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Converting Series Biquad Filters Into Delayed
Parallel Form: Application to Graphic Equalizers

Juho Liski , Balázs Bank , Member, IEEE, Julius O. Smith , Member, IEEE, and Vesa Välimäki , Fellow, IEEE

Abstract—Digital filter transfer functions can be converted be-
tween the direct form and parallel connections of elementary sec-
tions, typically second-order (“biquad”) sections. The conversion
from direct to parallel form is performed using a partial fraction ex-
pansion, which usually requires long division of polynomials when
expanding proper and improper transfer functions. This paper fo-
cuses on the conversion of a series of biquad sections to the parallel
form, and proposes a novel way to implement the partial-fraction
expansion without the use of long division. Additionally, the result-
ing structure is the delayed parallel form in which the section gains
remain small. The new design and previous methods are compared
in a case study on graphic equalizer design. The delayed parallel
filter is shown to use the same number of operations as the series
form during filtering. The conversion of a recently proposed series
graphic equalizer into the delayed parallel form leads to an im-
proved parallel graphic equalizer design relative to all known prior
approaches. The proposed conversion technique is widely applica-
ble to the design of parallel infinite impulse response filters, which
are becoming popular as they are well suited to implementation
using parallel computers.

Index Terms—Digital filters, equalizers, IIR filters, polynomials.

I. INTRODUCTION

INFINITE impulse response (IIR) filter transfer functions can
be implemented both as series and parallel second-order sec-

tions [1]–[4]. This paper presents a new method to convert a
series IIR filter into a parallel form using the partial-fraction ex-
pansion (PFE). The usefulness of this method is exemplified by
a graphic equalizer (EQ), which is easier to design in the series
form but often advantageous to implement in the parallel form.

In signal processing, the same IIR filter transfer function can
be implemented by various filter structures besides the direct-
form variants [1]. Series or parallel second-order (“biquad”)
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IIR filter sections are most commonly used [5]. The parallel
structure has several practical advantages, such as suitability for
parallel implementation with GPUs [6] and beneficial quanti-
zation characteristics [5]. However, series biquad filter designs
are more common, for example, in audio equalizers [7]–[11],
mainly because the designs are intuitive and are often based on
closed-form or easily solved formulas. In addition, traditional
IIR filter design techniques based on the bilinear transform, such
as Butterworth, Chebyshev, and Cauer, also give the filter in the
pole-zero form that is closely related to the series structure when
the complex poles and zeros are paired as second-order sections
[12]. Thus, in many applications, converting a filter presented in
a series second-order form (or in the equivalent pole-zero form)
to parallel second-order sections can be beneficial.

A straightforward approach for such a conversion is to first
convert the series form to a direct-form IIR filter by multiply-
ing the numerator and denominator polynomials of the sections.
From the direct-form transfer function, the parallel form can be
obtained by PFE [1]–[3], [13], [14]. However, for large filter or-
ders and/or poles near the unit circle, the direct-form realization
of the transfer function can easily become unstable due to nu-
merical errors. Thus, this procedure is not recommended unless
the filter order is relatively small (depending on the poles, filter
orders of 10–20 can be converted from series to parallel by this
method).

In [4], two methods are proposed for series-to-parallel conver-
sion. The first one is based on a least-squares (LS) filter design
inspired by fixed-pole parallel filters [15]. The denominators
of the parallel form are the same as those of the series form
and, therefore, finding the numerator coefficients of the parallel
transfer function is a linear problem. Thus, the numerator pa-
rameters are obtained as a LS solution where the error between
the impulse response (or the frequency response) of the series
and parallel forms is minimized.

The second method proposed in [4] performs the PFE on the
series form directly, without computing the direct-form transfer
function. To be able to do so, one must factor out one or two
zeros to make the transfer function strictly proper, since that is
generally required for the PFE [1]. The zeros are then imple-
mented as a first- or second-order FIR filter in series with the
parallel structure.

Alternatively, an IIR filter could be designed directly in the
parallel form. For example, a direct design method for fixed-
pole parallel filters proposed by Bank, in which the zeros are
found with an LS solution [16], [17]; a vector-fitting method by
Wong et al., which iteratively optimizes the pole positions of an
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IIR filter using LS to approximate FIR filter response [18]; and
a method proposed by Qi et al., who optimize the coefficients
and the poles to design an IIR filter based on target frequency
response [19] all lead to parallel first or second-order sections
similar to the PFE form. The two latter methods are currently
unavailable for graphic equalizer design, but the first one is used
for comparison in this paper.

In this work, we propose a novel way to convert a series IIR
filter into the parallel form that requires neither an LS design
nor the series FIR filter of [4]. This method is inspired by the
direct-to-parallel conversion technique of Orfanidis [2], which,
in contrast to all the literature the authors are aware of, pro-
poses computing the PFE of proper transfer functions without
requiring polynomial long division. This paper shows that the
direct-to-parallel conversion can be performed without the long
division even for improper transfer functions and demonstrates
why this is beneficial for the series-to-parallel conversion. In
addition, we convert the filters to the delayed parallel form [3],
[4], [20] in which the FIR part of the filter does not interact with
the responses of the parallel biquad sections, leading to better
numerical behavior.

