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Abstract

Interruptions in cardiopulmonary resuscitation (CPR)
decrease the chances of survival. However, CPR must be
interrupted for a reliable rhythm analysis because chest
compressions (CCs) induce artifacts in the ECG. This
paper introduces a double-stage shock advice algorithm
(SAA) for a reliable rhythm analysis during manual
CCs. The method used two configurations of the
recursive least-squares (RLS) filter to remove CC artifacts
from the ECG. For each filtered ECG segment over
200 shock/no-shock decision features were computed
and fed into a random forest (RF) classifier to select
the most discriminative 25 features. The proposed
SAA is an ensemble of two RF classifiers which were
trained using the 25 features derived from different filter
configurations. Then, the average value of class posterior
probabilities was used to make a final shock/no-shock
decision. The dataset was comprised of 506 shockable
and 1697 non-shockable rhythms which were labelled
by expert rhythm resuscitation reviewers in artifact-free
intervals. Shock/no-shock diagnoses obtained through
the proposed double-stage SAA were compared with
the rhythm annotations to obtain the Sensitivity (Se),
Specificity (Sp) and balanced accuracy (BAC) of the
method. The results were 93.5%, 96.5% and 95.0%,
respectively.

1. Introduction

Minimum “hands-of” intervals during cardiopulmonary
resuscitation (CPR) are required to improve the chances of
a successful defibrillation [1]. In current practice CPR is
interrupted every 2 minutes for a reliable analysis of the
heart rhythm. In fact, chest compressions (CCs) provided
during CPR induce artifacts in the ECG that impede a

reliable rhythm analysis of shock advice algorithms.

Over the last 15 years, many efforts have been
made to achieve a continuous rhythm analysis without
interruptions to CPR therapy. Different approaches
have been proposed, such as rhythm analysis during
ventilation pauses [2, 3], however the main approach has
been designing adaptive filters to suppress the artifact
and then diagnose using a SAA for artifact-free ECG [4].
Nevertheless, the accuracy of this approach is still poor.
Adaptive filters substantially reduce CC artifacts with high
SNR improvements, however filtering residuals frequently
resemble a disorganized rhythm. In these cases, SAAs may
produce a wrong shock diagnosis as the majority of the
SAAs used are designed for artifact-free ECGs. This is the
reason why current methods have a high capacity to detect
shockable rhythms, Sensitivity (Se), but a low capacity to
detect non-shockable rhythms, Specificity (Sp).

Recently, a multistage algorithm was introduced to
increase the Sp [5] (supp materials). In brief, this algorithm
uses two recursive least squares (RLS) filters and a SAA
of a commercial defibrillator in three decision stages.
Although this solution considerably improves the Sp of
previous approaches, it still does not meet American
Heart Association’s criteria for a reliable rhythm diagnosis
(Sp>95%, Se>90%) during manual CCs. Another
approach to increase the Sp was the use of machine
learning techniques to classify the ECG after using an
adaptive CPR artifact suppression filter [6].

In this paper, we propose a method for a reliable
shock advise during manual CCs, which combines the
both aforementioned approaches: a double stage RLS
filtering [5] and a SAA algorithm based on random forest
(RF) classifiers [6] which benefits from both filtering
configurations to reach a reliable shock/no-shock decision.
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2. Materials and methods

2.1. Dataset

The data were obtained from a prospective study of
out-of-hospital cardiac arrest (OHCA) patients gathered
between March 2002 and September 2004 by the
emergency services of London, Stockholm and Akershus
and coordinated by the Oslo University Hospital. The ECG
and the compression depth (CD) signals were acquired
using a modified version of Laerdal’s Heartstart 4000
defibrillator (4000SP) and were resampled to 250Hz. A
notch and a Hample filter were used to remove 50Hz noise
and spiky artifacts from the ECG, respectively. Finally, the
ECG was band limited to 0.5-40Hz. CC instants (tk) were
automatically marked in the CD signal using a negative
peak detector for depths above 1 cm, see figure 1.

The dataset used in this study contained 2203 records
obtained from 273 OHCA patients. Each record (see
figure 1) consisted of two consecutive intervals: a 15-sec
interval which includes continuous CCs, and a 5-sec
interval free of artifact. The latter interval was reviewed
by expert resuscitation rhythm reviewers to annotate the
patient’s underlying rhythm as shock/no-shock and use it
as ground truth. In total there were 506 shockable and
1697 non-shockable rhythms.

2.2. Filtering the CC Artifact

In this work, the used CC artefact suppression method
is based on a recursive least squares (RLS) filter
adapted to estimate periodic interferences [5]. The RLS
filter estimates the time-varying coefficients (ak(n) and
bk(n)) of a multiharmonic model of the artifact whose
fundamental frequency (f0(n)) is derived from the chest
compression instants (tk):

scc(n) =

N∑
k=1

ak(n) cos(k2πf0(n)nTs)+ (1)

bk(n) sin(k2πf0(n)nTs)

f0(n) =
1

tk − tk−1
tk−1 < nTs ≤ tk (2)

The CC artifact is iteratively estimated (ŝcc) and
subtracted from the corrupted ECG (scor), to obtain the
clean ECG (ŝecg), as shown in figure 1.

