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A Survey on Secure Data Analytics in Edge
Computing

Dan Liu, Zheng Yan, Senior Member, IEEE, Wenxiu Ding, IEEE Member, and Mohammed Atiquzzaman Senior
Member, IEEE

Abstract—Internet of Things (IoT) is gaining increasing pop-
ularity. Overwhelming volumes of data are generated by IoT
devices. Those data after analytics provide significant informa-
tion that could greatly benefit IoT applications. Different from
traditional applications, IoT applications such as environmental
monitoring, smart navigation and smart healthcare come with
new requirements such as mobility, real-time response, and loca-
tion awareness. However, traditional cloud computing paradigm
cannot satisfy these demands due to centralized processing and
being far away from local devices. Hence, edge computing was
introduced to perform data processing and storage in the edge of
networks, which is closer to data sources than cloud computing,
thus efficient and location-aware. Unfortunately, edge computing
brings new security and privacy challenges when applied to data
analytics. The literature still lacks a thorough review on the
recent advances in secure data analytics in edge computing. In
this paper, we first introduce the concept and features of edge
computing, and then propose a number of requirements for its
secure data analytics by analyzing potential security threats in
edge computing. Furthermore, we give a comprehensive review
on the pros and cons of the existing works on data analytics
in edge computing based on our proposed requirements. Based
on our literature survey, we highlight current open issues and
propose future research directions.

Index Terms—edge computing, data analytics, security, privacy
preservation
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RAPID development of Internet of Things (IoT) enables
everything to communicate with each other, which has

changed our life, work and study thoroughly. Many IoT
applications, such as wearable devices, smart environment
monitoring, smart healthcare and so on, have been widely
applied in our daily life and offered great convenience. In order
to benefit from IoT, an overwhelming number of sensors or
devices are employed. Cisco has forecasted based on current
trends that there will be 50 billion devices which are connected
to the Internet by 2020 [1]. Besides, Cisco Global Cloud Index
predicted that the data generated by things, human, machines
would exceed 500 Zettabytes (ZB) by 2020, but the IP traffic
of the global data center will only reach 10.4 ZB at that
time [2]. Furthermore, Cisco’s CEO predicted that about 500
billion user devices will join the Internet by 2025 [3]. As we
all know, smart devices are not powerful enough to process
these data efficiently due to limited computation and storage
capacity. Hence, it becomes a serious issue to process the
rapidly increasing volume of data to alleviate the heavy burden
of networks.

Cloud computing was originally regarded as a promising
computing infrastructure to mitigate the heavy burden on edge
devices, since it can provide various services (such as compu-
tation, storage, and networking) for individuals, organizations
and enterprises. The advantage of cloud computing is that
cloud servers have abundant computing and storage resources
to allow a very large quantity of users to access the services
provided by cloud [4]. However, cloud computing is not effi-
cient enough to support such distributed IoT environment due
to three reasons. First, some IoT applications need to support
real-time response, location awareness, context awareness and
mobility, but cloud computing cannot satisfy these demands
owing to centralization and being far away from user devices
which will be discussed in detail in Section II.C. Second, if
cloud computing is used to handle very large amount of raw
data, the bandwidth of the current network could become a
bottleneck, mainly owing to inevitable queuing delay. Third,
the burden on cloud servers will increase and become a
bottleneck for the increasing amount of service requests.

In order to overcome these issues, edge computing [5], [6]
was introduced to extend cloud computing to the edge of
networks. Edge computing is a new decentralized paradigm
that can also provide data computation, storage and application
services to end users, while it offers several advantages, such
as real-time response, location awareness and mobility due
to its proximity to terminal devices. It is suited for various
scenarios, such as smart gird [7], smart traffic lights [8],
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augmented reality applications [9], video streaming [10] and
so on. Tang et al. [11] showed that edge computing can help
heighten the efficiency and quality of services.

Though edge computing brings many benefits, it also faces
a variety of security and privacy threats. On one hand, since
edge computing is considered as an extension of cloud com-
puting, it inherits some security issues from cloud computing.
On the other hand, edge computing also faces security and
privacy challenges because of its distinctive features, such as
geographic distribution, heterogeneity, and low latency. For
achieving secure data analytics, deploying security mecha-
nisms is indispensable. Unfortunately, due to restricted re-
sources of edge devices, typical security mechanisms proposed
in cloud framework are not suitable for edge framework.
Therefore, it is important to develop security solutions in edge
computing to support reliable and efficient edge computing-
based IoT applications.

Though there exist several surveys on security and privacy
issues in edge computing [4], [7], [9], [12]–[20], it still
lacks a comprehensive survey on security and privacy of data
analytics in edge computing. Stojmenovic et al. [7], [15]
only focused on man-in-the-middle attacks. Yi et al. [9]
identified various issues when designing and implementing fog
computing, but did not provided a comprehensive discussion
on security issues of fog computing. Wang et al. [19] only
highlighted the issues of fog forensics. Zhang et al. [20] only
overviewed access control of user data in fog computing. Some
researchers surveyed the security and privacy challenges in fog
computing [4], [12], [13], but they did not discuss the exiting
security solutions about fog computing. Although [18] and
[14] analyzed the security problems and surveyed recent ad-
vance including secure and privacy-preserving schemes in fog
computing. However, they did not focus on the data analytics
in fog computing. A detailed comparison of our survey with
other existing surveys on security and privacy issues in edge
computing is presented in Table I. Obviously, the literature still
lacks a thorough review on the recent advance of secure data
analytics in edge computing. The objective of this paper is
to provide an in-depth analysis of security threats in existing
edge computing, and provide a framework to compare and
contrast the effectiveness of existing security mechanisms for
data analytics in edge computing.

In this paper, we provide a comprehensive overview of the
existing efforts on secure data analytics in edge computing.
We introduce the concept and features of edge computing, and
then summarize the common security and privacy mechanisms
for outsourcing data analytics. Besides, we first propose a
number of requirements for secure data analytics by summa-
rizing the security threats of data analytics in edge computing.
Furthermore, we thoroughly review the existing works in
edge computing by employing our proposed requirements as
a measure to discuss their pros and cons. Finally, we point
out some open issues and propose future research directions.
The main contributions of this paper can be summarized as
follows:

• We analyze the security threats of data analytics in
edge computing and propose a number of security and
performance requirements.

• We use the proposed security and performance require-
ments as a measure to comprehensively review and dis-
cuss existing data analytics schemes in edge computing.

• We highlight a number of open issues and further propose
future research directions towards secure and privacy-
preserving data analytics in edge computing.

The remainder of this paper is organized as follows. Section
II presents the concept, architecture and features of edge
computing, followed by existing main security and privacy
mechanisms for outsourcing data analytics in Section III . In
Section IV, we analyze the security threats of data analytics
in edge computing and propose a number of requirements
for evaluating the performance of secure data analytics. We
provide a thorough literature review on secure data analytics
in edge computing in Section V. We further highlight open
issues and propose future research directions in Section VI.
Finally, we conclude the paper in the last section.

II. OVERVIEW OF EDGE COMPUTING

This section introduces the basic concepts related to edge
computing, its three-layer architecture and features.

A. Basic Concept

Edge Computing: Edge computing is considered as a
method of moving some of the cloud processing closer to
user devices which require real-time interaction to make the
best use of untapped computational capabilities in the edge of
networks [21], [22]. In [23], edge computing refers to place
application services, data and processing at extremes of a
network instead of placing them centrally. Herein, “Edge” [6]
is defined as any computing and network resources which are
on the path between data sources and cloud service center.
And edge computing requires that computing happens at the
vicinity of data sources. Although edge computing and fog
computing have some differences in concept [23], in fact, they
are interchangeable in academia and industry. Thereby, we do
not distinguish between these two terms in this paper.

Edge Node: Edge nodes are facilities or infrastructures
that have computation and storage capabilities at the edge of
network. They can be resource-limited devices, like set-top-
boxes, road-side units, WiFi access points, gateways, routers,
end devices, etc. They can also be resource-rich devices that
usually possess powerful CPU and abundant storage spaces,
such as cloudlet.

In recent years, some similar terms have emerged, such as
Mobile Edge Computing (MEC), Mobile Cloud Computing
(MCC) and fog computing. In [24], MEC is defined as an
emergent model where cloud computing platform extends to
the mobile base stations at the vicinity of mobile subscribers to
support delay-sensitive and context-aware applications. MCC
refers to an architecture where mobile users offload data
processing and data storage to cloud computing [25]. Fog
computing is regarded as a scenario in which a large number of
heterogeneous and decentralized fog nodes can communicate
and cooperate with each other and perform data storage and
data processing tasks without the involvement of third parties
[9]. All these paradigms are proposed to bring the capabilities
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TABLE I
COMPARISON OF OUR SURVEY WITH OTHER EXISTING SURVEYS

Covered Topic [4] [7], [15] [9] [12] [13] [14] [16] [17] [18] [19] [20] Our Survey

Give a comprehensive review of security

and privacy issues in edge computing

Y N N Y Y Y Y Y Y N N Y

Compare cloud computing and edge

computing in detail

Y Y N Y N Y Y N N N N Y

Summarize mainstream attacks Y N N Y N N N N Y N N Y

Propose security and performance re-

quirements of secure data analytics

N N N N N N N N N N N Y

Compare the computational complexity

of existing mechanisms

N N N N N Y N N Y N N Y

Review secure data analytic N N N N N N N N N N N Y

Y: discussed; N: not discussed

of cloud servers to the edge of network, but there are some
differences between them. With regards to architecture, data
computing is still at a cloud server in MCC, while MEC
and fog computing process data at the edge of networks.
MEC treats mobile base stations as edge nodes to serve
mobile subscribers. Fog computing is a generalized concept
where fog nodes are not only base stations but also access
points, routers, etc. Towards service delivery, MEC and fog
computing can serve for such IoT applications that have strict
requirements on low latency, location awareness, mobility and
context awareness. However, MCC just makes use of the cloud
to serve for mobile devices and does not consider these specific
requirements.

B. Edge Computing Architecture

According to the aforementioned definitions, the architec-
ture of edge computing is shown in Fig. 1. This framework
can be divided into two categories. First, user devices with
some computational power act as edge nodes to preprocess
raw data and then pass them to the cloud server for further
processing. However, when the computation task is so big that
the user devices cannot handle it, the users will offload their
computational tasks to adjacent edge nodes. For example, Shi
et al. [6] proposed a case study where a lost child can be found
via video analysis. The cloud sends the request of searching
the child to all cameras in a targeted area. Then the cameras
perform the search mission and return search results to the
cloud. In this case, a variety of cameras work as edge nodes
to execute the search request, which can release the burden
of cloud and save search time compared to the method which
relies on the cloud to perform search analysis. Second, user
devices offload some computational tasks to adjacent edge
nodes to do preprocessing (such as data compression and data
fusion) and then the cloud does the final analysis. Herein, we
mainly concentrate on the second situation. To achieve sound
interactions among different layers (i.e., user device layer,
edge node layer and cloud server layer), hybrid communication
technologies are applied in edge computing, including wired
communications (such as Ethernet, and optical fiber) and

Fig. 1. Architecture of edge computing

wireless communications (such as ZigBee, WiFi, and LTE)
[26]. The communication between cloud server and edge
nodes and the communication among edge nodes are usually
supported by wired communication technologies, while edge
nodes and IoT devices communicate with each other with
wireless communication technologies. The architecture of edge
computing is described as below.