Finally, we present an application example in which an ac-
curate series graphic EQ is converted into the delayed parallel
form. The conversion is simplified in this case by the fact that
the denominators of the series design remain the same in the
parallel structure, although the poles must be solved for the PFE
calculation. Comparison with other parallel graphic EQ designs
shows the advantages of the proposed method: fast design, good
accuracy of approximation, and efficient implementation.

This paper is organized as follows. Section II reviews the
use of the PFE in digital filter design. Section III introduces a
new method for performing the PFE without the long division.
Section IV presents an application example in which an accurate
series design of a graphic EQ is converted to the delayed par-
allel form. Section V compares the new design with the series
form and with previous parallel designs. Finally, conclusions are
drawn in Section VI.

II. PARTIAL FRACTION EXPANSION

PFE is used to convert IIR filters into the parallel form [3]. For
example, a high-order IIR filter can be presented as a sum of indi-
vidual pole terms, where the coefficients are the residues of cor-
responding poles. In real-world digital filters, the coefficients of
the first-order parallel terms are often complex valued, and thus
the complex-conjugate pole pairs must be combined into second-
order sections to obtain real-valued numerator coefficients. If
the original transfer function is strictly proper, i.e., the order of
the numerator NNum is less than that of the denominator NDen,
only parallel first-order transfer function terms are obtained [3].
However, if the transfer function is proper (NNum = NDen) or
improper (NNum > NDen), an FIR part also emerges with the
length of L = NNum −NDen + 1.

When the original filter transfer function is H(z) =
B(z)/A(z), its PFE can be written as [3]

H(z) = F1(z) +
N∑

n=1

rn
1− pnz−1

, (1)

where rn are the residues corresponding to poles pn andF1(z) is
the FIR part. We assume distinct poles (pn �= pm for ∀ n �= m)
throughout this work, but the extension to repeated poles [3] is
straightforward. The FIR part of the PFE is usually obtained by
long division [3], where the numerator polynomial is divided
by the denominator polynomial. After the long division, or if
the transfer function is already strictly proper, the residues are
obtained using the Heaviside cover-up method [21]:

rn = (1− pnz
−1)H ′(z)

∣∣
z=pn

, (2)

where H ′(z) = H(z)− F1(z) is the strictly proper remainder
after long division. The term (1− pnz

−1) in the denominator of
H ′(z) is canceled out to determine the residue rn of pole pn.

A. Delayed Parallel Form

Traditionally, the long division in a PFE is performed on poly-
nomials starting with the highest powers of z−1 [13]. This leads
to a parallel filter in which the FIR part and the IIR part overlap.
There is, however, an alternate PFE form featuring a delayed IIR
part [3]. When the coefficients are simply reversed during long
division, i.e., long division starts with the lowest powers of z−1,
the following delayed PFE form is obtained [3]:

H(z) = F (z) + z−L
N∑

n=1

r̃n
1− pnz−1

, (3)

where F (z) is the FIR part of length L and r̃n is the residue cor-
responding to the delayed IIR part. The FIR and IIR parts do not
overlap in the impulse response of this form. Note that the FIR
part and residues of this form differ from the ones obtained with
the traditional PFE, but the resulting transfer functions H(z)
are equal. Here, F (z) corresponds directly to the first L samples
of the impulse response of H(z). This form has been found to
yield better numerical behavior than the form with overlapping
FIR and IIR parts [4], [20]. Our intention is to convert series IIR
filters to this type of delayed form.

B. PFE of Proper Transfer Functions Without Long Division

Orfanidis has suggested a method to determine the PFE of
a proper transfer function without the long division [2]. This
method produces the traditional form of the PFE, i.e., the form
in which the IIR part is not delayed in comparison to the FIR part.
Now, since proper transfer functions are expanded into partial
fraction form, the length of the FIR part is L = NNum −NDen +
1 = 1 and (1) can be written as

H(z) = F1 +

N∑

n=1

rn
1− pnz−1

, (4)

where F1 is a constant forming the FIR part of the filter (order
0) and NDen = NNum.

Orfanidis suggests that the IIR part of (4) is considered
first by solving for the residues using the Heaviside cover-
up method (2) [2]. For this, the poles of the transfer function
H(z) = B(z)/A(z) must be known. The nth residue is then
obtained by canceling the nth pole and evaluating the remain-
ing transfer function at the pole. Note that Orfanidis applies
the method directly to the proper transfer function H(z) [2].
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(Section III-A shows that the same residues are obtained in this
way as with long division.) Finally, the constant F1 is computed
by evaluating the original transfer function at z = 0:

F1 = H(z)|z=0 . (5)

III. NOVEL PFE CONVERSION METHODS

In this section, the method suggested by Orfanidis is extended
to the case of improper transfer functions (NNum > NDen), and,
inspired by it, a novel series-to-parallel conversion producing the
delayed PFE form is proposed.

