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Abstract 

In contrast to the great success at the macroscale, fracture mechanics theory fails to describe the 

fracture at a critical size of several nanometers due to the emerging effect of atomic discreteness 

with decreasing material size. Here, we propose a novel formulation for brittle fracture, from 

macro- to even atomic scales, based on extended strain energy density, and give an insight into the 

breakdown of continuum theory. Numerical experiments based on molecular statistics (MS) 

simulations are conducted on single-edge cracked samples made of silicon while varying the size 

until few nanometers, and loaded under mode I. The strain energy density is then defined as a 

function of the interatomic potential and averaged over the fracture process zone. Finally, by using 

an attenuation function, the atomic strain energy density gradient is homogenized to allow a 

comparison between the continuum and discrete formulation. Results show that the fracture process 

zone is scale independent, confirming that the ideal brittle fracture is ultimately governed by atomic 

bond-breaking. A singular stress field according to continuum fracture mechanics is still also 

present. However, when the singular stress field length (distance from the crack tip at which the 

stress deviates 5% from the theoretical field of r0.5) is in the range of 4-5 times the fracture process 

zone, continuum fracture mechanics fails to describe the fracture, i.e., the breakdown of continuum 

theory. The new formulation, instead, goes well beyond that limit.  
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1. Introduction 

Technological advancements in the fabrication of nanodevices (e.g., micro-nano electro-mechanical 

systems) have brought classic design issues addressed by continuum fracture mechanics into an 

entirely new field of applications. At such small scale, scientifically fundamental and practically 

critical questions arise on the validity of the classic fracture mechanics theory and its scale 

transition from macro to nano and, ultimately, to the atomic level. Extension of fracture mechanics 

to those small-scale components that are characterized by the very same problems encountered at 

the macroscale (e.g. presence of defects and stress raisers) is currently the next big challenge and a 

fundamental step for scientific advancements in nanotechnology.  

The brittle fracture is an explicit situation where mechanical properties at the macroscale are 

characterized by events at the atomic level, i.e., the crack advances by atomic bond breaking. The 

first interpretation of this atomistic view of fracture can be dated back early this century, in the 

pioneering work of Griffith [1] who theorized that work must be done against the cohesive forces of 

atoms to generate material separation. The cohesive force to separate the bonds was then supposed 

to be dependent on interatomic force-displacement relationships, i.e., interatomic potential, and 

later associated with the surface energy per unit area. However, it has been only recently that those 

concepts have been addressed systematically, due to important advancements of in-situ observation 

of mechanical behavior at small scales [2–11] and developments of computational techniques such 

as molecular dynamics supported by improvement in computational power [12–14]. Sumigawa et 

al. [15] showed that the concept of “stress,” clearly based on continuum assumptions, is still 

applicable to the fracture of samples approaching the nanoscale. Singular stress field of several 

nanometers, indeed, still control the fracture [16]. Intriguing, recent promising results in 

characterizing fracture at the atomic scale have been obtained by extending the Griffith criterion 

[17]. Huang et al. [18] considered notched components made of Silicon, and not only quantified a 

critical dimensional limit but proposed a unified Griffith-based criterion for both non-cracked and 

cracked systems.  



Attempts to extend well-known linear elastic fracture mechanics concepts other than Griffith 

criterion to small scales have been made by several additional researchers [19–21] but within the 

limit of continuum formulation. These works certainly proved that, if the low limit of continuum 

fracture mechanics is not reached, classic linear elastic concepts can be extended to small scale, 

considering that some parameters may become size-dependent and should be evaluated accordingly. 

However, questions remain, for example, on how to precisely determine the low limit of continuum 

theory and how to consider the discrete nature of the system once beyond that limit [22,23]. Some 

attempts to include the effect of atoms discreteness have been made in the past [24,25]. Pugno and 

Ruoff, for example, proposed the so-called quantized fracture mechanics (QFM) [26]. The approach 

was energy based and substituted the differentials in Griffith’s criterion with finite differences. 

However, the QFM also fails to describe the fracture below a critical specimen size. This result has 

been shown by Shimada et al. [27], who conducted a systematic investigation based on 

sophisticated numerical experiments on the breakdown of continuum theory and proposed an 

atomic-scale independent formulation of the energy release rate.  

