domain D2 = D \ (D(1− t, t) ∪D(−1 + s, s)). It is the reciprocal of the modulus
of the family of curves joining the upper unit semicircle with the lower unit semicircle within
the same domain. The results are summarized in Table 3.2.

An estimate for the case s = t =
√

2 − 1 ≈ 0.41421 is obtained by Bergweiler and
Eremenko in [8] with numerical values that agree with our results up to 6 significant digits.
The conformal modulus in this case is approximately 2.7823418086 (hp-FEM with error
number = 10, p = 21).

3.2.2. Example II. Consider the domain D (a hexagon) in the upper half-plane obtained
from the half-strip

{z = x+ iy : 0 < x < 1, 0 < y}

by removing two half-disks

C1 = D(7/24, 1/24), C2 = D(5/12, 1/12),

where D(z, r) denotes the disk centered at z ∈ C with radius r > 0. Note that
C1 ∩ R = [1/4, 1/3] and C2 ∩ R = [1/3, 1/2]. We compute the moduli of two quadrilaterals:

Q1 = (D;∞, 0, 1/2, 1), Q2 = (D; 0, 1/4, 1/2, 1).

Again, we first use the Möbius transformation

z 7→ 2z − 1

2z + 1

to map the domain D in question to a bounded domain. Then the boundary points of Q1

are mapped onto the points 1,−1, 0, 1/3, respectively. For Q2, the boundary points are
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a) Case 1: s = t =
√
2− 1. b) Case 2: s = 3/10, t = 2/5.
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c) Case 3 and 4: Q1 and Q2 of example II, respectively.

FIG. 3.4. Circular quadrilaterals: p-type meshes.

TABLE 3.2
Tests on circular quadrilaterals.

Case Method Errors Sizes M(Qs)

1 p, p = 16 9 1089 2.7823418091539533
2 p, p = 16 9 1633 1.8247899464782131
3 p, p = 16 8 2945 0.8852475766134157
4 p, p = 16 7 2945 1.7864319361374579

mapped onto the points −1,−1/3, 0, 1/3. The quadrilaterals Q1 and Q2, after the Möbius
transformation, and the corresponding conformal maps are illustrated in Figures 3.4c) and 3.5.
The construction can easily be verified by tracing the grid lines of the maps; for instance, in
Figure 3.5d), the boundaries [−1,−1/3] and [0, 1/3] are clearly connected as the construction
of Q2 requires.

3.2.3. Numerical experiments. The numerical experiments differ from the previous
cases since only the p-version is used. In other words, the meshes of Figure 3.4 are used as
is without any h-refinement. As is evident in the convergence and error estimation graphs of
Figures 3.6–3.8, in the cases where the local angles are close to π/2, exponential convergence
is achieved, but in the general case, when small geometric features are present, the convergence
rates are algebraic.

4. The dendrite. A compact connected set in the plane is called dendrite-like if it con-
tains no loops. We introduce a new parametrized family of ring domains whose boundaries
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a) Case 1. b) Case 2.

c) Case 3. d) Case 4.

FIG. 3.5. Circular quadrilaterals: conformal maps.

have dendrite-like boundary structure and whose modulus is explicitly known in terms of pa-
rameters. In numerical conformal mapping, one usually considers domains whose boundaries
consist of finitely many piecewise smooth curves. Very recently in [23], the authors considered
conformal mapping onto domains whose boundaries have “infinitely many sides”, i.e., they
are obtained as a result of a recursive construction. One of the examples considered in [23]
was the domain whose boundary was the von Koch snowflake curve.

In this section we will give a construction of a ring domain whose complementary
components are C \ D and a compact connected subset C(r, p̂,m) of the unit disk D that
depends on two positive integer parameters p̂,m and a real number r > 0. The set C(r, p̂,m)
is the union of finitely many pieces each of which is a smooth curve, and the set is acyclic, i.e.,
it does not contain any loops. The number of pieces is controlled by the integers (p̂,m) and
can be arbitrarily large when p̂ and m increase.

4.1. Theory. Recall that the Grötzsch ringRG(r) = D\[0, r], r ∈ (0, 1), has the capacity
cap(RG(r)) = 2π/µ(r), were µ(r) is the Grötzsch modulus function (cf. [2, Chapter 5]):

µ(r) =
π

2

K(r′)

K(r)
and K(r) =

∫ 1

0

dx√
(1− x2)(1− r2x2)

,

with the usual notation r′ =
√

1− r2. Let r ∈ (0, 1), and let Dr = D \
(
[−r, r] ∪ [−ir, ir]

)
.