A. Obtaining the PFE of Improper Transfer Functions

Corresponding to the usual procedure, Orfanidis also suggests
the use of polynomial long division to obtain the FIR part for
the NNum > NDen case [2]. Here, we show why the idea of
not using long division before PFE is valid for proper transfer
functions, and that it can also be extended to the improper case.
The derivations shown here are valid for both delayed and non-
delayed parallel forms.

An improper transfer function H(z) = B(z)/A(z) in which
the order NNum of B(z) is larger than the order NDen of A(z)
is usually decomposed to a strictly proper transfer function
H ′(z) = B′(z)/A(z) and an FIR part F (z) in parallel:

H(z) =
B(z)

A(z)
= F (z) +

B′(z)
A(z)

. (6)

Here, we show that applying the Heaviside cover-up method
on the original transfer function H(z) gives the same residues
as when it is performed on the strictly proper transfer function
H ′(z). By using (6), the residues of H(z) are computed as

rn = (1− pnz
−1)H(z)

∣∣
z=pn

= (1− pnz
−1)F (z)

∣∣
z=pn

+ (1−pnz
−1)

B′(z)
A(z)

∣∣∣∣
z=pn

, (7)

where the first term is zero, since z = pn. The second part is
nonzero because A(z) contains the term (1− pnz

−1), and thus
rn actually equals the residue computed from the strictly proper
transfer function H ′(z) using (2).

This means we obtain the same residues before or after long
division. However, we need to find an alternative method to
obtain the FIR part F (z). This is particularly simple for the
delayed PFE form, because in that form there is no overlap be-
tween the FIR part and the impulse-response of the IIR sec-
tions. Therefore, the coefficients of the FIR part fk are sim-
ply given by the first L samples of the filter impulse response
h(k), k = 0, 1, . . . , L− 1. However, to obtain the FIR part of
the traditional non-delayed PFE, the first L = NNum −NDen

samples of the parallel IIR sections may be subtracted from
the first L samples of the impulse response of the original filter,
since in this case the FIR and IIR parts overlap.

Accordingly, an IIR filter H(z) = B(z)/A(z) having numer-
ator order NNum and denominator order NDen can be converted
to parallel second-order form as follows:

1) Compute the residues rn from the original transfer func-
tion using the cover-up method (2).

2) Combine complex-conjugate pairs of poles pn and pn and
residues rn and rn to obtain real second-order sections.

3) Determine the FIR part F (z) of the length L = NNum −
NDen by (i) (delayed parallel form) computing the first
L samples of the impulse-response h(k) of the original
filter H(z) (achieved by simply “running” the filter on
a unit-impulse input signal), and setting fk = h(k), k =
0, 1, . . . , L− 1, or (ii) (traditional non-delayed parallel
form) computing the first L samples of the impulse re-
sponse h(k) of the original filter and the first L samples
of the parallel IIR part and subtracting the latter from the
former.

Finally, note that when converting very high-order (NDen >
100) IIR filters to parallel form, the numerically more robust LS
approach is recommended over the Heaviside cover-up method
[4].

B. Novel Series-to-Parallel Conversion Without Long Division

Next, we show how a series filter structure can be efficiently
converted to the delayed parallel form without long division. The
method is illustrated for a series of second-order sections, but it
works as well for any series-connected filter sections. The key
idea is to represent the original biquad sections non-causally,
i.e., as a function of z instead of z−1. This change of repre-
sentation corresponds to the reversal of the coefficients in the
traditional PFE when determining the desired PFE form.

A biquad transfer function may be written in the z domain as

H(z) = k0
1 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
, (8)

where k0 is a gain factor, b1 and b2 are the feedforward coeffi-
cients, and a1 and a2 are the feedback coefficients. The advan-
tage of the proposed method for the biquad case is that it does
not utilize long division, and thus the rational form of the trans-
fer function does not need to be evaluated. Thus, in addition to
the case of a single biquad section, the method also works for a
filter presented as biquad sections in series, where the number
of sections M is arbitrary, i.e., the transfer function of the filter
is

H(z) = G0

M∏

m=1

1 + b1,mz−1 + b2,mz−2

1 + a1,mz−1 + a2,mz−2
, (9)

where the gain factor G0 is

G0 =
M∏

m=1

k0,m. (10)

The structure of such a series filter is shown in Fig. 1(a), and the
structure of a single biquad filter section is shown in Fig. 1(b).