The lowest layer is user device layer which is constituted by
a large number of IoT devices, such as sensors, smart phones,
smart wearable devices, and so on. Some of these devices are
mobile IoT objects, and others are fixed IoT objects. Raw data
can be generated or perceived by them and sent to a higher
layer device to further process.

The middle layer is edge node layer. The edge nodes consist
of the devices that possess some computing capability, such
as base stations, routers, set-top boxes, switches, etc. The
edge nodes can provide services to users, including computing
offloading, transient data storage, content caching, and delivery
services from the cloud to the users. Moreover, they can
offload some computational tasks from the cloud in order to
alleviate its burden. In addition, the edge nodes can cooperate
with each other to provide collaborative services for users. For
example, Shi et al. [6] introduced a use case of connected
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health in which hospitals, pharmacies, logistics companies,
governments, and insurance companies form a collaborative
edge to provide health-care services.

The highest layer is cloud server layer. It conducts further
data processing on preprocessed data from edge nodes, and it
can also delegate computational tasks to the edge nodes. There
are two situations where the cloud server requires to perform
further data processing after edge node processing. First, when
coordination among edge nodes is required, the cloud server
can assist them to establish communications. Second, when
data analytics are very large-scale (e.g., city-wide) or long-
term (e.g., over years), the edge nodes normally send data to
the cloud server for analysis [11].

C. Features of Edge Computing
The involvement of the edge node layer makes the edge

computing different from the cloud computing in several
aspects. The detailed comparison between the cloud computing
and the edge computing is summarized as below and also
shown in Table II.

TABLE II
FEATURE COMPARISON BETWEEN CLOUD COMPUTING AND EDGE

COMPUTING

Features Edge Computing Cloud Computing

Location Awareness Yes No

Geographic Position Fixed Positions Various Positions

Latency Low High

Large-Scale IoT Ap-

plication Support

Yes No

Network Architecture Decentralized Centralized

Hardware Heterogeneous Devices General Devices

Mobility Yes No

Location Awareness: Location awareness refers to the abil-
ity to determine the geographical location of a user device.
Location awareness can be used for targeted advertisement and
entertainment. The cloud computing does not offer location
awareness services. When a cloud server needs to know the lo-
cation of users, Location-Based Service (LBS) can be offered.
In this service, users have to send their location information to
the cloud server, which could incur expensive communication
overload. Furthermore, it causes location privacy leakage of
users [16]. In contrast, in the edge computing, an edge node
is aware of user devices in its own coverage area and the users
do not need to send their local information to a remote third
party, like the cloud server.

Geographic Distribution: In the cloud computing, a cloud
server processes data in central cloud servers, which are
deployed at some fixed places. However, edge nodes are
deployed at various positions, like highways, roadways, super-
markets, museum floors, etc. Due to geographic distribution,
the edge nodes can acquire high-quality data streams from IoT
devices and provide real-time response to users.

Latency: Generally, the services provided by the cloud
server are far away from IoT devices, which leads to long

data transmission latency. This is tolerable for non-real-time
applications (e.g., offline games) but intolerable for real-time
applications (e.g., augmented reality and health emergency).
On the contrary, edge nodes are closer to IoT devices, data
transmission between them takes short time.

Large-Scale IoT Application Support: Due to heavy man-
agement and computational overhead, the cloud computing
cannot provide services for large-scale IoT applications. For
example, in a wide range of environment monitoring system,
an overwhelming volume of data are produced by massive
sensors. If these sensors are managed and the data processing
is performed in the central cloud, the burden of the cloud
server could be huge. However, in the edge computing, the
edge nodes have power and autonomy to manage these IoT
devices in their own areas, thus erase the shortcoming of
the cloud computing in terms of large-scale IoT application
support.

Network Architecture: In the cloud computing, there is a
centralized server to manage computation and storage re-
sources. Nevertheless, the edge computing paradigm is a
decentralized framework since each edge node self-organizes
to offer real-time application services to users.

Hardware: In the paradigm of cloud computing, data is
produced by some enterprises and there are only a few
central cloud servers to offer services. In the edge computing,
however, hardware devices are heterogeneous. Heterogeneity
is a distinct feature of the edge computing. This reflects in
three aspects. First, data producers are heterogeneous, that is,
data are generated by heterogeneous IoT devices with various
formats. Second, data transmission is heterogenous, that is,
collected data is transmitted by using different communication
technologies. Third, edge nodes are heterogenous. This means
that services are deployed in multiple types of edge nodes,
including end-user devices, access points, routers, switches,
and so on.

Mobility: In the edge computing, IoT devices that have high
mobility are usually data producers, while in the cloud com-
puting data is often generated by companies and enterprises,
such as YouTube, Facebook, etc. Therefore, compared with
the cloud computing, mobility support is essentially required
in the edge computing because IoT devices are easy to move
from one area to another area covered by edge nodes.

III. SECURITY AND PRIVACY MECHANISMS FOR
OUTSOURCING DATA ANALYTICS

In this section, we briefly introduce main security and
privacy mechanisms for outsourcing data analytics, which
include secure data collection methods, secure data processing
methods and secure data storage methods.

A. Secure Data Collection Methods

The first step in data analysis is to collect data from user
devices. The collected data fundamentally affect quality and
accuracy of data analytics. Therefore, we will first overview
traditional security and privacy methods for secure data col-
lection.
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1) Authentication Mechanism: User authentication mech-
anism in outsourcing data analytics is a critical requirement
to ensure the reliability of data source. It is able to validates
the identity of user to guarantee that the user is legitimate to
access cloud server or edge node [27]. Herein, we summarize
a number of common authentication methods as below.

Password-based Authentication Methods (PAM). Password
authentication is the simplest and the most convenient authen-
tication mechanism [28]. In registration phase, each user sends
a remote server his/her ID and password. The remote server
maintains a password table which is used for storing user
IDs and passwords. In authentication phase, the remote server
verifies the legitimacy of the user with the password table.
However, PAM suffers from the following drawbacks: i) pass-
words are easily leaked, since many users often set passwords
to meaningful characters to prevent them from forgetting their
passwords, such as their own or family members’ birthdays,
phone numbers, names, etc. ii) passwords are static, thus they
are easily eavesdropped and stolen during transmission. iii)
the password table is highly susceptible to be tampered by
intruders [29].

Smart Card-based Authentication Methods (SCAM) [29] .
Smart card is a kind of non-reproducible card, which contains
data related to user identity. In registration phase, the system
gives a user a smart card; In authentication phase, a special
card reader reads the information carried by the smart card to
verify the legitimacy of the user. The advantage of SCAM is
that it does not need to maintain a password table. However,
since the data read from the smart card are still static, the
intruder may obtain the identity information of the user in the
card reader by means of memory scanning.

Dynamic Password-based Authentication Method (DPAM).
DPAM is a technique that allows a user’s password to change
continuously according to time or number of uses. Dynamic
password is usually generated by dedicated hardware in user
side, and the server uses the same algorithm to calculate the
valid password. If only two passwords match, the authenticate
succeeds. Dynamic password authentication adopts a one-time
method to avoid the risk of stolen password. However, if the
number of times the client and the server program are not
synchronized, the authentication failure may occur.

Biometric-based Authentication Methods (BAM). Biometric
authentication is a technology that takes advantage of the
inherent biological or behavioral characteristics of an indi-
vidual to verify his/her identity [30], such as fingerprint,
voice, face, DNA, keystrokes, etc. Biometric authentication is
more reliable than other authentication methods, since physical
human characteristics and behavioral feature are very difficult
to forge [27]. However, BAM may not be applicable in many
application scenarios where human-beings are not involved in
data collection. Moreover, BAM need long execution time and
their security level is always constrained by time complexity,
especially when high security level is needed.

2) Trust Management Mechanism: Although authentication
can determine the authenticity of a device, the user does
not guarantee that the service provider behaves well. Trust
management mechanism refers to utilizing some effective
approaches to achieve the measurement and computation of

trust value in order to choose a more dependable service
provider [31]. According to [32], [33], trust management
mechanisms can be divided into two types: reputation-based
and policy-based trust management.

Reputation-based Trust Management (RTM). RTM concerns
a trust measurement method where utilizes numerical and
computational mechanisms to obtain trust values. For example,
in a social network, the trust value of each user is calculated
by collecting and aggregating the reputation value obtained
according to the opinion of others about it.

Policy-based Trust Management (PTM). PTM is an objec-
tive trust assessment method where logical rules and verifiable
attributes are encoded in signed credentials to decide the
access to data. The PTM method usually makes a binary
decision based on whether a requestee allows access request
[34]. PTW has less flexibility by reason of the binary nature
of trust assessment.

B. Secure Data Processing Methods

In outsourcing data analytics, user devices can rely on
computing and storage resources in cloud or edge servers to
perform computationally intensive operations to obtain various
services. Once data are outsourced to the cloud or edge servers,
data owner loses the control of the data. And then the personal
data of users can be revealed to the service provider or
malicious intruders. Many works were conducted to solve this
issue. Herein, we list main secure data processing methods as
follows.

1) Homomorphic Encryption (HE): HE is a cryptographic
technology that allows arbitrary data computation to be exe-
cuted over ciphertexts and generates an encrypted computation
result [35], [36] . When decrypted, this result is the same
as the result of operations performed on the plaintext. HE
can be divided into Full Homomorphic Encryption (FHE)
and Partial Homomorphic Encryption (PHE). FHE (such as
BGN encryption [37] ) is designed to support mixed data
computations over ciphertexts, but its computation overhead
is much higher than PHE. PHE (such as Paillier encryption
[38]) just supports one or two types of operations, thus it
can only support restrained application scenarios. Therefore,
appropriate algorithms should be selected according to the
practical needs of application scenarios.

2) Differential Privacy (DP): DP is a privacy-preserving
technique that provides strong and provable privacy guaran-
tee for users by adding a random noise to user data [39].
In outsourcing data process, DP is mainly used to achieve
privacy-preserving data aggregation which refers to a statistical
data analysis, such as average, minimum, maximum, sum, and
count over a given time period [40]. There are two ways to
apply differential privacy in data aggregation. i) The first way
is to add random noise to the result of the data aggregation,
which can maximize the accuracy of aggregation to defend
against differential attack and ensure [41]. ii) The second way
is that each data owner adds a random noise to his/her data to
prevent privacy leakage, and then the cloud or edge server
aggregates these perturbed data. Although doing so brings
some statistical error, when the amount of data is large enough,
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it can still protect user privacy while completing data analysis
[42], [43]. But the second way only supports summation
aggregation.

3) Pseudonym Technology (PT): PT allows users to request
the services offered by the cloud or edge server anony-
mously, using pseudonyms [44]. The pseudonym management
is carried out by a centralized cloud server or lots of edge
nodes. This technology is used to protect location privacy or
identity privacy of users. Since edge nodes or cloud servers
do not know the true identity of a user, user private data
user private data cannot be associated with himself/herself.
However, there are many methods of de-anonymization attack
based on modeling and analysis of users’ behaviors [45]–[47].
Therefore, the security of PT is lower than other methods.

C. Secure Data Storage Methods

To relieve the cost of storing data locally, some results of
data processing are typically stored to edge nodes or cloud
servers. In order to prevent the computational results from
being tempered or thieved, these data are usually encrypted.
However, encryption will hinder the operations (such as ac-
cess, search, deduplication) of data results. Herein, we intro-
duce some key mechanisms to protect data privacy without
affecting the use of data.

1) Access Control Mechanism: During data storage, user
needs to access computational results. Access control is a
policy or procedure that only allows authorized user to access
the data [48]. In what follows, we summarize several common
access control models.