The conformal mapping f(z) = 4
√
−z maps the Grötzsch ring RG(r) (excluding the positive

real axis) onto the sector {z : | arg z| < π/2}. Let ur be the potential function associated
with RG(r). Then, by symmetry, it follows that the potential function ur ◦ f can be extended
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a) Reciprocal error. b) Estimated error.
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c) Estimated error (conjugate). d) Estimated error using bubble-based
auxiliary space: (e, b) = (0, 2).

FIG. 3.6. Circular quadrilaterals: comparison of error estimates: case 1: reciprocal error, log-plot: error vs p;
estimated error, log-plot: error vs p; solid line = reciprocal estimate, dashed line = auxiliary space estimate.

to the domain Dr by Schwarz symmetries so that it solves the Dirichlet problem associated
with the conformal capacity of Dr. It follows that cap(Dr) = 8π/µ(r4). Obviously, a similar
construction is possible for any integer m ≥ 3.

One may continue the process to obtain further generalizations. Start with a generalized
Grötzsch ring with m ≥ 3 branches. Choose one of the vertices of the interior component.
Map this point to the origin by a Möbius automorphism of the unit disk. Make a branch of
degree p̂ ≥ 2 to the origin by using the mapping z 7→ z1/p̂, and extend the potential function
to the whole disk by using Schwarz symmetries. The resulting ring has capacity 2πmp̂/µ(rm).
An example of the construction is given in Figure 4.1.

Again, it is possible to further iterate the above construction to obtain ring domains with
arbitrarily complex dendrite-like boundaries. Let m ≥ 3, M ≥ 1, and let p̂j be integers such
that p̂j ≥ 2, for all j = 1, 2, . . . ,M . For each j = 1, 2, . . . ,M , choose one of the vertices zj
of the interior component. Let wj be the point on the line tzj , t > 0, so that |wj | = 1. We
may assume that zj < 0, wj = −1, and that the line segment [−1, zj ] does not intersect with
the interior component except at the point zj . Map the point zj to the origin by a Möbius
automorphism gj of the unit disk so that gj(−1) = −1. Now map the domain D \ [−1, 0]
onto the symmetric disk sector by the mapping hj(z) = z1/p̂j , and extend the potential
function to the whole disk by using Schwarz symmetries. By repeating this construction for
all j = 1, 2, . . . ,M , we obtain a ring domain with conformal capacity

2πmp̂1p̂2 · · · p̂M
µ(rm)

.
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a) Case 2. b) Case 3. d) Case 4.

FIG. 3.7. Circular quadrilaterals: cases 2–4: reciprocal errors; log-plot: error vs p.
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a) Case 2. b) Case 3. d) Case 4.

FIG. 3.8. Circular quadrilaterals: cases 2–4: estimated errors; log-plot: error vs p; solid line = reciprocal
estimate, dashed line = auxiliary space estimate.

4.2. Numerical experiments. We consider two cases described in Table 4.1 and Fig-
ures 4.2 and 4.3. Using the hp-refinement strategy at the tips of the dendrite and the inner
angles (120◦), we obtain exponential convergence in the reciprocal error (Figure 4.4). In
Figure 4.3 we also show the error function of type (1,2) over the whole domain as well as
a detail which clearly shows the non-locality of the error function. As expected, the errors
are concentrated at the singularities and in the elements connecting the singularities to the
boundary. One should bear in mind, however, that the reciprocal errors are small already at
p = 10 used in the figures.

The error estimates are displayed in Figure 4.5. The effect of error balancing is evident.
For the larger capacity, the reciprocal error coincides with the true error but overestimates
the smaller one. However, in both cases the rates are correct, only the constant is overly
pessimistic. The auxiliary space error estimate underestimates the error slightly again with the
correct rate.

5. Conclusions. Computational function theory contains many useful identities that
are valuable also in engineering practice. In particular, the reciprocal relation is not well
known outside the specialist community, yet it provides a general framework for numerical
PDE-solver developers to verify codes and test discretizations in special cases.

In this paper we have introduced a new class of ring domains characterized by three
parameters and given a formula for its modulus. This class of domains provides both a
scalability of the computational challenge and the exactly known solution. For specific sets
of parameters considered here, the convergence rates obtained for the hp-solution are in
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a) Generalized Grötzsch ring RG(r,m): r = 1/4,
m = 6.

b) Map the chosen point to the origin by a Möbius
automorphism of the unit disk.

c) Make a branch of degree p = 7. d) Extend the potential function to the whole disk.

FIG. 4.1. Dendrite Construction: r = 1/4, m = 6, p̂ = 7.

accordance with theory, almost optimal, and the numerically computed error estimates behave
in the same way as the true error.
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