The proposed method starts with the non-causal form of (9):

H(z) =

(
z2

z2

)M

H(z) = G0

M∏

m=1

z2 + b1,mz + b2,m
z2 + a1,mz + a2,m

. (11)

Now, the poles are found for each second-order section using the
quadratic formula. The number of poles determines the number
of residues needed to be calculated. For the residue calculation,
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Fig. 1. (a) Series IIR filter structure, and (b) the block diagram of a single
second-order section, i.e., a biquad filter. The gain factors of the biquad sections
have been consolidated in the overall gain G0.

instead of (4), the PFE of H(z) is assumed to equal

H(z) = F +

N∑

n=1

r̃n
z − pn

, (12)

where F and r̃n correspond to the PFE form including the de-
layed IIR part. Again, the numerator and denominator are of the
same order, which leads to the FIR part having length one. The
residues are found first using the Heaviside cover-up method,
which now has the form

r̃n = (z − pn)H(z)|z=pn
. (13)

In the next step, the delay is introduced in the IIR part by
converting it back to the standard, causal filter notation:

H(z) = F +
N∑

n=1

r̃n
z − pn

= F +
N∑

n=1

z−1r̃n
z−1(z − pn)

= F + z−1
N∑

n=1

r̃n
1− pnz−1

. (14)

The order of the delay for the IIR part is seen to be L = NNum −
NDen + 1 = 1 (see (3)), which is the desired result. In order to
solve for F , (9) and (14) are combined as

H(z) = G0

M∏

m=1

1 + b1,mz−1 + b2,mz−2

1 + a1,mz−1 + a2,mz−2

= F + z−1
N∑

n=1

r̃n
1− pnz−1

, (15)

where F is the only unknown. In Orfanidis’s method, the FIR
constant is solved by evaluating H(0). However, this requires
positive powers of z, and the equations are already written with
negative powers of z. In addition, we know that the value of
F is constant, and thus we obtain its value directly by letting
z → ∞ in (15). Now, terms with negative powers of z go to
zero (including the sum term on the right-hand side) and the

Fig. 2. (a) Parallel filter structure with delayed IIR part, and (b) the block
diagram of a single second-order filter.

product term on the left-hand side equals 1, resulting in

F = G0, (16)

which is the first sample of the filter impulse response h(0). This
procedure applies to the series biquads case, and, if NNum >
NDen, the FIR part is obtained as mentioned in Section III-A.

Since the first-order PFE terms obtained from a real-valued
filter may be complex-valued, complex-conjugate pole pairs are
combined. Existing real poles are also combined in order to ob-
tain a parallel filter consisting of the FIR part and second-order
IIR sections, with at most one section being effectively first or-
der. This results in the same denominators as in the original series
biquads and in new numerators with one feedforward coefficient
less. One such second-order section Hp(z) can be written as

Hp(z) =
r1

1− p1z−1
+

r2
1− p2z−1

=
(r1 + r2)− (r1p2 + r2p1)z

−1

(1− p1z−1)(1− p2z−1)
. (17)

The final transfer function of the parallel biquad sections is of
the form

H(z) = F + z−1
M∑

m=1

c0,m + c1,mz−1

1 + a1,mz−1 + a2,mz−2
, (18)

where c0,m = r̃(2m−1) + r̃(2m) and c1,m = −r̃(2m−1)p(2m) −
r̃(2m)p(2m−1). Now, the series IIR filter has been fully converted
to the corresponding parallel form without evaluating the full
direct-form transfer function.

The parallel structure realizing (18) is illustrated in Fig. 2(a),
and the block diagram of the single second-order section is
shown in Fig. 2(b). The proposed structure of Fig. 2(a) contains
one unit delay more andM extra additions compared to Fig. 1(a).
However, compared to the original biquad form (cf. Fig. 1(b)),
the structure in Fig. 2(b) contains one feedforward path less, as
also implied by (18), which means that it has one addition less
per biquad section, or M additions less for the whole filter. It
then turns out that all in all the delayed parallel structure requires
exactly the same number of additions and multiplications as the
series form.
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TABLE I
CENTER FREQUENCIES AND BANDWIDTHS FOR THE 31 FILTERS OF THE THIRD-OCTAVE GRAPHIC EQ. THE ADJUSTED BANDWIDTHS OF THE SIX HIGHEST BAND

FILTERS ARE SHOWN IN ITALICS

IV. CASE STUDY: ACCURATE PARALLEL GRAPHIC

EQUALIZER DESIGN

In this section, the novel PFE method of Section III is applied
to the design of a graphic EQ. Both parallel and series forms are
used in graphic EQ design [22]. However, a major difference
between the forms concerns the design of the filter coefficient
values. Graphic EQ design is a magnitude-only problem, where
the target response specifies the filter gain at different frequen-
cies [22], [23]. For a parallel filter structure, the magnitude of
the sum depends on the relative phases of the component sec-
tions, and thus, the phase response must be specified in some
way for the component sections even when the overall phase is
not specified [15], [17], [24]. Minimum phase is a typical choice
[1] for the overall equalizer phase, since that is in some sense
the “easiest” for an IIR filter to provide.