Role-based Access Control (RBAC). In RBRC, the access
policies are related to roles and the authorization of users is
achieved by assigning them corresponding roles. By mapping
data owners to roles and roles to privileges on data objects
[49], RBRC provides flexible access control and management.
In cloud/edge computing, data are stored in cloud/edge data
center due to the limited storage capacity of user devices,
and the cloud/edge server acts as an administrator to manage
data and access policies for data, which could lead to privacy
disclosure. Therefore, RBRC must be combined with other
security mechanisms to achieve more secure access control.

Proxy Re-Encryption (PRE). PRE-based access control
model allows a proxy to transform a ciphertext encrypted with
Alice’s public key into one that can be decrypted by Bob’s
private key. PRE is designed to achieve secure data sharing in
outsourcing data storage. A general PRE-based data sharing
scheme is illustrated in Fig. 2. Each data owner may generate
an arbitrary number of re-encryption keys based on his/her
own private key and the recipients’ public keys and then an
access control list with re-encryption key for each recipient are
upload to a semi-trust proxy server deployed in the cloud/edge
server. When someone wants to access data stored in cloud
server, data will be re-encrypted and send to the recipient by
the proxy server.

Attribute-based Access Control (ABAC). Attribute-based en-
cryption (ABE) is a cryptographic technology where the secret
key of a data owner and the ciphertext are relied on attributes
of recipients. Based on it, ABAC can offer fine-grained access

Fig. 2. PRE-based secure data sharing scheme

Fig. 3. KP-ABE access control scheme

control, since it can grant the data owner the ability to set the
access policy in a very fine-grained way to preserve the private
data of data owner. The recipients are able to encrypt data only
when his/her attributes match the specified access policy. ABE
includes two main types: Key-Policy ABE (KP-ABE) and
Ciphertext-Policy ABE (CP-ABE). In KP-ABE access control,
as displayed in Fig. 3, the ciphertexts are labeled with a set of
attributes and private key is associated with access structures
that can control which ciphertext a user is able to decrypt.
CP-ABE access control is shown in Fig. 4. Private key is
labeled with a set of attributes and ciphertext is associated with
access structures that control which user is able to decrypt the
ciphertext. However, decryption of ABAC requires to operate
multiple bilinear pairings, which incurs high computational
overhead.

2) Searchable Encryption: In outsourcing computing
paradigm, data is typically stored in ciphertext onin the
cloud/edge server, which disrupts search functionality. Song
et al. [50] first proposed searchable encryption whichthat not
only can achieve data encryption but also support keyword
search over ciphertext. The two main branches of searchable
encryption are symmetric searchable encryption (SSE) and

Fig. 4. CP-ABE access control scheme
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asymmetric searchable encryption (ASE) [51]. In SSE scheme,
data owner uses his/her symmetric key to encrypt data index
and create search trapdoors. ASE enables many users who
hold the public key to encrypt data but only allows the data
owner to create search trapdoors. And then the trapdoors are
sent to the cloud service, which executes the search algorithm
and returns search results to the data users. Search can also
be based on certain rules (e.g. returning the most matching of
the first n related results).

IV. SECURITY THREATS AND REQUIREMENTS OF DATA
ANALYTICS IN EDGE COMPUTING

This section summarizes the fundamental requirements of
data analytics in edge computing by analyzing potential se-
curity threats with regards to IoT devices, communication
networks and edge-cloud devices.

A. Security Threats of Data Analytics in Edge Computing

Edge computing pioneers a new computing model that
brings great convenience to solve network congestion and la-
tency. However, with intellectualization of local edge devices,
it also encounters various security and privacy challenges. As
an extension of cloud computing, the edge computing not
only inherits the secure threats from the cloud computing, but
also introduces new security risks due to its own features. In
this subsection, we will summarize the potential security and
privacy threats existing in data analytics from three aspects
including IoT devices, communication networks, and edge-
cloud devices.

1) Security Threats on IoT Devices: The IoT devices are
very important components in the framework of edge comput-
ing. On one hand, they generate data and submit raw data to
edge nodes or cloud servers. On the other hand, they can also
participate in the provision of services. Therefore, it is vital to
ensure the security of IoT devices and the reliability of their
collected data. In what follows, we list some common security
attacks on IoT devices.

Physical Attack: In the edge computing, most IoT devices
are deployed in unattended or outdoor environments, such as
tunnels, subways, factories, etc. Therefore, they are highly
susceptible to physical attacks [52], including nature disaster,
energy supply shortage, device damage, etc.

Injection of Information Attack [4]: An adversary can con-
trol and reprogram a device to distribute fake information. For
example, malicious users provide fake data to a crowdsourcing
service.

Service Manipulation Attack [4]: A device might participate
in the provision of services and manipulate the outcome of the
service. For example, a cluster of devices can act as an edge
node to control a service [53].

2) Security Threats on Networks: As aforementioned in
Section II, most IoT devices interact with edge nodes or
cloud servers through wireless communications. Hence, the
data collection in edge computing also faces various network
security challenges related to wireless communications. In
what follows, we summarize security attacks on wireless
networks.

Man-in-the-Middle Attack: Edge nodes like gateways may
be compromised and private communications could be inter-
cepted by a fake node once an attacker exerts control over
normal edge nodes [7].

Sybil Attack: A Sybil attacker claims a large number of
client identities or impersonate some legal nodes to control
or compromise the whole edge computing framework. For
example, in edge computing-based crowdsensing, Sybil attack-
ers could send incorrect reports to an edge node, which will
aggravate the influence of false data injection and impact the
accuracy of data analytics.

Sinkhole Attack [54]: A rogues router performs routing and
attracts surrounding nodes using unfaithful routing informa-
tion. Then the router (i.e., the attacker) may perform selective
forwarding or alters the data passing through it.

Eavesdropping Attack: Due to the broadcast nature in wire-
less communications, the edge computing is vulnerable to
eavesdropping attacks. An attacker might monitor wireless
channels to snatch data packets to obtain private communi-
cation contents. This type of attack is difficult to be detected,
thus some encryption measures should be implemented to
guarantee data confidentiality.

Jamming Channel Attack: An attacker purposely sends a
huge number of forged messages to exhaust communication
channels or computing resources, which makes legal users
unable to communication with each other.

Forgery Attack: Forgery is a common attack in wireless
communications. Malicious attackers compromise the whole
system by forging valid messages and configuration files.
Moreover, these fake messages might consume network band-
width and storage resources of edge nodes, thus further affect
the accuracy of data analytics.

Tampering Attack [55]: A tempering adversary can mali-
ciously delay, drop or even alter transmitting data to undermine
edge computing and degrade the efficiency of edge nodes.
Since the condition of wireless channels and user mobility
may also lead to transmission delay or failure, it is difficult to
detect tampering behaviors.

3) Security Threats on Edge-Cloud Devices: Edge devices
and cloud servers are the core part of edge computing. They
host virtualized servers and provide outsourced data computa-
tion and data storage services for user devices. Thus, external
attackers normally try to disrupt the services provided by the
edge devices and cloud servers in various ways. Herein, we
list several security attacks on edge-cloud devices.

Distributed Denial of Service (DDoS) Attack: DDoS attack
is a severe attack in edge computing. Adversaries deliberately
utilize the drawback of network protocol or directly run out of
the resources of targeted entity, and make targeted edge nodes,
cloud servers, or network fail to provide services or access to
resources. There are generally three kinds of DDoS attacks.
First, many adversaries send a mass of data packets to jam
the bandwidth of a server to make its channel disabled. The
second case is to consume CPU memory resources by sending
specific request packets, e.g., TCP/IP request packets. Third,
when connection is built, adversary sends a good deal of data
packets to consume service resources in edge devices or cloud
servers.
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Insider Attack: The data theft attack raised by an internal
adversary is one of serious attacks in cloud computing and
edge computing. Malicious insiders usually abuse their priv-
ileges and utilize their knowledge to steal user private data
[14].

SQL Injection: In an SQL injection attack, an attack inserts a
malicious piece of code into an SQL code. Thus, the malicious
code is erroneously executed in database backend.

Privacy Leakage: Edge devices are located in the edge of
the network near data sources. Compared with the cloud com-
puting where a data center is located in the core network, the
edge node devices can collect more high-value and sensitive
data from mobile users. Four types of privacy leakage could
occur in the edge computing, including data privacy, location
privacy, usage privacy, and identity privacy.

• Data privacy: In the edge computing, edge nodes usually
collect user data from sensors and end devices for analy-
sis or computing. The edge nodes could be curious even
though honest. They might snoop on user information
driven by pecuniary benefits. However, some of the
collected data is sensitive, such as the drug purchase
records of users, the health status of a patient. Thus, data
privacy could be leaked at the edge nodes.

• Location privacy: Two reasons account for user location
privacy leakage. On the one hand, an edge node requires
to be constantly aware of users in its own coverage
area and the users usually choose to access the nearest
edge node, which results in disclosing user location
information. On the other hand, location privacy might
be exposed from transmission. For example, if a user
device usually delegates its task to the nearest edge node,
it is possible to reveal its location information to an
eavesdropper even without knowing the specific content
of transmission. Moreover, if this user device is moving
from its original region to another region and access the
services of multiple edge nodes, the eavesdropper might
know its trajectory information.

• Usage privacy [13]: Usage privacy is extremely crucial in
edge computing. It primarily refers to the usage patterns
with which a client leverages the services provided by
edge nodes. For instance, in smart grid, an eavesdropper
or a curious edge node can acquire a lot of information of
a family. It can analyze the readings of a smart meter to
infer family private information, such as when the family
is or is not at home, and when the family members go to
sleep. Obviously, resident privacy is leaked.

• Identity privacy: User identity links to a special user.
The identity information includes identity number, name,
address, telephone number, public-key certificate, etc.
When a client accesses services offered by an edge node,
it would be susceptible to identity privacy leakage.

B. Requirements of Data Analytics Based on Edge Computing

Since there exists a growing number of security threats and
privacy leakage problems in edge computing, it is essential
to deploy some security mechanisms to resist those external
and internal threats as mentioned in Section III.A. In this

subsection, we propose a number of essential requirements
that should be satisfied in edge computing in the services of
data analytics. The detailed requirements are classified into
two parts: security and privacy requirements and performance
requirements, as summarized below.

1) Security and Privacy Requirements: First, security
mechanisms should consider the following security require-
ments in order to enhance the security of services provided
by edge nodes.

Authenticity (Au): In order to confirm the identity of in-
volved edge nodes and edge devices, authenticity should
be guaranteed before participating in edge network for data
analysis. Mutual authentication enables involved edge and
user devices to authenticate each other, which is an effective
method to provide authenticity.

Trustworthiness (Tu): Besides authenticity of edge nodes
and user devices, the trustworthiness of networked devices is
of great importance. Authenticity helps establishing an initial
and secure relationship between user devices and edge nodes,
but it cannot guarantee the honesty of their subsequent actions.
They may act dishonestly and even be compromised by attack-
ers. Trust management becomes a good manner to monitor the
nodes and devices, and figure out their trustworthiness.

Confidentiality (Cn): Due to the eavesdropping attack, data
confidentiality also needs to be satisfied, which is important
for data security and user privacy.

Integrity (I): Data integrity should be ensured to prevent
original data from being tampered by attackers during trans-
mission or even by the semi-trusted edge nodes.