Based on the idea that energy concept is universal throughout all the material scales involved in the 

fracture process [28], we here proposed a unified strain energy density approach for brittle fracture 

that is valid from the atomic to the macroscale by considering the discrete nature of the strain 

energy density gradient in a body made of atoms. The paper summarized a series of numerical 

experiments based on molecular-statistics (MS) simulations of cracked samples by varying the size 

down to a few nanometers and loaded under mode I. The strain energy density is defined as a 

function of the interatomic potential, homogenized through an attenuation function, and averaged 

over the fracture process zone. The approach is finally compared with continuum formulation, 

which fails to describe fracture below a critical size. Finally, the breakdown of the continuum 

theory is evaluated and extensively discussed. The assumption of potential energy concept to 

characterize and describe material failure can be dated back to Huber, Freudenthal, and Hill [28,29] 

and early developments of the strain energy density concepts are summarized by Li [30]. The idea 



to average the SED over a given control volume, instead, is mainly due to Lazzarin and co-workers 

[31–33]. Averaged strain energy density concept has been proved to be very flexible at the 

macroscale, and able to characterize static and fatigue behaviour of components under different 

loading conditions and with different geometrical features. Its extension in the frame of a discrete 

fracture mechanics theory would surely provide numerous advantages.  

 

2. Method 

2.1 Molecular statistics simulations, geometries, and mechanical properties 

The fracture tests are conducted on nanoscale single-edge cracked specimens of brittle material in 

silico using molecular statistics (MS) simulations performed by using the open-source code 

LAMMPS [34]. By reference to Fig. 1, specimens of different sizes have been realized. The width 

W has been varied from 198.41 nm down to 9.81 nm and the crack length a is kept equal to W/3. In 

order to assure that there is no influence of the boundary conditions, the total height of the specimen 

is fixed to 2W. The specimens are, therefore, “scaled” down by keeping constant their geometrical 

ratios.  

 
Fig. 1. Schematics (a) of the cracked samples and simulation box employed in the molecular 
statistics fracture tests (visualized through OVITO [35]), orientation, and (b) constraints 
configuration of FE model with critical displacement; t is the thickness of the simulation cell; the 
crack is slightly open to facilitate visualization. 
 

(a) (b) 



The well-known modified Stillinger-Weber (SW) interatomic potential [36–38], widely used in the 

investigation of ideal brittle fracture in silico, is employed in the simulations. The samples have, 

therefore, the face-centered diamond-cubic structure of single crystal silicon and are oriented as 

depicted in Fig. 1a. The crack plane coincides with the cleavage plane (111), and it is perpendicular 

to the direction [111]. The mechanical properties and the lattice constant generated by the SW 

potential are reported in Table 1, together with the ideal material strength σIS = 35.2 GPa, i.e., the 

strength of a material ideally defect-free, along the direction [111]. This value has been estimated 

directly by the MS simulations of an un-cracked specimen, as shown in Fig. 3, that also depicts 

Young’s modulus E111 of 209 GPa in the same direction. These values are also confirmed by other 

authors [18,39].  

Table 1. The lattice constant, material constants, and mechanical properties obtained from the 
modified Stillinger-Weber potential. 
 

Lattice constant (Å) C11(GPa) C12 (GPa) C44 (GPa) E111 (GPa) σIS (GPa) 

5.431 201 51.4 90.5 209 35.2 
 

A stepwise increment of strain ε is applied at the upper and lower layers of atoms of the specimens, 

as shown in Fig. 1a. The strain is increased at each load-step until the maximum displacement 

before final fracture dC is reached, i.e. dC is the critical displacement (at the critical load) before 

instant propagation of the crack occurs. Periodic boundary conditions are applied along the z-

direction to replicate a plane-strain state. Periodic boundary, indeed, should approximate an infinite 

system by modeling only a part of it, i.e., the simulation box. Therefore, the simulation box has a 

finite thickness t in the z-direction of approximately 0.384 nm but if an atom passes through one 

side of the cell, it re-appears on the opposite side with the same velocity. At the beginning of the 

simulation and each strain/load increment, relaxation is ensured by using the damped dynamics 

method Fast Intertial Relaxation Engine (FIRE) [40] until all forces on atoms become less than 

1.0•10-5 µN.  



The creation of a traction-free crack is realized by the so-called screening method: interactions 

between atoms on pre-crack surfaces are artificially deleted. Creation of traction free atomically 

sharp cracks can be somehow problematic when dealing with atomic systems because of the long-

range interaction between atoms. A detailed discussion of crack modeling is out of the scope of the 

current work, but these problems and possible solutions are addressed by Andric et al. [13].  