On the other hand, for a series filter structure, a phase-sensitive
design is not needed, since the total transfer function is the prod-
uct of the transfer functions of the sections, and thus, the total
magnitude response is the product of the individual magnitude
responses, or, in decibels (dB), the dB-magnitude response is
the sum of the individual dB-magnitude responses. This sim-
plifies the design significantly [8], [22]. However, the parallel
design has favorable properties compared to the series design,
such as better dynamic-range distribution and numerical accu-
racy. Consequently, we show that it pays to convert a series
graphic equalizer into the delayed parallel form, as the result-
ing filter has advantages in comparison to previously published
series designs.

A. Third-Octave Graphic Equalizer Design

The series graphic EQ proposed by Välimäki and Liski [11],
[25], which we call ACGE (accurate cascade graphic EQ), offers
a fast design and accurate results utilizing a single second-order
IIR filter section per band. Here, we expand this series filter
design method into the superior delayed parallel form.

The ACGE employs a second-order IIR peak/notch filter given
by Orfanidis [2] in which the reference gain at dc is set to 1:

H(z) =
1 +Gβ − 2 cos(ωc)z

−1 + (1−Gβ)z−2

1 + β − 2 cos(ωc)z−1 + (1− β)z−2
, (19)

where G is the linear peak gain, ωc = 2πfc/fs is the normalized
center frequency in radians (the center frequencies in Hertz are
shown in Table I for the third-octave EQ), fs is the sampling

frequency, β is defined as

β =

⎧
⎪⎨

⎪⎩

tan (B/2) , when G = 1,√
|GB

2 − 1|
|G2 −GB

2| tan
(
B

2

)
otherwise,

(20)

and GB is the linear gain at the edges of bandwidth B =
2πfB/fs. Equation (19) can also be written in the form of (8).
In that case, k0 = (1 +Gβ)/(1 + β), b1 = −(2 cos(ωc))/(1 +
Gβ), b2 = (1−Gβ)/(1 +Gβ), a1 = −(2 cos(ωc))/(1 + β),
and a2 = (1− β)/(1 + β). The standard audio sampling fre-
quency fs = 44.1 kHz is used in this work.

The IIR peak/notch filter in (19) and (20) allows for exact
control over the filter bandwidth. We set the bandwidth Bm

to equal the difference with the neighboring band center fre-
quencies in order to have precise control of the behavior of the
band filter at these points, thus improving the accuracy of the
design. This way, the bandwidth of the third-octave EQ filters
equal Bm = ( 3

√
2− 1/ 3

√
2)ωc,m ≈ 0.4662ωc,m. However, due

to the filter asymmetry near the Nyquist limit, the bandwidth
of the six uppermost filters must be adjusted by hand [25]. The
resulting bandwidth values are shown in Table I. Furthermore,
(19) and (20) allow for an unusual definition for the filter band-
width. Traditionally, the bandwidth of a resonance is defined by
its −3-dB points, which refers to 0.707 times the linear gain.
Here, however, we can select the dB gain at the bandwidth to be
gB,m = cgm, where 0 < c < 1 is a free design parameter. In the
third-octave EQ, c = 0.4 is used [25].

The accurate series EQ is based on the self similarity of the
filters [11]. Self-similar filters retain their shape in dB when
filters with different gain settings are amplitude normalized, as
is shown in Fig. 3. Due to the self-similarity, the normalized
band filters of the EQ can be used as basis functions in the
design process in order to control the interaction between the
neighboring filters [11]. This idea was originally proposed by
Abel and Berners [8] and Oliver and Jot [10].

The self-similarity is utilized by forming an interaction ma-
trix B from samples taken from the normalized dB amplitude
responses. The interaction matrix further helps to control the
interaction among different band filters [8], [10], [11], [25]. A
filter of the form (19) is designed for each M bands using a
prototype gain gp, which for the third-octave EQ is 17 dB. The
filters are then amplitude normalized by dividing them with the
prototype gain, and the dB magnitude of these filters is evalu-
ated in the band center frequencies as well as at the geometric
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Fig. 3. Normalized magnitude response of the 1-kHz band filter with c = 0.4,
showing the self-similarity. The different curves have different peak gains: 3 dB
(thin solid), 10 dB (dash-dot), 17 dB (dashed), and 24 dB (bold solid line).
The squares indicate the points where the responses meet. X-axis labels are the
rounded third-octave center frequencies.

mean of these values between them. The inclusion of the extra
points between the filter center frequencies decreases the error
and improves the behavior of the EQ between the command
points [11]. This amounts to 61 frequency points in total, and
since there are 31 bands, the size of the interaction matrix B is
61-by-31.

The interaction matrix is used to solve the optimal dB gains
for the band filters in the LS sense by utilizing its inverse matrix
B−1 [13]. However, sinceB is nonsquare, its pseudoinverseB+

is required instead [13], which is written as

B+ = (BTB)−1BT . (21)

Now, when the user selects the dB command gains for the 31
third-octave bands, a vector t1 with 2M − 1 elements is formed
containing the selected gain values in odd rows and their linearly
interpolated intermediate values in even rows. The optimal dB
gains are then solved with a well known LS solution

g = B+t1. (22)

Finally, in order to reduce the error of the EQ to match the
desired accuracy of 1 dB, one iteration step is required, where
a new interaction matrix B1 is formed with g obtained from
(22) instead of the prototype gain gp. The new filter dB gains are
calculated as

g1 = B+
1 t1 = (BT

1 B1)
−1BT

1 t1, (23)

which are then converted into linear gains to be used in (19) and
(20).