Location Privacy (LP): As mentioned in Section III.A, user
location may be disclosed when enjoying the services provided
by edge computing, but it is extremely sensitive in some
scenarios. For example, in a fog-based parking navigation
application [56], a moving vehicle uploads the videos or
photos of vacant parking spaces to nearby fog nodes. How-
ever, location privacy of drivers is disclosed due to location
awareness of fog nodes. If location information of the drivers
is not protected, no drivers would like to participate in such a
parking navigation system. Hence, location privacy should be
preserved.

Usage Privacy (UP): Usage patterns indicate the habits of
users to consume the services from edge nodes. Once the usage
patterns of users are disclosed, an adversary may know the
details of the routine life and activities of the users. Hence, a
secure solution is highly expected to protect the usage privacy
of users.

Identity Privacy (IP): Identity privacy plays an important
role in ensuring user privacy. An identity can be easily
linked to a user, and hence it causes big threats to user
private information, such as name, address, etc. If identity
privacy is not guaranteed, users would be unwilling to access
services provided by the edge computing. Anonymity may be
a countermeasure to protect user identity.

Traceability (Ta): Since edge computing introduces an in-
termediate edge node layer, users lose the control of their raw
data. Therefore, it is likely that incorrect results are gained
due to improper operation of one edge node or faked data
updated from users. Furthermore, due to the mobility and
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decentralization of edge nodes, the errors caused by one edge
node might spread to other computation tasks and lead to more
incorrect final results. In order to improve the correctness
of data analysis and reduce the influence of faked data and
malicious users, it is of great significance to realize data
provenance for tracking back to invalid data inputs.

2) Performance Requirements: Different from cloud com-
puting, edge nodes are highly distributed and have lower
computation capabilities and resources. Hence, performance
should also be seriously considered when judging the quality
of data analysis schemes based on edge computing. Generally,
the following criteria related to performance are considered.

Correctness (Cr): As mentioned above, there exist some at-
tacks on data analytics, which may lead to incorrect analytical
results and serious consequences. Hence, correctness of data
analysis is an essential quality attribute of performance.

Scalability (S): Scalability means that edge nodes can run
normally when adding a new device or removing a device.
The edge nodes and user devices join or leave frequently in
an edge computing framework. Hence, scalability is highly
expected to be supported.

Mobility (Mo): As users might pass through several cover-
age areas of edge nodes in a high speed, mobility becomes
an important factor to consider for securing data analytics in
edge computing. For example, edge nodes can be deployed
in self-driving cars to monitor real-time traffic conditions by
analyzing data collected from various sensors.

Efficiency (E): As the resources of user devices and edge
nodes are much less than those of cloud servers, efficiency
is paid more attention in the edge computing than the cloud
computing. Moreover, the edge computing aims to gain the
advantage of low latency over the cloud computing. Usually,
we need to consider communication and computation cost in
the judgement of the performance of a scheme. However, the
communication cost of a scheme refers to the size of trans-
mitted packets and the number of communication interactions,
which is not easy to uniformly measure. Therefore, we mainly
focus on efficiency in our review and show the communication
overhead of all involved entities in edge computing. As the
fixed times of basic computations (such as multiplication and
addition) are very efficient, we merely consider the complex
operations (such as bilinear pairing, exponentiation operation,
modular addition operation, and modular multiplication oper-
ation) in our review and analysis.

V. SECURE DATA ANALYTICS IN EDGE COMPUTING

In this section, we review and discuss recent advance
of data analytics schemes in edge computing by employing
our proposed requirements in Section IV.B as a measure to
comment their pros and cons. In this paper, we focus on
the related works in fog computing and edge computing with
regards to secure data collection, secure data processing and
secure data storage. Before going into the details, we first list
the notations used in computational overhead evaluation in
Table III.

TABLE III
NOTATION DESCRIPTION

Symbol Description
pu The number of participants in crowdsensing application
pf The number of edge nodes involved in crowdsensing appli-

cation
m The number of the dimensions of a sensing vector
l The bit length of m
g The maximum links per node in [53]
u
′

The number of users in [53]
A The simulation area in [53]
u The number of aggregated users per edge node
f The number of aggregated edge nodes per cloud server
t The number of the attribute universe in attribute-based en-

cryption (ABE)
t
′

The number of slots in [57]
a The number of decrypted attributes in ABE
a
′

The number of newly decrypted attributes in ABE after
preprocessing at an edge node

p The number of attribute authorities in [58]
n The number of edges of a proximity polygon area that is

given by a requester
x The accuracy of proximity detection
n1 The number of blocks in an outsourced file

A. Secure Data Collection in Edge Computing

As the first step of data analytics, data collection seriously
influences the performance of data analytics, especially its
accuracy [55]. Hence, we first review the literature on secure
and privacy-preserving data collection.

1) Authentication in Edge Computing: Fake data injection
attack seriously affects the reliability of data sources, while
authentication can help verify the identity of each entity
involved in edge computing. Hence, authentication can be
applied to prevent malicious data injection and improve the
quality of collected data. In this part, we review existing
authentication schemes in edge computing. When discussing
scheme efficiency, we only consider the computational over-
head of authentication.

Ibrahim et al. [59] proposed a mutual authentication scheme
in a hierarchical fog framework, which allows any user device
to authenticate with any fog node in a fog area. In details,
each fog user holds only one long-lived master secret key that
can generate the session key between any fog server and itself.
This design decreases the storage overhead in user device side.
During authentication, a session key is securely shared by both
participants, which provides data confidentiality. However, the
identity of the user device is transferred in plaintext, which
makes it easy for adversary to know which user and which
fog node are communicating and discloses identify privacy of
users. Moreover, mutual authentication can only be provided
in one fog area. Hence, it results in moderate scalability and
mobility. The computational overhead of this scheme includes
one hash and two symmetric encryption operations in user side
and two symmetric encryption operations in edge node side.

In order to solve the issue of limited user mobility support in
[59], Amor et al. [60] designed an anonymous mutual authen-
tication scheme by further revising the work in [59]. Identity
privacy is preserved by pseudonym-based cryptography and
high mobility is supported by considering three cases, namely,
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authentication of a single fog node, intra-fog authentication,
and inter-fog authentication. Different from [59], the session
key between a fog user and a fog node is generated by using
bilinear pairing, which provides data confidentiality. However,
both [59] and [60] just consider the situation where a new fog
node joins the fog layer but does not consider the departure of
old fog nodes, thus its support on mobility is still constrained.
Moreover, they need the fog nodes in one fog to store IDs of
all fog users, which introduces high storage overhead in fog
node side. Besides, data integrity is not ensured in these works.
With regards to computational overhead, we analyze the most
complicated case, inter-fog authentication. This scheme [60]
includes one elliptic curve point multiplication operation, one
hash operation and one bilinear pairing in user side, one ellip-
tic curve point multiplication operation, one bilinear pairing
in edge nodes, and two elliptic curve point multiplication
operations in cloud side.

Currently, biometric authentication is becoming popular
[30], as it automatically recognizes and verifies the identity
of a living person. However, biometric identification takes
relatively long execution time. To improve the efficiency of
authentication, some researchers tended to combine biometric
authentication with edge computing. Hu et al. [61] explored
a face identification and resolution authentication framework
base on fog computing between IoT devices and the cloud,
where some complex operations of face feature extraction
are offloaded to fog nodes. Moreover, it realizes data con-
fidentiality, data integrity and mutual authentication among
cloud servers by leveraging multiple cryptography techniques.
However, this work does not implement secure interactions
between user devices and fog nodes, since it reveals face infor-
mation to the fog node. Furthermore, scalability and mobility
were not considered as well. In addition, several cloud servers
need to frequently interact with each other, which incurs high
communication overhead. Regarding computational overhead,
the edge node needs to do one hash operation, two symmetric
encryption operations, two modular exponentiation operations
and three elliptic curve point multiplication operations, while
the cloud undertakes ten modular exponentiation operations,
15 elliptic curve point multiplication operations, 12 symmetric
encryption operations and nine hash operations.

2) Secure Data Transmission: Owing to the existence of
security and privacy issues in the whole edge networks as
mentioned in Section III.A, data confidentiality and integrity
should be ensured during data transmission. Hence, it is
necessary to explore a secure data transmission scheme to
prevent data from being tampered and stolen. In this part, we
review secure data transmission schemes in edge computing.

With the purpose of achieving the secure communications
between fog nodes and cloud server, Alrawais et al. [62]
designed an encrypted key exchange protocol by combining
ciphertext-policy attribute-based encryption (CP-ABE) with
digital signature to offer data confidentiality and data in-
tegrity. Meanwhile, the system prevents an active attacker from
learning or changing the transmitted data. The computational
overhead of this protocol executes one hash operation,(2a+1)
bilinear pairings, a modular mutiplication operations and a
hash operations in fog node side, and (4a + 1) modular

exponentiation operations and 2a hash operations in cloud
side. Due to high computational overhead, this protocol cannot
be used in delay-sensitive scenarios. Moreover, it neglects
scalability and mobility of user devices and fog nodes in
design.

Though the previous work ensures secure communication, it
ignores efficiency. Signcrytion technology was designed as an
efficient public-key primitive to simultaneously perform both
digital signature and data encryption [63]. Basudan et al. [64]
designed a certificateless aggregate signcryption (CLASC)
protocol for road surface condition monitoring based on vehic-
ular crowdsensing in fog framework, which achieved mutual
authentication, data condfidentiality and integrity. Moreover, it
introduces a pseudo identity generated from a real identity for
vehicular devices to communicate with fog nodes, thus this
protocol preserves identify privacy. In addition, it combines
mix-zone technique with pseudonym technique to realize lo-
cation privacy protection. Mobility was supported in this work,
but scalability was missed. With regards to computational
overhead, the vehicular device undertakes three elliptic curve
point multiplication, one elliptic curve point addition, and
three hash operations. The computational overhead at the fog
node includes 6u elliptic curve point multiplications, u elliptic
curve point addition, 3u hash operations and 3u bilinear
pairings. In addition, fog node first aggregates all messages
about the same road event from different vehicles and performs
batch signature verfication, thus the computational overhead of
this protocol is less than [65], [66].

However , the protocol in [64] needs to do many ex-
pensive bilinear pairings, the computational overhead of this
protocol is still a bit high. Moreover, this protocol has been
demonstrated to be vulnerable to forgery attack by Chen
et al. [67], where an attacker may forge the signature of
arbitrary data. To solve these problems, Chen et al. [67]
designed a light-weight and anonymous aggregate signcryption
for a fog-enabled vehicle-to-infrastructure scenario, which can
guarantee data confidentiality and integrity. The advantage
of this scheme is that the full secret key of mobile sensor
cannot be obtained in any case, thus unforgeability of signature
is ensured. Moreover, the real identity of each user device
cannot be retrieved from the road condition report generated
by each mobile sensor about road event to protect the identity
privacy of users. However, moblity and scalability were not
considered. In this scheme, each mobile sensor needs to do
three elliptic curve point multiplication, one elliptic curve
point addition, five hash operations, five modular mutiplication
operations and four modular addition operations. Each fog
node aggregates signatures of all mobile sensors in its coverage
area to do batch verfication, which needs 2u elliptic curve
point multiplications, 5u modular addition operations, 2u hash
operations and 3u modular mutiplication operations.