 

2.2 Finite Element Analyses 

The fracture tests briefly introduced in section 2.1 are re-analyzed through Finite Element analyses. 

Single-edge cracked samples were modeled by using the Ansys APDL 15.0 finite element software 

package. A 2D 8-node element-type PLANE183 [41] and plane strain conditions were assumed. For 

further accuracy, “concentration keypoint” was assumed to model the crack tip [41], and an 

accurate mesh was realized, with elements close to the crack tip approximately smaller than a/105. 

The concentration keypoint defines a point about which an area mesh will be skewed, and it is 

particularly useful for modeling stress concentrations and crack tips. The liner elastic anisotropic 

material model was selected. The stiffness matrix is derived from the three material constants of 

Table 1, i.e., C11=201 GPa, C12=51.4 GPa, C44=90.5 GPa, for an orientation identical to that of 

atomistic simulations (see Fig. 1). The constraints configuration of the model is shown in Fig. 1b. 

Critical displacement dC (maximum displacement at critical load, before crack propagation) 

obtained from MS simulations is then applied in order to evaluate stresses and other quantities at 

the critical condition under continuum mechanics theory.   

 

3. Formulation of the discrete averaged strain energy density 

The formulation of the discrete averaged strain energy density approach aSEDDFM is a direct 

extension of the well-known averaged SED approach proposed in the past by Lazzarin and co-

workers [31–33,42] at the macroscale. The approach reformulated here assumes that failure occurs 



when the strain energy density averaged over a given control volume reaches a critical value WC, 

and it is based on three key steps: 

 The definition of the critical strain energy density at failure, WC; 

 The assumption of the control volume/area over which the discrete strain energy density is 

averaged; 

 The definition of strain energy density as a function of the interatomic potential (discrete 

formulation). 

Elastic deformations at the macroscopic level can be considered as a mutual behavior of atomic 

displacements from their equilibrium positions. This definition is particularly true for ideal brittle 

materials, (e.g., Silicon), where the atomic bond breaking governs the fracture, regardless of the 

specimen size [19,20,25]. Therefore, it is reasonable to assume that the discrete critical strain 

energy density has a similar formulation of its macroscale/continuum counterpart [43], provided 

that the correct mechanical properties are employed. This assumption is particularly convenient in 

the case of the SW potential used in the present study. The material behavior is indeed orthotropic, 

defined by the three material constants reported in Table 1 or, eventually, by an equivalent isotropic 

behavior for in-plane loadings. For these reasons, the critical strain energy density at failure WC of 

the samples under considerations in the present paper, under mode I loading, is a direct extension of 

the critical SED as derived in [31,33,43] for macroscale isotropic continuum component, and 

reduces to the following form: 
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where σIS is the ideal material strength, E111 is Young’s modulus along the direction [111]. Both 

quantities are derived from MS simulation of an un-cracked sample (see Table 1 or Fig. 3 of the 

results, section 4.1). 



RFPZ 

VFPZ 

2δ=0 

VFPZ 

RFPZ 

r θ 

 

Fig. 2. Schematics of the (a) control volume in classic continuum body in the case of a crack under 
mode I loading, and (b) in the atomic model; r is the generic distance from crack tip in cylindrical 
coordinates, RFPZ and VFPZ are the radius and volume, respectively, of the fracture process zone; the 
crack in (b) is slightly open to facilitate visualization. 
 
Concerning Fig. 2, the so-called fracture process zone (FPZ), defined as the zone where nonlinear 

phenomena appear and the discrete motion of atoms is highly concentrated, is assumed as the 

control volume VFPZ. The FPZ is considered to be the material characteristic zone that controls the 

fracture in the case of ideal brittle materials [27,44]. For simplicity, in the case of a crack under 

mode I loading, it is described by a radius RFPZ centered at the crack tip, and its length is determined 

later by analyzing the atomic SED distribution in the results section 4.1. The volume VFPZ is 

therefore merely 2
FPZ(π )R t . The crack tip in the discrete body is hypothetically positioned between 

the atoms at the beginning of the crack plane, as shown in Fig. 2b.  