We now have a finalized series EQ of the form (9), where
M = 31. The next step is to convert this series design into a
parallel one, which is done as explained in Section III-B. With
the conversion process, we obtain the constant gain F as well
as the new numerator coefficients c0,m and c1,m. Note that the
parallel EQ uses the same denominator coefficients as the series
EQ, which we already have, but the poles must still be calculated
based on (19) and (20) in order for the Heaviside method to be
applicable.

The first step is to write the series EQ non-causally similar
to (11). In a MATLAB implementation, this only affects the
substitution of the pole values into (13), i.e., we use pn instead
of 1/pn. The poles pn are solved with the quadratic equation or

the roots command in MATLAB. Next, the parallel first-order
coefficients are obtained with (13). The polyval function can
be used to implement the residue calculation efficiently in MAT-
LAB, since it allows vector inputs. Thus, the numerator part of
a single second-order section of H(z) can be evaluated at all
the pole values pn as a single command. The denominator part
is obtained similarly, but the pole cancellation must also be ac-
counted for. Note that as polyval treats the input polynomial
coefficients as a function of positive powers of z ordered as
descending positive powers, the transfer functions of the series
sections are already in their non-causal forms without additional
operations. After all the second-order sections are evaluated at
all the pole values, we solve (13) for all first-order residues r̃n.
The coefficients for the second-order sections are obtained from
(18), and finally, the constant gain is solved with (16).

The obtained parallel EQ produces an impulse response iden-
tical to that of the original cascade EQ. Since the original cascade
EQ design is minimum-phase, as all of its cascaded biquad fil-
ters are minimum-phase, also the parallel EQ obtained with the
proposed conversion is minimum-phase.

B. Octave Graphic Equalizer Design

In addition to the third-octave ACGE, an octave version was
also proposed [11]. The latter contains some differences when
compared to the third-octave case, the largest of which is the
number of bands and their center frequencies. The octave ver-
sion of the ACGE uses 10 bands with the following center fre-
quencies: 31.25, 62.5, 125, 250, 500, 1000, 2000, 4000, 8000,
and 16000 Hz. The filter bandwidths have been defined in a
similar manner to the third-octave version, i.e., they are the dif-
ference between the neighboring center frequencies, which here
areBm = 1.5ωc,m. However, the bandwidths of the three last fil-
ters must be adjusted to account for the filter asymmetry at high
frequencies, and thus, the bandwidths are 46.88, 93.75, 187.5,
375.0, 750.0, 1500, 3000, 5580, 9360, and 12160 Hz.

The number of bands in the EQ also affects the size of the in-
teraction matrix, which now becomes a 19-by-10 matrix. Since
the interaction matrix is again nonsquare, its pseudoinverse is
required for the optimal dB-gain calculation. From the two ad-
justable parameters of the ACGE, namely the prototype gain gp

and parameter c, the latter differs from the third-octave case. In
order to achieve the desired accuracy, a value of c = 0.30 is used
in the octave design [11], [25]. Apart from these differences in
matrices and parameters, the conversion to parallel form is per-
formed in the same way as for the third-octave case above.

V. COMPARISON OF GRAPHIC EQUALIZER DESIGNS

In this section, filters obtained using the proposed parallel EQ,
called accurate parallel graphic equalizer (APGE), are compared
to those produced using the original, cascade EQ design, ACGE
[11], [25]. Furthermore, the proposed APGE design is compared
with the ACGE and with a state-of-the-art parallel design, the
parallel graphic EQ (PGE) presented in [17], [24], in terms of
approximation error, design time, and the number of operations
per output sample during filtering. The approximation error is
evaluated in the same way as in [25], i.e., at the filter center
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Fig. 4. Zigzag EQ setting with ±12 dB realized using (a) the series EQ and
(b) the proposed delayed parallel EQ (bold lines). The thin black lines show the
values of the constant gain.

Fig. 5. Magnitude response difference of APGE and ACGE designs is very
small, generally less than about 10−9 dB. This result was obtained using the
±12 dB zigzag gain setting, cf. Fig. 4.

frequencies and, if two neighboring command gains are set to the
same value, also between these neighboring frequency points.

A. Comparison of Series and Parallel Third-Octave Forms

In order to compare the APGE and the ACGE, the same tar-
get EQ curve is designed with both methods. A zigzag setting is
used here, where the command gains alternate between ±12 dB,
as shown in Fig. 4. Fig. 4(a) shows the total response of the
EQ as well as the responses of the subfilters for the series de-
sign, whereas Fig. 4(b) presents the corresponding curves for
the delayed parallel design. The total responses produced by
these two methods are almost identical, as confirmed by Fig. 5,
which shows the difference between the magnitude responses of
the two designs. Since the maximum difference resulting from
the parallel conversion is on the order of 10−9 dB when 64-bit
floating points numbers are used, the two filter forms can be
stated to have the same magnitude response.