3) Trust Management in Edge Computing: Authentication
can only check the authenticity of entities before connection is
established, but it is difficult to ensure whether they behave in
a satisfactory way during service. User devices and edge nodes
frequently join or leave the system of edge computing and they
need to continually interact with unfamiliar objects. Hence,
trust management becomes an especially crucial manner in
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edge computing to determine whether to set up cooperation
with the unfamiliar objects. For example, in a driverless auto-
mobile application based on edge computing, the users prefer
to choose a trusted edge node that offers reliable services.
Such a decision can reduce occurrence of traffic accidents and
protect user personal safety. In this part, we overview trust
management schemes in edge computing.

Su et al. [68] proposed a policy-based end-to-end trustwor-
thiness governance scheme where fog nodes could serve for
user devices only when the security attributes of fog nodes
satisfy the demands of processed data. Since this work can
support multi-organizational trust evaluation, it guarantees the
trustworthiness of fog servers. However, scalability and mobil-
ity of users were not considered in this scheme design. Since
no specific algorithm was given, its computational overhead is
hard to judge.

Furthermore, Sharma et al. [53] developed an entropy-based
trust relaying and privacy preservation system by using edge-
crowd integration in social Internet of things (S-IoT), which
provides trustworthy interactions among user devices. This
scheme utilizes available IoT devices as mini-edge servers
to release the deployment of edge servers near user-site and
reduces the cost and complexity of system network. Moreover,
for leveraging fission computing, it supports distributed trust
management without a centralized reputation system and can
detect fake sources. Also, a user movement model was pro-
posed to support mobility. However, it is specifically designed
for an S-IoT environment, which limits its applicability in
other scenarios. The computational overhead for each user
includes ignorable addition operations and gh+4g+2n+4A
multiplication operations.

Ma et al. [69] proposed two privacy-preserving reputation
management mechanisms for edge computing-based mobile
crowdsensing to deal with malicious participants. The first
scheme is more efficient than the second one, but it discloses
the deviations of each participant. The second scheme updates
the reputation values by utilizing the rank of deviations, but
it increases the computational overhead. Since the nearest
edge node aggregates the encrypted sensing data of all partic-
ipants by applying somewhat-homomorphic encryption, data
confidentiality is guaranteed. However, the location privacy of
participants is revealed to edge nodes. Furthermore, each user
device (both participant and inquirer) can join edge network
but the departure of user is not considered, thus its scalability
is moderate. Moreover, mobility and traceability are missed
as well. In addition, this proposed scheme just explores the
trustworthiness of participants, but neglects the trustworthiness
of edge nodes. Regarding computational overhead, we herein
just analyze the second scheme since it is more secure,
which includes three modular multiplication operations and
three modular addition operations in participant side, two
modular multiplication operations and one modular addition
operation in querier,

pu
2
(17pu + 3pul − 9 − 3l) modular

multiplication operations, l modular exponentiation operarions
and

pu
2
(14pu +3lpu − 6pu − 3l) modular addition operations

in edge node side and 2pu exponentiation operations in cloud
side.

B. Secure Data Processing in Edge Computing

Data analytics/processing is a vital part of various services
based on edge computing. It helps in digging out significant
information and further improving related services. In this
subsection, we review the existing works about secure data
processing and analytics in edge computing by classifying
them into two categories: privacy-preserving data computation
and privacy-preserving data aggregation.

1) Privacy-preserving Data Computation in Edge Comput-
ing: Edge nodes and cloud servers provide the capability to
deal with complex operations for resource-constrained devices.
However, once data is outsourced to the edge nodes or the
cloud servers, data owners will lose full control on their data.
Meanwhile, as honest-but-curious entities, the cloud servers
and the edge nodes may disclose user personal data and invade
user privacy. Even worse, the scope of privacy breach could
be expanded owing to the mobility of users. Therefore, it is
mostly important to achieve large-scale data computation and
preserve user privacy simultaneously.

a) Data Computation Based on Homomorphic Encryption
Technology: Homomorphic encryption is an efficient technol-
ogy that enables arbitrary data computation to be executed
over ciphertexts [35], [36]. It is widely used to realize privacy-
preserving outsourced data computation. Liu et al. [70] de-
signed a hybrid clinical decision system in fog-cloud net-
work to monitor patients’ physical conditions in real time by
combining data mining with Paillier homomorphic encryption.
This system achieves lightweight and real-time data processing
in fog nodes, while high accuracy disease decision algorithms
are implemented in the cloud. The advantage of this work
is that it supports various computations over encrypted non-
integer data. However, authenticity, data integrity, identity
privacy, scalability and mobility are not considered. We take
one data packet for each user as an example for efficiency
analysis. The computation at user side contains one modular
exponentiation operation, one modular addition operation and
one modular multiplication operation. In edge node side, a
real-time process algorithm includes five modular exponen-
tiation operations, two modular addition operations and six
modular multiplication operations.

Similarly, Huo et al. [71] utilized Paillier homomorphic
cryptosystem and decision-tree theory to implement a location
difference-based proximity detection (LoDPD) system in fog
computing. This system protects location privacy of users and
ensures data confidentiality. The advantage of this scheme is
that its communication cost and CPU cost are lower than tra-
ditional private proximity detection (PPD) methods. However,
the friend information of users is sent to a local fog node
in plaintext, which results in leaking private data. Moreover,
it does not consider scalability, mobility, and authenticity
of users. In terms of computational overhead, we assume
that there is only one friend near a requester. In this case,
the requester needs to perform two modular exponentiation
operations and one modular multiplication operation. Every
friend of the requestor undertakes two modular exponentiation
operations and four modular multiplication operations. And in
fog node side, it includes 4n(x + 4) modular exponentiation
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operations and 2n(x+ 3) modular multiplication operations.
b) Data Computation Based on Pseudonym Technology:

Apart from homomorphic encryption, pseudonym technology
is also deemed as an appropriate technique to protect personal
privacy during data computation [44]. Since edge nodes or
cloud servers do not know the true identity of a user, user
private data cannot be associated with himself. Kang et al.
[72] took advantages of edge resources to develop a fog-
assisted pseudonym management scheme. It protects loca-
tion privacy and identify privacy for vehicles. The proposed
scheme achieves timely pseudonym distribution and reduces
management and communication overhead by deploying lo-
cal authority in fog nodes. Moreover, the authors designed
a context-aware pseudonym changing game to dynamically
change pseudonym with context awareness. By leveraging
digital signature and public key encryption during data trans-
mission, the authenticity of all entities, data integrity and data
confidentiality are fulfilled. Furthermore, since this scheme
also offers cross-region pseudonym requesting and changing
services, mobility is supported. However, edge nodes and
cloud server are regarded as honest and they are responsible
for pseudonym generation. Scheme scalability is missed. Since
the encryption and signature algorithms were not detailed, the
computational overhead of the scheme cannot be evaluated.

Also, Wang et al. [73] leveraged randomizing anonymous
credentials to achieve a privacy-preserving crowdsourcing-
based navigation scheme in a fog network. In this scheme,
fog nodes generate and publish crowdsensing tasks, and then
compute an optimal route with the traffic information collected
by vehicles. Combining multiple cryptographic technology,
like group signatures, Advanced Encryption Standard (AES)
and Elgamal encryption algorithm, the scheme fulfills the
security requirements of authenticity, confidentiality, identity
privacy and location privacy. However, data integrity is missed.
Moreover, the correctness of calculation is not validated and
traceability, scalability and mobility are not considered. The
computational overhead of this scheme includes four mod-
ular exponentiation operations, one modular multiplication
operation, one symmetric encryption operation, one bilinear
pairing and one hash operation in querier side, two modular
exponentiation operations, one modular multiplication opera-
tion, one symmetric encryption operation, one bilinear pairing,
three hash operations and one modular addition operation in
participant side, 12 modular exponentiation operations, seven
modular multiplication operations, two symmetric encryption
operations, six bilinear pairings, two hash operations in edge
node side.

c) Data Computation Based on Other Technology: Chaff-
based technology that allows a user device to generate addi-
tional tasks to hide real tasks can also be used to implement
privacy-preserving data analysis. He et al. [57] proposed a
trajectory privacy protection mechanism by utilizing chaff
services to safely offload tasks to distrusted edge nodes. In
this mechanism, a user generates many additional chaffs to
confuse eavesdroppers so that the eavesdroppers cannot detect
the trajectory of the user. The proposed algorithm assumes
that the eavesdroppers detect the user’s location information
by maximizing likelihood detection, and then designs a series

of chaff control strategies to minimize tracking accuracy, e.g.,
impersonation strategy, maximum likelihood strategy, optimal
offline strategy, and optimal online strategy. Each user designs
the trajectories for chaffs through t

′
multiplication operations,

which can be ignored in terms of computational overhead.
However, each chaff consumes the computing resources of
edge nodes, thus this scheme introduces high computational
overhead in edge node side.

There are also other secure data calculation methods which
were only designed to protect some specific privacy. For exam-
ple, Yang et al. [74] first explored the new definition of secure
positioning protocol in fog computing to solve the issue of
location privacy leakage in a bounded retrieval model [75]. In
this work, a prover proves that it is in a certain region in order
to hide its exact position by considering two scenarios, one-
dimension scenario and three-dimension scenario. However,
the disadvantage of this work is the authors assume that the
cost of reading bits and performing computation at a device
is zero, which is not practical. This scheme takes advantage
of the time interval between the two verifiers and the prover
to determine the location area of the prover, which just needs
several addition operations. Therefore, its computational cost
can be ignored.

Dang and Hoang [76] designed a data protection model for
edge computing to guarantee data security and support mobil-
ity. It consists of a Region-Based Trust-Aware (RBTA) model
to achieve trust establishment between two regions, Fog-based
Privacy-aware Role Based Access Control (FPRBAC) and a
mobility management service. This scheme fulfills the require-
ments on trustworthiness, mobility and scalability. However,
data confidentiality and data integrity were not considered.
In addition, location privacy and identity privacy were not
protected. Since no specific algorithm was described in the
scheme, its computational overhead cannot be evaluated.

2) Privacy-preserving Data Aggregation in Edge Comput-
ing: Besides aforementioned complex analysis, data aggre-
gation is one of the simplest but important computations
for providing vital services in edge computing. For example,
in crowdsensing-based traffic monitoring applications, edge
nodes (e.g. road units) collect and preprocess traffic flow data
from multiple vehicles and then send them to a cloud server.
Owing to privacy concern, homomorphic encryption [77]–[79]
and differential privacy [42], [80] were applied to achieve
privacy-preserving data aggregation in edge computing.

Lu et al. [77] employed homomorphic encryption to develop
a lightweight data aggregation scheme for heterogeneous IoT
devices in fog computing, which provides data confidentiality
and data integrity. However, identity privacy, traceability, scal-
ability and mobility were not considered. In terms of computa-
tional overhead, each user device needs to do one symmetric
encryption, one hash operation, five modular multiplication
operations and three modular addition operations. Each edge
node performs one symmetric encryption, five hash operations,
one modular exponentiation operation, and u + 1 modular
multiplication operations. A cloud server undertakes one hash
operation, one modular exponentiation operation, two modular
multiplication operations and one modular addition operation.

Lyu et al. [42] also presented a privacy-preserving fog-
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assisted data aggregation scheme for smart grid by using dif-
ferential privacy and secret sharing. Specifically, this scheme
utilizes Gaussian distribution noise to perturb private data to
ensure differential privacy of aggregate statistic. Moreover,
two-layer aggregation can alleviate privacy leakage and main-
tain data utility. This work uses public-key cryptography to
realize authentication and considers the join and leave of
nodes in order to provide high scalability. However, since data
aggregation service is always offered by the nearest fog node,
the location privacy of users might be disclosed to the fog
node. In addition, data integrity, identity privacy, traceability,
mobility were not considered. But this scheme is efficient and
suitable for resource-constrained devices. It only executes one
modular addition operation in user side, u+1 modular addition
operations in fog node side and f modular addition operations
in cloud side.