Lazzarin and Berto [31,43], as well as several other authors [45–47] showed that in the case of 

sharp V-notches the control area becomes a circular sector, while in the case of blunt notches the 

area assumes a crescent shape and it is centred at distance “r0” from the notch root. In case of mixed 

mode, the control volume is no longer centred with respect to the notch bisector, but rigidly rotated 

with respect to it and centred on the point where the SED reaches its maximum value. Since the 

present work focuses preliminarily only on cracks under mode I loading, those cases are not 

reported here, but details are available in the given references. Let us just emphasize how the 

(a) (b) 



literature on the aSED is vast, and demonstrates the flexibility of the method in assessing both static 

and fatigue behaviour of components of different geometries and loading conditions. 

The discrete formulation of the averaged strain energy density aSEDDFM is evaluated as the sum of 

the SED of all the atoms included in the FPZ divided by VFPZ:  
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For a given generic atom i at a distance r from the crack tip, its SEDATOM i is defined as the 

difference between the atomic potential energy at the critical displacement dC and the unloaded 

condition, multiplied by an attenuation function α(ri) [48], as follows:  

 ATOM ATOM C ATOM SED ( ) ( ) α( ) α( )i i ii i id o r r          (3) 

The attenuation function depends on the distance r between the atoms and crack tip, and it is 

defined by the following equation: 
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where c is the scaling factor, RFPZ is the radius of the fracture process zone while the Macauley 

brackets … denote the positive part, i.e. x=max(0,x). The attenuation function, taken from theory 

of non-local elasticity [49], states that interaction effects decay with distance between two points 

over the interaction radius RFPZ, i.e. when r>>RFPZ the atoms do not provide any contribution to the 

SED averaged over the FPZ, while contribution of atoms inside the FPZ is “scaled” accordingly to 

their distance from the crack tip. Simplifying, the employment of the attenuation function is nothing 

but homogenization of the SED gradient that would be heterogeneous and discrete because of the 

discrete nature of atoms. This process brings enormous advantages since it permits to easily assume 

a possible exact crack tip position (it is itself not exact in a body made of atoms) and to treat atoms 

that, being on the border of the control volume, would have a small and undefined contribution to 

the fracture process zone. The homogenization through the attenuation function is a fundamental 

step to enable a comparison with continuum counterpart. An extensive discussion on all these 



aspects, needs and implications of using the attenuation function is presented in the Supplementary 

Material S.2. Lastly, the scaling factor c is here determined by equating the aSEDDFM and WC, i.e.: 
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If one sample is assumed as a reference, and the FPZ is known, all the variables in the right term of 

the Equation (5) are known too. It is anticipated that the sample W=150.77 nm (and only that) is 

used to calibrate the scaling factor; determined value is later kept constant for all the geometries. 

Physical meaning and theoretical developments of the scaling factor are possible but left for future 

work, while further comments are provided in the given references. The results will soon show a 

fracture process zone of approximately 0.4 nm (average value) and a corresponding scaling factor 

of 2.252. 

4. Results and discussion 

4.1 SED gradient and fracture process zone 

Figure 3 shows the global σ-ε curve of an un-cracked specimen and the SW potential mechanical 

properties along the direction [111]. The ideal material strength σIS is approximately 35.2 GPa, 

while Young’s modulus E111 is 209 GPa. These are traditional values when the SW potential is 

employed [18]. By using Eq. (1) and the mechanical properties just evaluated, it results in a critical 

strain energy density value WC=2.962 GJ/m3. Figure 4 shows, instead, global σ-ε curves of cracked 

samples and relative critical displacement dC at failure. The figure presents only the results of the 

samples W=19.87 nm, 51.78 nm, and 150.77 nm to make the graph clearer; all the other values are 

presented in the Table S.1 (Supplementary Material). The picture demonstrates that the samples, 

regardless of their size, show a linear behavior until final failure. The deformation is globally 

always under linear elastic condition, without any plastic phenomena involved, e.g., dislocations. At 

a critical load, the crack propagates instantly and results in the specimen failure. These observations 

support the idea that the fracture is ultimately governed by the breaking of an atomic bond at the 



crack tip. The critical displacement dC is therefore defined as the displacement at the critical load, 

just before crack propagation and final failure take place. 

 

Fig. 3. Global σ-ε curve of un-cracked specimens obtained from MS numerical experiments, and 
mechanical properties along the direction [111]; specimen width W=100 nm. 
 

 

Fig. 4. Global σ-ε curve of selected single-edge cracked specimens obtained from MS numerical 
experiments and critical displacement dC (i.e. maximum displacement at the critical load). 
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The strain energy density distribution at the crack tip was also analyzed to determine the fracture 

process zone, defined as the distance from crack tip where the SED contribution is concentrated. 