However, differences between the parallel and series form
can be observed when the responses of the individual second-
order sections, also shown in Fig. 4, are compared: When using
the same zigzag command-gain setting, the filters in the series
design require a maximum gain of 26 dB to produce the desired
gain of 12 dB due to the interaction with the neighboring filters.
The interaction is especially noticeable when two neighboring
command gains have a large difference. In comparison, in the
delayed parallel design, the maximum gain of an individual filter
is approximately 14 dB.

B. Comparison With a Previous Parallel Octave Graphic
Equalizer of the Same Order

In this section, the magnitude response of the octave ACGE
is compared to that of a previous parallel EQ proposed by Chen
et al. [26], which also comprises a single biquad section per band.
Their EQ design utilizes a modified bilinear transform to com-
pensate for the center-frequency shift at high frequencies and
a pre-distortion of the quality factors to correct the bandwidths
[26]. The filter gains are optimized in the sense of neighboring
band leakage by using a gradient algorithm to solve a set of
nonlinear equations.

Chen et al. give the parameters for two gain-setting cases in
[26], which are used here to compare their design with the pro-
posed method. The two cases are shown in Figs. 6 and 7: the
first is a constant gain setting with all commands at 5 dB (see
Fig. 6(a)), and the second contains amplifications and attenua-
tions of ±3 dB (see Fig. 6(b)). Both EQ designs by Chen et al.
are accurate at the filter center frequencies, but the proposed
method performs better overall having less undulation between
these points, as shown in Figs. 7(a) and 7(b). In the first test case
(Figs. 6(a) and 7(a)), the EQ by Chen et al. drops approximately
1.7 dB from the flat target, whereas the maximum deviation in
the proposed method is approximately 0.24 dB. For the second
case, the deviations for the two methods are 1.7 dB and 0.35 dB,
respectively.

Hi-fi audio typically strives for a 1-dB accuracy for equaliz-
ers [11], [23]. Since, the parallel EQ design proposed by Chen
et al. fails to achieve this accuracy between the command fre-
quencies, it may be unsuitable for the most demanding hi-fi
applications. Furthermore, to our best knowledge, no other pre-
vious parallel EQ using a single second-order section per band
can achieve the desired accuracy of ±1 dB. The state-of-the-
art parallel EQ reaching the desired accuracy that will be used
for further comparisons in the next section requires two second-
order sections per band.

C. Comparison With a State-of-the-Art Parallel Graphic
Equalizer

The state of the art in parallel EQs was proposed by Rämö
et al. [17]. Two efficient variants of this parallel graphic EQ are
proposed in [24], the weighted and the unweighted design. Both
significantly reduce the design time compared to the original
version in [17] by optimizing the target phase calculation,
and the unweighted design additionally uses a pre-computed
pseudoinverse at the expense of design accuracy. We compare
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Fig. 6. Magnitude response of the octave EQ proposed by Chen et al. [26]
with (a) the all-up and (b) the attenuation-amplification command gain setting
from [26].

the response of our proposed parallel design with the more
accurate weighted variant, since our goal is to fulfill the ±1-dB
accuracy required for hi-fi applications.

The three test cases are shown in Figs. 8 and 9. The zigzag
setting shown first exposes the EQ’s ability to create steep
transitions between ±12 dB. Both EQ designs are able to
reach the command gains, as shown in Figs. 9(a) and 8(a),
producing similar responses everywhere except at very low
and high frequencies. Both responses also achieve the desired
1-dB accuracy at the command points. The maximum estima-
tion errors are shown in Table II, and the proposed method
performs slightly better with approximately 0.3-dB smaller
error.

The second test concerns a known challenging case [25],
which in addition to the alternating ±12 dB command gains
contains flat regions, i.e., two or more neighboring commands
are at the same position, as shown in Figs. 9(b) and 8(b). In this
case, the EQ response must reach the command values at the
center frequencies and also stay within the desired 1-dB limit
between the command points having the same gain, i.e., in the
flat regions. Again, the two responses are almost identical be-
tween 20 Hz and 20 kHz, and both achieve the desired accuracy.
In this case, the PGE is slightly more accurate having an approx-
imately 0.3-dB smaller maximum error.

The third test case, shown in Figs. 9(c) and 8(c), is a nonex-
treme setting having multiple types of transitions between the
command points. Both EQs produce acceptable results, but
the APGE response contains less ripple than that of PGE. In
addition, the maximum error is approximately 0.2 dB smaller
for the APGE. Thus, the PGE and the APGE designs both pro-
duce sufficiently good parallel graphic EQ filters for demanding
audio applications.

Fig. 7. Magnitude response of the proposed octave EQ design with (a) the
all-up and (b) the attenuation-amplification command gain setting from [26].