The above two data aggregation schemes are fault-tolerance.
But identity privacy protection was not considered. In or-
der to tackle this problem, Wang et al. [78] introduced an
anonymous data aggregation scheme in a fog environment by
employing pseudonyms technology. The cloud authenticates
with fog nodes and user devices in registration phase, which
guarantees the authenticity of all entities engaged in the fog
computing. This scheme not only protects identity privacy
of terminal users but also guarantees data confidentiality via
homomorphic encryption. In this scheme, the fog node and
cloud verify received messages, which ensures data integrity.
Besides, revocation of terminal devices and fog nodes was
considered. However, mobility was left out of consideration.
This scheme executes three exponentiation operations, two
hash operations, one modular exponentiation operation, two
modular multiplication operations and bilinear pairings in user
side, one hash operation, two bilinear pairings, two modular
multiplication operations and 2(u − 1) elliptic curve point
addition operations in fog node side, one hash operation, one
modular exponentiation operation and two bilinear pairings in
cloud side. Different from [77], both [78] and [42] mainly
perform single-modality data aggregation and do not consider
the heterogeneity of data in edge computing.

For the purpose of preserving both data privacy and identity
privacy, Guan et al. [79] combined pseudonym certificate with
Paillier homomorphic encryption to achieve secure data aggre-
gation in a fog-enhanced IoT environment. In this scheme,
each fog area owns a local certification authority (LCA)
and a trusted certificate authority (TCA). It works with user
devices to generate and update the pseudonym certificate,
which prevents certificate forgery. Furthermore, all entities can
verify data integrity with digest during data transmissions. In
addition, both pseudonym certificate update and revocation
were considered, thus scalability can be satisfied to some
extent. However, user mobility among fogs and location pri-
vacy were missed. As for computational complexity, each user
device undertakes eight modular exponentiation operations,
two hash operations and one modular multiplication operation
for pseudonym generation and secure data processing. For the
generation of each user’s pseudonyms, LCA needs to perform
six modular exponentiation operations, one hash operation
and two modular multiplication operations and TCA does

two modular exponentiation operations. Besides, each fog
node takes (u + 3) hash operations and (u + 2) modular
multiplication operations for secure data aggregation. Finally,
the aggregated result uploads to the cloud server and is
verified by the cloud, which needs one modular exponentiation
operation, one hash operation and one modular multiplication
operation. All the above-mentioned data aggregation schemes
do not support traceability and cannot verify the correctness
of aggregated results.

C. Secure Data Storage in Edge Computing

Due to the limited storage capacity of user devices, some
results of data processing are typically stored in edge nodes
or cloud servers. Secure data storage is also important to
prevent computational results from being tempered or thieved.
In this subsection, we overview the existing efforts on security
and privacy in data storage in edge computing. The review
is classified into three parts: data access control, secure data
search, and secure data deduplication.

1) Data Access Control in Edge Computing: After data
processing, user needs to access computational results stored
in edge nodes or cloud servers [81]. If no proper security
mechanism is deployed, any unauthorized user can arbitrarily
access resources of other users, which obviously intrudes
personal privacy. Access control is an efficient manner to
authorize user devices to access distinctive resources in edge
computing [20]. Therefore, it is crucial to explore access
control in edge computing. In the following part, we review the
existing access control schemes in edge computing. Regarding
scheme efficiency, we just analyze the computational overhead
of user decryption in access control.

a) Access Control Based on Attribute-Based Encryption
Technology: Attribute-Based Encryption (ABE) is an efficient
technique to achieve secure and fine-grained access control
[82], as it not only protects private data, but also grants data
owners the ability to directly set access policies. Zuo et al. [83]
proposed an attributed-based encryption with outsourced de-
cryption (OD-ABE) scheme in a fog computing environment.
It achieves chosen ciphertext attack (CCA) security. There are
two ciphertexts in this algorithm: one is from data owner and
the other is from fog node; the latter ciphertexts are decrypted
using a shorter private key, which reduces the computational
overhead of decryption and saves the storage of IoT devices.
Moreover, through CHK and FO transformation, a decryptor
can check the validity of data, thus the integrity of data is
ensured. However, since the shorter private key is generated
by a data owner, the outsourced data cannot be decrypted
except the data owner. Moreover, traceability, scalability and
mobility were not considered. The computational overhead of
decrypting the ciphertexts is only two modular exponentiation
operations in user side. Its computational overhead is lower
than traditional cloud computing.

Fan et al. [58] also designed a CP-ABE-based verifiable
multi-authority outsourced access control scheme in a fog-
cloud network. This scheme offloads most encryption and
decryption computations to fog devices in order to reduce
computational overhead of user side. Computation results can
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be verified by data owners. Meanwhile, user involvement and
revocation were considered, thus scalability was considered.
Besides, attribute revocation are also supported to address
revocation issues. We can see that data confidentiality and
correctness of computation were realized. However, the disad-
vantage of this scheme is that each attribute needs an attribute
authority to manage it, thus a great number of devices should
be deployed. Moreover, identity privacy is disclosed during
service access. Mobility, data integrity, user authenticity as
well as traceability were not considered. With regards to
computational overhead, this scheme executes one modular
exponentiation operation and one modular multiplication op-
eration in user side and (3a + 1)p bilinear pairings in edge
node side.

However, encryption and decryption are performed in user
devices [58] and [83]. Due to limited resources of end devices,
the schemes bring huge computing cost to user devices with
the increase of attributes. By taking advantage of fog node’s
computing power, Zhang et al. [84] proposed an improved CP-
ABE-based access control scheme, which ensures data confi-
dentiality. This work offloads the generation of access control
structure in encryption phase and bilinear pairing operations in
decryption phase to fog nodes to reduce the computational bur-
den of user equipment. Moreover, an efficient attribute update
method without sending re-encrypting messages was proposed
in this scheme. However, the introduction of edge nodes
brings more communication overhead. Besides, data integrity,
location privacy, identity privacy, mobility and scalability were
not considered. Concerning computational cost, there are one
bilinear pairing operation and two modular multiplication
operations in user side and (a+2) bilinear pairing operations
and (2a+2) modular multiplication operations in edge node.

In fact, the ABE-based access control schemes can raise a
key-delegation abuse issue. In order to tackle this issue, Jiang
et al. [85] proposed a CP-ABE-based access control scheme
against key-delegation abuse in fog computing. Obviously, the
data confidentiality was considered. Compared with [83], it
realizes traceable CP-ABE access control to track any users
who want to illegally share their privacy, thus this scheme pro-
vides traceability. However, authenticity, data integrity, identity
privacy, scalability and mobility were missed in the scheme
design. Its computational overhead is mainly in user side and
includes t bilinear pairings. Hence, this scheme requires that
the user device should have some computational power.

b) Access Control Based on Proxy Re-Encryption Technol-
ogy: Proxy Re-Encryption (PRE) was also utilized to solve
access control issue in edge computing, as it can translate a
ciphertext with one key into another ciphertext with different
key by applying a proxy. By modifying Green et al.’s work
[86] to resist key exposures from side-channel attack, Wang
[87] proposed an ID-based proxy re-encryption scheme to
implement access control in fog computing. Users encrypt
files using symmetric keys and upload the ciphertexts to a
cloud server, and then these keys are encrypted by a public
master key and stored in a fog server. When an end user
wants to access the files in the cloud, the fog node re-
encrypts the user’s symmetric key from the public master
key to his own key to achieve data access while ensuring

data confidentiality. However, it needs a fully trusted private
key generator (PKG), which is extremely difficult to achieve
in a practical IoT system. Moreover, user revocation was
not considered. Besides, authenticity, data integrity, identity
privacy preservation, scalability and mobility were missed in
this work. In terms of computational overhead, the user only
needs to do one hash operation, 2d bilinear pairings and two
modular multiplication operations.

In particular, Tang et al. [88] combined CP-ABE with PRE
to implement fine-grained data sharing for big health data
in fog computing, where profile information and health in-
formation are encrypted with different encryption algorithms,
CP-ABE and public key encryption, respectively. After a fog
node preprocesses the health data, the data is re-encrypted
with a new access policy to achieve secure data sharing.
Hence, data confidentiality is ensured in this work. However,
health information and new access policy are disclosed to
fog nodes. Moreover, authentication, data integrity, identity
privacy protection, correctness of calculation, scalability and
mobility were not considered. The computational overhead of
this scheme includes 2(a+a

′
+1) bilinear pairings, 2(a+a

′
)

modular exponentiation operations and a + a
′
+ 1 modular

multiplication operations in user side.
c) Access Control Based on Other Technology: Other ways

were explored to implement access control in edge comput-
ing. For secure data outsourcing and access, Zahra et al.
[89] focused on adding the Shibboleth protocol in a fog-
IoT network to achieve cross domain data access control
between user devices and fog nodes. The authors detailly
introduced the workflow of the Shibboleth system and further
demonstrated its correctness. By leveraging the metadata file
in the Shibboleth protocol, this system protects data integrity.
Moreover, the Shibboleth system can authenticate users be-
fore issuing access rights, which guarantees user authenticity.
Identity privacy was achieved by generating a unique ID to
hide the user’s original identity. However, data confidentiality,
mobility and scalability were not considered. In this scheme,
all the security mechanisms, such as authentication, identity
privacy protection, and data integrity verification are realized
by directly calling the components of the Shibboleth protocol.
The article does not provide specific details. Therefore, the
computational complexity cannot be evaluated.

Zaghdoudi et al. [90] took advantage of Distributed Hash
Table (DHT) to design a generic access control system for ad
hoc mobile cloud computing (MCC) and fog computing. The
authentication of access node and data integrity are verified
by the cloud server This proposed model is suitable for
spontaneous networks that is temporarily created in a pervasive
mobile infrastructure and needs to respond to MCC access
control demands. However, confidentiality, scalability and
mobility were not discussed. Access control is implemented
through an access control list achieved by DHT, thus the
computational complexity depends on querying and inserting
of DHT, which are not described in this work.

Yu et al. [91] provided a fine-grained access control scheme
in fog computing by using leakage-resilient functional encryp-
tion against side channel attack. This scheme first defined
the notion of leakage-resilient pair encodings and achieved
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the transformation from pair encodings to leakage-resilient
founction encryption in order to improve the security of access
control. Data confidentiality is fulfilled with the consideration
on attribute update. However, authenticity, data integrity, iden-
tity privacy preservation, scalability and mobility were not
discussed. Its computational overhead includes one bilinear
pairing and one modular multiplication operation in user side.

2) Secure Data Search in Edge Computing: To better
protect user privacy, user data are usually encrypted before
being uploaded to edge nodes or cloud servers, which sets
up an obstacle for data utilization, such as data search and
retrieve. In many situations, the users just need parts of data
rather than the whole data. Therefore, searching over encrypted
data [92] becomes a significant research topic for protecting
personal privacy. In what follows, we review the state-of-
art of searchable encryption in edge computing. In terms of
efficiency, we herein only discuss the computational overhead
of ciphertext search.