Fig. 5 depicts a graphical representation of the gradient at the crack tip in the atomic body, while 

Fig. 6 shows the main results. For the sake of clarity, it should be noted that this SED is evaluated 

as a simple difference between the interatomic potential energy of the sample at the critical 

displacement dC and unloaded model for each atom, i.e., it is not averaged and it is not processed 

through the attenuation function. It is therefore labeled in Fig. 6 as ∆Π to avoid misunderstanding. 

The graphical representation in Fig. 5 shows a clear circular zone where the SED is highly 

localized. The picture compares W=19.87 nm and W=150.77 nm. However, same results have been 

obtained for all the other geometries: regardless of the specimen size, this zone has an identical 

dimension in the range of 0.35-0.45 nm (≈ 1-1.5 atomic distance along the crack plane), in average 

0.4 nm, and it is representative of the fracture process zone. This value is in the expected range (~ 

nm) of ideal brittle material as suggested by Pippan et al. [44] and Shimada et al. [27]. This 

conclusion is further confirmed by Fig. 6 that depicts the values of the SED distribution at the crack 

tip by considering only upper atoms along the crack plane, normalized by the SED at the crack tip 

atom, where the maximum value is found. The primary contribution to the SED is given by the 

atoms at the crack tip and concentrated in a distance of approximately 0.35-0.45 nm; at 0.8 nm, 

ΔΠ/ΔΠmax decreases to 0.1, making any other contribution at greater distances (but in the proximity 

of the crack tip) negligible when averaging over the volume. Same results and precisely the same 

trend are found for all the other specimens: again, it is confirmed that the atoms involved in the 

fracture process are the same, regardless of the considered size, and are localized around the crack 

tip in a distance of approximately 0.4 nm (average value). From these considerations, the FPZ (i.e. 

distance from crack tip where the SED contribution is concentrated) is assumed to be 0.4 nm in the 

subsequent evaluation of the aSEDDFM. By considering the finite thickness t of the simulation cell 

(see Fig. 1 and section 2.1), the control volume VFPZ is then 2 3(π ) 0.193 nmFPZR t  . Supplementary 



Material (see S.2) further confirms a size of the fracture process zone of 0.4 nm (as average value) 

by considering, alternatively, the non-linear behaviour of the approximated derivative of the aSED 

values over the variation of the control volume. Regarding atomic motions of Fig. 5 and Fig. 6, it 

should be noted that despite the severe localized crystallographic distortion of the FPZ, phenomena 

such as atomic reconstruction, surface reconstruction or phase transformation did not occur. The 

interatomic bond is simply broken as the crack nucleates and propagates, and the at the crack-tip 

area (i.e., the FPZ), the original diamond structure of Si atoms is kept even before and during 

fracture process. These results have been further demonstrated by Shimada et al. [27] who 

employed exactly the same interatomic potential used in the present study and observed fracture 

process precisely. The fracture in the present work is thus ideally brittle.  

 

Fig. 5. Atomic SED distribution at the crack tip for different sample widths W; the SED is here 
evaluated atom by atom as difference of interatomic potential at the critical displacement and 
unloaded model (i.e. ΔΠ is not averaged and not processed through the attenuation function); the 
fracture process zone is in the range of 0.35-0.45 nm, 0.4 nm in average; visualized in OVITO [35]. 
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Fig. 6. Atomic SED distribution for the upper atoms of the crack plane normalized by the maximum 
value; the SED is not attenuated and not averaged (i.e. simple difference of atomic potentials, ΔΠ); 
the maximum value is found for the atom at the crack tip (r=0). 
 

Having defined the FPZ and the WC, the aSEDDFM can be finally quantified according to Eq. (2) and 

compared with FE analyses. The results are shown in Fig. 7. The scaling factor c=2.252 of the 

attenuation function is calibrated according to Eq. (5) by using only the MS results of the specimen 