TABLE II
MAXIMUM ERROR OF TWO THIRD-OCTAVE GRAPHIC EQS IN THREE TEST

TARGET SETTINGS. THE BEST RESULT IN EACH CASE IS HIGHLIGHTED

TABLE III
AVERAGE COMMAND GAIN UPDATE TIMES IN MATLAB

D. Comparison of Computational Performance

Finally, the performance of the APGE is compared to the
original series design (ACGE) and the state-of-the-art parallel
EQ (PGE) in terms of design time and the computational load
of the filtering operation.

Table III lists for each method the average design time, i.e., the
gain update time, in MATLAB. Each of these times is an average
of 1,000 test runs, where the EQs were designed with random
gains between ±12 dB. The update times for each EQ design
have a similar order of magnitude with each being suitable for
applications where the gains are frequently updated automati-
cally, such as digital audio workstations. The efficient parallel
EQ design by Bank et al. [24] is the fastest taking 0.39 ms,
and the proposed method is the slowest taking approximately
double the design time of the PGE. The series design method
ACGE is also faster when compared to the parallel design in
terms of gain update time, which is logical, since the proposed
parallel design comprises the ACGE design steps followed by
additional processing. The series-to-parallel conversion using
the PFE method proposed in this paper amounts an increase in
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Fig. 8. Magnitude response of the PGE with (a) zigzag, (b) hard, and (c)
nonextreme command gain settings.

TABLE IV
NUMBER OF OPERATIONS PER OUTPUT SAMPLE IN THE SERIES AND IN TWO

PARALLEL GRAPHIC EQUALIZER STRUCTURES. THE SMALLEST NUMBERS ON

EACH ROW ARE HIGHLIGHTED IN BOLD

design time of approximately 58% when compared to the ACGE
series design.

Note that non-weighted variant of PGE [24] is even more
efficient (the average computation time is 0.07 ms), but produces
a slightly larger error at the command points (1.1 dB for the non-
extreme case) and more ripples between the command points
that do not meet the ±1-dB accuracy requirement.

Table IV lists for each method the number of operations nec-
essary during real-time filtering. The number of operations for
the series EQ can be calculated with the help of Fig. 1(b). A
single section performs four additions and four multiplications,
and since there are 31 such sections and one more multiplication

Fig. 9. Magnitude response of the proposed EQ design with (a) zigzag, (b)
hard, and (c) non-extreme command gain settings.

(G0), as seen in Fig. 1(a), the total is 124 additions and 125 mul-
tiplications. For the delayed parallel EQ, similar calculations can
be made with the help of Fig. 2(b). Here, a single section has
three additions and four multiplications, but there are also 31
additions and one multiplication in the overall structure shown
in Fig. 2(a). Thus, 31 sections result in 124 additions and 125
multiplications, which is the same as for the series structure.

The structure of the PGE is similar to that in Fig. 2 with the
exception that the unit delay is missing in the PGE structure and
there is no direct path gain (i.e., F = 0). However, it requires
twice as many filters as there are bands, and thus, it comprises
62 second-order sections, resulting in 248 additions and 248
multiplications, which are listed in Table IV.

Table IV shows that the proposed converted delayed parallel
filter APGE outperforms the PGE structure in computational
efficiency, since it uses 50% less operations per sample. The
proposed parallel structure has just one second-order section per
frequency band, whereas the PGE structure requires two filters
for each band and so uses 62 second-order filters in the 31-band
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graphic equalizer [17]. The proposed APGE now becomes the
parallel graphic equalizer with the lowest order fulfilling the
±1 dB magnitude tolerance.

VI. CONCLUSION

This paper has introduced a novel method for converting series
IIR filters to the delayed parallel form without sacrificing the
accuracy of approximation. The method was inspired by the
Orfanidis PFE method, which can be implemented without long
division of polynomials. The proposed PFE method leads to a
delayed parallel IIR filter form, which, in addition to all the
desirable properties of parallel digital filter systems, enjoys a
smaller dynamic range requirement than the traditional non-
delayed case. In addition, Orfanidis’s idea has been extended
for the case where the order of the numerator is larger than that
of the denominator.

A case study on graphic EQs showed that when an accurate
series design is converted to the delayed parallel form having a
unit delay in front of the biquad sections, the resulting filter is
superior to previous parallel equalizer designs: its accuracy is
superior, its computational load during filtering is smaller, and
it has the design time of the same magnitude when compared to
the previous state-of-the-art parallel EQ. In addition, when com-
pared to the series design, the subfilters of the parallel version
have smaller maximum gain and the conversion requires only a
design overhead of 58% on top of the original series design.

To the best of our knowledge, the proposed APGE filter is
the first parallel graphic EQ using a single second-order filter
per band to fulfill the standard ±1-dB hi-fi requirement. The
proposed conversion technique is widely applicable to the design
of parallel IIR filters, which are becoming popular because they
are well suited to implementation in parallel computers. The
relevant MATLAB code is available online [27].
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