Fu et al. [93] designed a fog-assisted privacy-preserving
cloud data storage and retrieval system for industrial Inter-
net of Things (IIoT). Specifically, not only can data users
search over encrypted data with identifiers, they can also
search over encrypted data based on monitored objects with
certain features. The first data search manner was achieved
by constructing an ID-AVL (Adelson-Velsky and Landis) tree
for hash values. In the second retrieval manner, an encrypted
Retrieval Feature (RF) tree was designed by utilizing k-Nearest
Neighbor (kNN) algorithm to support efficient and privacy-
preserving data search. This system ensures data confidential-
ity. It also considers the addition and deletion of features of
monitored objects, thus it satisfies the requirement on scalabil-
ity. However, edge node was assumed to be honest, which is
not practical. The system design neglects authenticity of user
devices. Computational overhead is hard to be evaluated since
it does not provide specific operations.

In order to simultaneously realize keyword search over
encrypted files and access control, Miao et al. [94] first pre-
sented a Lightweight Fine-Grained ciphertexts Search (LFGS)
system in fog computing by using CP-ABE-based keyword
search. This system ensures data confidentiality. By offloading
partial computational tasks of end users to a fog node, the
designed algorithm lightens the computational and storage
burden of end users. However, this work cannot support
attribute update and conjunctive keywords search. Moreover,
mobility, scalability, identity privacy and data integrity were
not discussed. This system executes one modular addition
operation, 2t + 1 modular exponentiation operations and one
hash operation in user side, one modular addition operation,
one modular multiplication operation, 2t + 2 modular expo-
nentiation operations and t+2 bilinear pairingings in fog node
side and two modular exponentiation operations, one modular
multiplication operation, two symmetric encryption operations
and 2t+ 1 bilinear pairings in cloud server side.

3) Secure Data Deduplication in Edge Computing: Dedu-
plication is a technique for automatically eliminating coarse-
grained and unrelated duplicate data. In addition to access
control and secure data search, data deduplication is growing
in importance in data storage. There are two reasons to deploy

data deduplication mechanisms in edge computing. On one
hand, an edge server usually collects sensing data generated
by IoT devices, thus it is unavoidable to get replicated data,
which leads to a high communication cost. On the other hand,
because the data from different user devices is outsourced and
flooded to the edge server, it becomes necessary to save storage
cost. However, the data is usually encrypted before uploaded to
the edge server, so secure data deduplication over encrypted
data becomes a critical research topic. In what follows, we
review secure data deduplication in edge computing.

Deduplication is divided into two categories based on the
location where it occurs: server-side and client-side. Server-
side deduplication needs data owners to upload their data to
a remote server, and then the server checks data duplication
and eliminates duplicated data. In the latter, the data owner
only needs to upload data if they are not stored in the server.
Regarding client-side deduplication, Koo and Hur [95] pro-
posed a privacy-preserving cross-user data deduplication over
encrypted data scheme in fog computing. Through efficient
user-level key management and data update, this proposed
scheme achieves fine-grained access control and data confi-
dentiality. The advantage of this scheme is that the number
of keys of data owners is constant regardless of the number
of outsourced files. However, it does not consider data in-
tegrity during data transmission and deduplication. Moreover,
mobility and scalability were missed. Besides, since the data
owner always sends a request to the nearest fog node, location
privacy is disclosed. In terms of computational overhead, we
consider initial data upload, subsequent data upload and data
decryption. The initial upload executes one hash operation,
three bilinear pairings, five modular exponentiation operations
and (n1+5) modular multiplication operations in user side. In
the subsequent upload, the user undertakes one hash operation,
three bilinear pairings, one modular exponentiation operations
and (n1+3) modular multiplication operations. The decryption
includes two bilinear pairings and (n1 + 2) modular multipli-
cation operations in user side.

Different from [95], Ni et al. [96] presented a Fog-
assisted Server-side Deduplication (Fo-SDD) scheme for mo-
bile crowdsensing to prevent replicate data collection and
reduce communication cost. Based on AES and full-domain
hash function, fog nodes detect and eliminate repeated data
in a sensing report but learn nothing about the report, thus
the scheme realizes data confidentiality. Moreover, key ho-
momorphic signature was leveraged to allow fog nodes to
aggregate the signature of replicate data to achieve contribution
claim. In addition, by utilizing blind signature, an extended Fo-
SDD scheme protects identity privacy and location privacy of
mobile users and realizes data integrity. However, traceability,
mobility and scalability were not considered. Except the com-
putational overhead of service setup and data reading phase,
the scheme executes two modular exponentiation operations,
one bilinear pairing, one hash operation, one modular mul-
tiplication operation and one symmetric encryption operation
in customer side, three symmetric encryption operations, three
bilinear pairings, two modular multiplication operations, four
hash operations and seven modular exponentiation operations
in initial reporter side, two symmetric encryption operations,
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three bilinear pairings, two modular multiplication operations,
three hash operations and five modular exponentiation opera-
tions in replicate reporter side.

By combining client-side with server-side deduplication,
Koo et al. [97] proposed a hybrid data deduplication protocol
in fog storage to achieve best-effort bandwidth. The server-
side data deduplication is adopted in a user-fog network to
prohibit malicious users from learning side information. The
client-side deduplication is applied in a cloud-fog network.
This protocol takes advantage of identity-based encryption
to achieve data confidentiality and data integrity. However,
an encryption key is generated based on data deduplication,
which is achieved by comparing received ciphertext and the
ciphertext stored in cloud/fog server, thus key management in
user side is complex and the storage overhead will increase
with the number of uploaded files. Moreover, scalability and
mobility were not discussed. Apart from the computational
overhead in setup and decryption phases, a user needs to do
two symmetric encryption operations, two hash operations, one
bilinear pairing and six modular exponentiation operations,
and both the cloud server and the edge node need to undertake
two bilinear pairings.

Owing to the feature of geographical distribution of edge
computing, data are temporarily stored in lots of edge nodes
in different positions, which incurs the new challenge for data
query in edge computing. However, in some IoT applications,
users need to query the data stored in edge nodes. Thus, it
is vital to achieve a distributed and secure storage model for
edge computing. He et al. [98] designed a secure data storage
model for fog computing to improve the security of data
storage. A three-layer architecture is proposed in this work,
including control, authentication service and data storage layer.
In the authentication service layer, a credible hierarchical de-
ployment strategy was adopted to achieve user authentication,
which ensures authenticity of user. In particular, a cooperative
working mechanism was proposed to achieve efficient data
query services. Moreover, a data synchronization mechanism
was devised to support the storage state of the edge node
changes. Since data is encrypted during transmission, data
confidentiality is considered. However, mobility, scalability,
data integrity, identity privacy and location privacy were
missed. Since this scheme only provides a model of distributed
fog storage and does not give a specific algorithm, there is no
way to evaluate its computational complexity.

In cloud storage, since private data of users is outsourced
to a cloud server, the users lose control on their data. This
introduces various and sophisticated cyber threats, such as
insider attack, data theft attack, and malicious modification.
Edge computing is a promising paradigm to address these
issues due to its unique features. There are some schemes
that focus on cloud data storage by applying edge computing
to fight against data theft attack [99] and insider attack [100],
[101].

Based on a decoy technique, Hamid et al. [99] presented
a fog-assisted cloud storage scheme to resist attacks on
healthcare private data. Applying both an authenticated key
agreement protocol and a photo encryption algorithm guar-
antee authenticity of all entities and data confidentiality. The

proposed scheme undertakes one elliptic curve point multipli-
cation, one elliptic curve point addition, one bilinear pairing
and three hash operations in user side, fog node and cloud side,
respectively. Due to the deployment of a decoy database, this
scheme introduces some additional communication overhead.
The disadvantage of this scheme is that user devices need to
upload additional user photos to the decoy database in a fog
node, which results in high storage overhead. Mobility, scala-
bility, data integrity and identity privacy were not considered
in this study.

To resist inside attack in a cloud server, Wang et al.
[100] designed a three-layer hierarchical storage scheme in
fog computing, which divides user data into three parts of
different size with a Hash-Solomon code algorithm and stores
them in local device, fog node and cloud server, respectively.
Allocating the different ratio of user data stored in different
devices makes insider attackers impossible to recover the
real user data even if they get all data in a certain device.
However, user revocation was not considered. Authenticity,
trustworthiness, data integrity, identity privacy, scalability and
mobility were not discussed, either.

In order to protect private data of users, Wang et al. [101]
proposed an improved fog-based storage scheme by further
revising the work in [100]. In this scheme, additional mecha-
nisms, including a malicious modification detection algorithm
and a reputation evaluation algorithm, were designed to en-
sure data integrity and trustworthiness. However, authenticity,
scalability and mobility were not considered. With respect to
computational overhead, [100] and [101] just need to perform
several basic operations (including addition, multiplication,
and division) to get the ratio of stored data, which is negligible.

D. Summary and Comparison of Aforementioned Existing
Work

Finally, we summarize and compare in Table IV all above
reviewed works by applying the following criteria:

1) Scalability (S):
- H: The work considers the join and departure of devices.
- M: The work considers the join or departure of devices
- L: The work does not consider scalability.
2) Mobility (Mo):
- H: The work supports mobility.
- M: The work only supports limited mobility.
- L: The work does not consider mobility.
3) Efficiency (E): For efficiency analysis, we consider the

following operations to present computational overhead:
- Ha= Hash operation
- SE= Symmetric encryption operation
- PM= Elliptic curve point multiplication operation
- AM= Elliptic curve point addition operation
- BP= Bilinear pairing
- E= Exponentiation operation
- MA= Modular addition operation
- MM= Modular multiplication operation
- ME= Modular exponentiation operation
- Mu= Multiplication operation
- Ad= Addition operation
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For ease of presentation, we ignore the fixed number of
multiplication and addition in the consideration of computa-
tional overhead, as these operations are much more efficient
than other complex computations.

4) Others: Besides the three aspects above, other criteria
including Au, Tu, Cn, I, LP, DP, UP, IP, Ta, and Cr, have the
same meanings regarding to the following marks:

- Y: It is considered in the work.
- N: It is not considered in the work.
- –: It is not mentioned in the work.

VI. OPEN ISSUES AND FUTURE RESEARCH DIRECTIONS

A. Open Issues

Based on the analysis and comparison on the existing works
in Section V, we outline several open issues on secure data
analytics in edge computing as follows.

First of all, how to balance security and efficiency is still an
open problem. From Table IV, we can observe that most works
need user devices or edge nodes to perform some complex
operations, which incurs high computation cost. In fact, some
IoT applications in edge computing have a high demand
on real-time response. The complex computation obviously
impacts efficiency, especially for resource-constrained user
devices. Therefore, making a trade-off between security and
efficiency becomes necessary in many practical situations.

Secondly, the trustworthiness of networked devices in highly
distributed network still need further researches. Though
there are a few studies [53], [68], [69] on trustworthiness
of networked devices, they still have some disadvantages.
For example, the works in [53], [69] consider only single
application scenario and the study in [68] does not support
mobility and scalability. However, device trustworthiness is
an important demand to ensure the QoS of edge nodes and
prevent a device from malfunction. Thus, an effective trust
model for edge computing should be proposed.

Thirdly, usage privacy is ignored in all reviewed works.
However, it is very necessary to protect usage privacy in
edge computing. Since edge computing is designed specifically
for IoT applications, the collected data contain user behavior
information and living habit information. An eavesdropper or
an edge node could easily obtain usage patterns even if data
are encrypted before uploading to an edge server. For example,
an eavesdropper can predict when a user is at home through
the changes of the readings of a smart meter.