W=150.77 nm and it is kept constant for all the other geometries. For the sake of clarity, the steps 

for the calculation of the aSEDDFM are briefly re-called: (i) the SED of each atom is defined as 

difference of its potential energy at the critical displacement dC and unloaded configuration; (ii) 

each value is then multiplied by the attenuation function, i.e. homogenization of the SED gradient 

over the FPZ; (iii) the contributions are finally summed together and averaged over the FPZ. The 

results clearly show that the aSEDDFM at critical condition is constant, regardless of the specimen 

width, and it is in excellent agreement with the theoretical critical value WC of Eq. (1). A small 

variation of ± 3% is to be expected, because of the finite step increment of strain in the MS 

simulations and the keen sensitivity of the SED to the displacement values as such small scales. By 

superimposing the results from continuum analyses, a good agreement within the range of ±3% is 
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found for very large samples: the SED at fracture is constant, in agreement with the discrete 

formulation and the critical theoretical value. However, at a width of approximately 40-50 nm, the 

LEFM starts to deviate from the expected results, i.e. breakdown of continuum theory. The 

deviation, that underestimates the critical SED at fracture, increases as the specimens become 

smaller. By considering the sample of width W=9.87 nm, it gives a critical SED of 2.344 GJ/m3, 

that is 27% smaller than the expected value of 2.962 GJ/m3. The next section 4.2 will further 

address the breakdown of continuum theory, and provide a more general definition based on the 

length of the fracture process zone (from MS numerical experiments) and the length of the singular 

stress field (from LEFM). 

 
Fig. 7. Comparison between aSED based on the discrete fracture mechanics formulation (MS 
simulations) and LEFM, as a function of the specimen width; the values are normalized by the 
theoretical critical SED at fracture of Eq. (1). 
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excellent agreement with the critical theoretical value regardless of the specimen size, while 

continuum formulation fails below a width W of 40-50 nm. However, a more general definition of 

the length scale beyond which the continuum formulations fails can be provided by analyzing the 

length of the FPZ (evaluated from MS results), and the K-dominated zone ΛK (from LEFM 

analyses) defined as the distance from the crack tip at which the stresses deviate 5% from the 

theoretical r0.5 field. It is shown in Figure 8(b) that the largest specimen has a ΛK of approximately 

7.78 nm, a quite significant value if compared to the FPZ of 0.4 nm. However, for the small sample 

in Fig. 8(a), the length of ΛK decreases to only 0.42 nm, very close to the FPZ size. In other words, 

when reducing the samples widths, K-dominated zone ΛK shrinks down, while the FPZ remains 

constant. At a critical length, the primary assumption of the LEFM formulation RFPZ<<ΛK is not 

satisfied anymore. This aspect is highlighted in Fig. 9 that permits to quantify the ratio between ΛK 

and the FPZ at which the LEFM deviates from MS results. When the singular stress field is in the 

range of 4 to 5 times the FPZ (W=40-50 nm), i.e. 1.5-2 nm, continuum fracture mechanics fails. 

Similar results have been recently confirmed by Shimada et al. [27] who employed sophisticated 

numerical experiments on pre-cracked nanoscale specimens. Those authors estimated a fracture 

process zone of approximately 0.4-0.6 nm, and a low limit of continuum fracture mechanics in the 

range of 3-6 the FPZ. As long as the non-linear behavior is well confined in a FPZ very small in 

comparison to the K-dominated region, classic LEFM still valid. This conclusion justifies why 

several authors have successfully applied classic concepts to small scales [15,16,50–52]. 

Considerations and analyses on stress intensity factors and fracture toughness have been 

intentionally ignored to focus on the energy concepts only. However, it should be noted that WC can 

characterize the fracture at different scales, i.e. it is scale-independent, and this results further 

confirmed that the fracture toughness of ideal brittle materials is fundamentally inherent [16,52]. 

 

 

 



 

 

 

 

Fig. 8. Singular stress field lengths (K-dominated region) for specimens width (a) W=9.81 nm and 
(b) W=198.41 nm obtained from FE analyses; the singular stress field length is defined as the 
distance from the crack tip at which the stress deviates 5% from the theoretical field of r0.5. 
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Fig. 9. Normalized fracture test results in terms of the ratio between the length of the K-dominated 
region ΛK (from LEFM analyses), and the fracture process zone RFPZ (evaluated from MS 
simulations). 
 

4.3 Final remarks and future challenges 

Classic LEFM works very well when dealing with bulk material, where the characteristic material 

length, e.g. the fracture process zone for brittle material, is confined in a very small zone. However, 

when the material becomes heterogenous or when the local microstructure cannot be ignored, a 

more physically based approach is needed. One way is to rely on models based on atomic 

interactions, as shown in the present work. Unfortunately, interatomic potentials are defined for 

limited systems, and even if the physic of the problem is correctly replicated, they tend to deviate 

from actual experimental results which are far from the ideal conditions. In other words, a critical 

strain energy density evaluated by atomic simulations may be different from experimental values 

already at the microscale. These aspects do not affect the validity of the method when investigating 

the physical processes involved but indeed represent a future challenge if the final aim is the 
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proposition of a universal approach that spans different materials and that correctly estimates actual 

experimental results.  