Fourthly, the literature still lacks an effective solution to
verify the correctness of data computation when utilizing edge
nodes to do data analytics. The correctness of calculation
remains high importance in outsourced data analytics [102],
[103]. In edge computing, neither cloud servers nor edge
nodes can be fully trusted, which makes it hard to ensure the
correctness of data computation, processing and analytics. If
there is no security solution to guarantee the above correctness,
end users will be reluctant to use the services provided by edge
computing.

Fifthly, mobility and scalability of mobile devices cannot be
well supported in the current literature. Most existing works
neglect the mobility and scalability of user devices when

designing security schemes for edge computing. However,
user devices and edge nodes might frequently migrate from
one place to another. At the same time, user devices could
quickly join or leave an edge network. Thus, a security scheme
should support mobility and scalability in the context of edge
computing, however, this is still an open issue.

B. Future Research Directions

Besides the above indicated open issues, we further propose
a number of promising research directions in order to guide
future research.

First, a flexible and self-adaptive data analytics is expected
in edge computing. Usually, not all user data are sensitive.
Some data are considered as private data, e.g., location
information, health status and social relation information,
while some are not, e.g., social events, environmental status
information. How to automatically identify the sensitivity of
user data and flexibly deal with these data becomes a key
issue for achieving efficient and secure data analytics in edge
computing.

Second, a lightweight and secure data analytics scheme is
highly expected in edge computing. Due to limited capacities
and resources, an edge node cannot perform too many complex
operations (such as bilinear pairing and modular exponential
operation), which could incur high latency. Especially for
the applications with high real-time requirements, efficiency
becomes a crucial issue in secure data analytics. Therefore, it
is urgent to devise a lightweight method to accomplish secure
data processing.

Third, trust management in edge computing is an interesting
and significant research topic. Compared with cloud comput-
ing, edge computing makes it more troublesome in trust man-
agement due to three reasons. First of all, the decentralization
of edge computing puts huge obstacles on collecting and man-
aging evidence information about edge nodes to evaluate their
trust values. Moreover, due the subjectivity of trust, different
entities may have distinct security requirements on the same
edge node, facing a variety of applications and services. This
introduces additional challenges in trust management for edge
computing. Finally, an edge node might frequently move from
one area to another. For example, a vehicle equipped with a
computer can work as a moving edge server. Thus, designing
a universal trust model that can support both mobility and
scalability become a hard problem in edge computing.

Fourth, usage privacy preservation becomes essential and
vital to research in in edge computing. One direct solution
is that the user device creates dummy tasks and delegates
them to multiple edge nodes to hide its real tasks among the
multiple tasks. However, this solution requires the user to pay
for multiple tasks and wastes resources and energy. Designing
an efficient and lightweight scheme to protect usage privacy
is a challenging research topic.

Fifth, verifiable computation [104], [105] is expected to
guarantee the correctness of data analytics edge computing.
However, it is more difficult to implement verifiable com-
putation in edge computing than cloud computing. On one
hand, verifiable computation might bring high latency in edge
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TABLE IV
COMPARISON OF EXISTING SECURITY WORKS IN DATA ANALYTICS BASE ON EDGE COMPUTING

Ref

Security Requirements Performance Requirements

Au Tu Cn I LP UP IP Ta Cr S Mo
E

User side Edge node side Cloud side

[59] Y – Y N – – N – – M M 1 ∗Ha+ 2 ∗ SE 2 ∗ SE –

[60] Y – Y N – – Y – – M H 1∗Ha+1∗BP+1∗PM 1 ∗ PM + 1 ∗BP 2 ∗ PM

[61] Y – Y Y – – N – – L L –
2 ∗ME + 3 ∗ PM + 2 ∗

SE + 1 ∗Ha

10 ∗ME + 15 ∗
PM + 12 ∗ SE +

9 ∗Ha

[62] – – Y Y – – – – – L L –
1 ∗Ha+ (2a+ 1) ∗

BP + a ∗MM

(4a+ 1) ∗ME +

2a ∗Ha

[64] Y – Y Y Y – Y N – L H 1∗Ha+3∗PM+1∗AM
6u ∗ PM + u ∗AM +

3u ∗Ha+ 3u ∗BP
–

[67] Y – Y Y Y – Y N – L L
3 ∗ PM + 1 ∗AM + 5 ∗
Ha+5∗MM +4∗MA

2u ∗ PM + 5u ∗MA+

2u ∗Ha+ 3u ∗MM
–

[68] – Y – – – – – – – L L – – –

[53] – Y – – – – – – – L H
(g ∗ h+ 4 ∗ g + 2 ∗ n+

4 ∗A) ∗Mu
– –

[69] – Y Y – N – – N – M L

Participant :

3 ∗MM + 3 ∗MA

pu
2
(17pu+3pul−9−3l)∗

MM+ pu
2
(14pu+3lpu−

6pu−3l)∗MA+ l∗ME

2pu ∗ EQuerier :

2 ∗MM + 1 ∗MA

[70] N – Y N – – N – – L L
1 ∗ME + 1 ∗MM +

1 ∗MA
5∗ME+6∗M+2∗MA –

[71] N – Y – Y – – – – L L

Requester :

2 ∗ME + 1 ∗MM 4n(x+ 4) ∗ME +

2n(x+ 3) ∗MM
–Friend :

2 ∗ME + 4 ∗MM

[72] Y – Y Y Y – Y Y – L H – – –

[73] Y – Y N Y – Y N N L L

Querier :

4 ∗ME+1 ∗MM +1 ∗
SE + 1 ∗BP + 1 ∗Ha

12∗ME+7∗MM+2∗
SE + 6 ∗BP + 2 ∗Ha

–Participant : 2∗ME+

1 ∗MM + 1 ∗ SE + 1 ∗
BP + 3 ∗Ha+ 1 ∗MA

[57] – – – – Y – – – – L L t
′ ∗Mu – –

[74] – – – – Y – – – – L L – – –

[76] – Y N N N – N – – H H – – –

[77] – – Y Y – – N N N L L
1 ∗ SE + 1 ∗Ha+ 5 ∗

MM + 3 ∗MA

5 ∗Ha+ 1 ∗ SE + 1 ∗
ME + (u+ 1) ∗MM

1∗Ha+1∗ME+

2 ∗MM +1 ∗MA

[78] Y – Y Y – – Y N N H L
3 ∗ E + 1 ∗ME + 2 ∗
Ha+2 ∗MM +2 ∗BP

1 ∗Ha+ 2 ∗B + 2 ∗
MM + 2(u− 1) ∗AM

1 ∗Ha+ 1 ∗
ME + 2 ∗BP

[42] Y – Y N N – N N N H L 1 ∗MA (u+ 1) ∗MA f ∗MA

[79] Y – Y Y N – Y N N H L
8 ∗MM + 2 ∗Ha+ 1 ∗
MM

Fog Node : (u+ 3) ∗
Ha+ (u+ 2) ∗MM

1 ∗MM + 1 ∗
Ha+ 1 ∗MM

TCA : 2 ∗ME

LCA :

6∗ME+2∗MM+1∗Ha

(Continued)
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(Continued)

[83] N – Y Y – – N N – L L 2 ∗ME – –

[58] N – Y N – – N N Y L L 1 ∗ME + 1 ∗MM (3a+ 1)p ∗BP –

[84] N – Y N N – N N N L L 1 ∗BP + 2 ∗MM
(a+ 2) ∗BP + (2a+

2) ∗MM
–

[85] N – Y N – – N Y – L L t ∗BP – –

[87] N – Y N – – N – – L L
1 ∗Ha+ 2d ∗BP + 2 ∗

MM
– –

[88] N – Y N – – N – N L L

2(a+ a
′
+ 1) ∗BP +

2(a+ a
′
) ∗ME + (a+

a
′
+ 1) ∗MM

– –

[89] Y – N Y – – Y – – L L – – –

[90] Y – N Y – – N – – L L – – –

[91] N – Y N – – N – – L L 1 ∗BP + 1 ∗MM – –

[93] N – Y – – – – – – H – – – –

[94] – – Y N – – N – – L L
1 ∗MA+ (2t+ 1) ∗

ME + 1 ∗Ha

1∗MA+1∗MM+2(t+

1) ∗ME + (t+ 2) ∗BP

2 ∗ME + 1 ∗
MM + 1 ∗ SE +

(2t+ 1) ∗BP

[95] – – Y N N – – – – L L

Initialupload :

1 ∗Ha+ 3 ∗BP + 5 ∗
ME + (n1 + 5) ∗MM

– –
Subsequentupload :

1 ∗Ha+ 3 ∗BP + 1 ∗
ME + (n1 + 3) ∗MM

Decryption :

2∗BP +(n1+2)∗MM

[96] – – Y Y Y – Y N – L L

Customer :

2 ∗ME + 1 ∗BP + 1 ∗
Ha+1 ∗MM +1 ∗ SE

(2 + 2pu) ∗ME + (1 +

2pu)∗MM +(1+pu)∗
SE + (1 + pu) ∗Ha

pf∗ME+pf∗BP

Initialreporter :

3 ∗ SE + 3 ∗BP + 2 ∗
MM +4∗Ha+7∗ME

Replicatereporter :

2 ∗ SE + 3 ∗BP + 2 ∗
MM +3∗Ha+5∗ME

[97] – – Y Y – – – – – L L
2 ∗ SE + 2 ∗Ha+ 1 ∗

BP + 6 ∗ME
2 ∗BP 2 ∗BP

[98] Y – Y N N – N – – L L – – –

[99] Y – Y N – – N – – L L
3 ∗Ha+ 1 ∗ PM + 1 ∗

BP + 1 ∗AM

3 ∗Ha+ 1 ∗ PM + 1 ∗
BP + 1 ∗AM

3∗Ha+1∗PM+

1 ∗BP + 1 ∗AM

[100] N N Y N – – N – – L L – – –

[101] N Y N Y – – N – – L L – – –
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computing. On the other hand, a user might continuously travel
from one region to another, which incurs multiple edge nodes
in different regions to work together to serve for users. As
long as any one of these edge nodes makes any mistakes,
the final result will be incorrect. In particular, it is extremely
important to track back and remove dishonest edge nodes
for the purpose of saving computational and communication
overhead. Currently, provenance management is a promising
technique to achieve such traceable verifiable computation
[106], which will greatly help finding the origins of mistakes.
However, it might bring high communication overhead. Thus,
how to design an efficient verifiable computation based on
provenance management is a promising topic.

Sixth, mobility, scalability and privacy protection should be
jointly considered in secure data analytics. In edge computing,
edge nodes and user devices have high mobility. Currently,
several works focus on supporting mobility in fog comput-
ing by applying such approaches as a SDN-based method
[107] and a mathematical method [108]. However, in these
approaches, location privacy cannot be ensured due to location
disclosure to edge nodes. Therefore, supporting high mobility
and scalability and simultaneously ensuring user privacy be-
comes a valuable research topic in secure data analytics.

VII. CONCLUSION

Edge computing is regarded as a revolutionary technology
to extend cloud computing to the edge of a network for
supporting various IoT applications. While benefiting from
the edge computing, we are still facing many security and
privacy challenges. In this survey, we introduced the basic
concept and features of edge computing and compared them
with cloud computing. Then, we analyzed its potential security
and privacy threats in order to propose a number of security
requirements and performance requirements. By employing
these requirements as evaluation criteria, we thoroughly re-
viewed and commented on the state-of-art of secure data
analytics in edge computing. Based on our survey, we finally
highlight out a number of open issues and proposed a number
of interesting research problems to motivate future research
directions in secure data analytics in edge computing.
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