The present work has considered ideal brittle fracture only, under monotonic mode I load. It is 

undoubted that the real big challenge is the fatigue phenomenon. In this regard, it will be crucial the 

evaluation of the scale at which mechanisms of fatigue occur and their scale transitions to finally 

propose a more general scale-independent formulation or to improve the current approaches. 

Atomic simulations and small-scale experiments can provide enormous contribution when 

investigating, for example, the role of dislocations, microstructure, and short-crack growth. When 

dealing with fatigue, it should be expected a different size of the fracture process zone, since the 

physical processes involved are different than those of ideal brittle fracture, and occur at a different 

scale level [44].  

Concluding, the study was limited to the characterization of cracked components under mode I 

loading since the main target was a preliminary investigation of the breakdown of continuum theory 

based on a reformulated discrete SED approach. Extension of the approach to other loading 

conditions and notches is undoubtedly intriguing but left for future work. In cracked components, 

fracture occurs obviously by atomic bond breaking at the crack tip. However, in the case of large 

notches, authors have found some difficulties to identify a priori the proper atomic bond at which 

the fracture would occur and to correctly place the small control volume. Indeed, according to 

[33,43] and to section 3 briefly, in the case of blunt notches the area of the control volume assumes 

a crescent shape and it is centred at distance “r0” from the notch root; in case of mixed mode, the 

control volume is rigidly rotated and centred on the point where the SED reaches its maximum 

value. These definitions imply the implicit knowledge or assumption of the location of the crack 

initiation, and place the control volume accordingly.  

Finally, the definition of the critical SED in Eq. (1) has been provided by considering a crack along 

the cleavage plane (111) and the Young’s modulus accordingly, i.e. in its scalar form. A more 

general formulation would necessarily involve a full consideration of the anisotropic behaviour, and 



it is left for future work. Success in this direction would provide a method that is both scale- and 

potentially (based on results at the macroscale) geometric independent, i.e., it would characterize 

successfully notches and cracks at any scale, while remaining very simple. Geometric independency 

is, indeed, the main advantage when employing the classic aSED formulation at the macroscale (see 

e.g. [43]). 

 

5. Conclusions 

The present work investigated the ideal brittle fracture at macro- to nano- (even atomic) scales, and 

proposed a new formulation of the averaged strain energy density based on discrete fracture 

mechanics theory, namely aSEDDFM. The strain energy density was defined as a function of the 

interatomic potential, homogenized through an attenuation function, and averaged over the fracture 

process zone. A series of numerical experiments based on MS simulations on ideal brittle fracture 

in silico under mode I loading were realized to support and verify the formulation. The approach 

was finally compared with continuum fracture mechanics theory. The main conclusions can be 

summarized as follows: 

 The proposed formulation of the aSEDDFM is scale independent, and correctly characterize 

the fracture from the macro to the nanoscale under mode I loading condition; 

 Continuum-based formulation of the aSED fails to describe the fracture below a critical size; 

 The critical K-dominated length at which continuum formulation fails, i.e. breakdown of 

continuum theory, is found to be in the range of 4-5 times the fracture process zone; 

 A singular stress field of just a few nanometers in agreement with classic LEFM formulation 

is still present even for the smallest specimens; 

 The ideal brittle fracture is governed by atomic bond breaking at the crack tip since the 

fracture process zone is constant (scale independent) and approximately in the range of 

0.35-0.45 nm (based on SED gradient), regardless of the specimen size; 



 It is demonstrated that, if the discrete nature of atoms is considered, the critical strain energy 

density at fracture is constant and scale independent, thus fracture toughness is 

fundamentally inherent as verified by other authors [27,52]. 

 The work is limited, preliminarily, to mode I loading of cracked components; however, the 

vast literature on the classic aSED concept has demonstrated a high degree of validity by 

assessing both static and fatigue behaviour of components of different geometries, under 

different loading conditions and made of different materials. As a future work, further 

investigation of those additional cases should be performed, as well as additional 

orientations of the samples should be considered. 
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