In the RLS filter there are two degrees of freedom, the
number of harmonics needed to model the artifact (N ) and
the forgetting factor (λ) which controls the coarseness of
the filter. In this paper, the corrupted ECG was filtered
for two configurations of the RLS filter (N/λ) following
the optimal configuration of the multistage algorithm
described in [5] for manual CCs. In the first stage, the
corrupted ECG was coarsely filtered (ŝecgλ1 ) using a λ
of 0.987 whereas in the second stage the ECG was finely
filtered (ŝecgλ2 ) with a λ fixed to 0.998. In both stages N
was set to 4.

2.3. Feature engineering

For each filtered ECG (ŝecgλ1
, ŝecgλ2

), a multi-resolution
analysis is employed to extract 244 features. Only the
interval from 4 s to 12 s was used to compute features.
First 4 s were left out to avoid RLS filtering transients.
The 8-second ECG segments were decomposed by discrete
wavelet transform (DWT) into its subbands with the
Daubechies 4 wavelet and 7 levels of decomposition
generating a set of approximation coefficients a7 and seven
sets of detail coefficients d1 to d7. The ECG was then
reconstructed, s(n), by using detail coefficients d3 − d7.
Reconstructed signals corresponding to each set of detail
coefficients (d3 to d7) were also generated: s3(n) to s7(n).

Artefact filtering, rhythm analysis during chest compressions Rhythm annotation

Figure 1. Example of a 20 s episode of the database. The top panel shows the ECG of a patient with a shockable rhythm
(Sh): the first 15 s are corrupted by the CC artifact and the last 5 s are free of artifact showing the patient’s underlying
rhythm. The second pannel shows the filtered ECG and the bottom panel the CD signal with the CC instants (tk).
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For each filtered signal 244 features were computed [7–
9] based on the multi-resolution analysis. The features
were ranked by importance in each random forest (RF)
classifier using the out-of-bag error [10]. For each set the
top ranked 25 features were selected for classification.

2.4. Classification

The last step in the proposed SAA is classification. An
ensemble of two RF classifiers were combined to reach
a shock/no-shock decision, as can be shown in the last
block of figure 2. The first classifier was trained using
the selected 25 features from ŝecgλ1

whereas the second
one was trained using the selected 25 features from ŝecgλ2

.
The final shock/no-shock decision was made based on the
average value of the class posterior probabilities of two RF
classifiers. The class with the higher average value of class
posterior probabilities was chosen for shock/no-shock
decision.

Both RF classifiers had 300 decision trees. Each tree
was trained using bootstrapped replicas of the training data
and the prior probabilities of each class (shock/no-shock)
were balanced for each tree by using resampling. The cost
function was defined to penalize the wrong diagnosis of
nonshockable rhythms by a factor of 95/90 based on the
AHA recommendation.

2.5. Model assessment

A 10-fold cross-validation (CV) scheme was used to
train and test the SAA. Folds were partitioned patient-wise
ensuring that the rhythm prevalences matched to at least
85% the prevalences for shockable and nonshockable
rhythms of the whole dataset (quasi-stratified).

Test segments were diagnosed as shock/no-shock based
on the average value of class posterior probabilities (see
section 2.4). These diagnoses were compared with the
rhythm annotations to obtain the following performance
metrics: Se, Sp and Balanced Accuracy (BAC), that is, the
mean value of Se and Sp. In order to obtain the statistical
distributions of these metrics the process was repeated
100 times. The results were compared to those obtained
using the classical approach, filtering followed by a SAA
designed for artifact-free ECG [11], in a single stage and

multistage configurations.

3. Results

The mean (95% confidence interval) Se, Sp and
BAC of the proposed double-stage SAA were 93.5%
(92.9-94.0), 96.5% (96.2-96.6) and 95.0% (94.7-95.3),
respectively. The classical approach in an optimal
multistage configuration, as described in [5], yielded a Se,
Sp and BAC of: 91.7%, 93.7% and 92.7%, far below the
obtained results using our proposed double-stage SAA.

A classical single stage solution produced an Se, Sp
and BAC of 96.3%, 81.3% and 88.8%, respectively. The
results for the best single RF-classifier (λ2) were 92.8%
(92.3-93.5), 96.5% (96.2-96.7) and 94.7% (94.4-95.0),
respectively. These results meet the minimum 90% Se and
95% Sp performance goals recommended by the American
Heart Association (AHA).

Table 1 shows the selected features for ŝecgλ1
and

for ŝecgλ2 , with the following notation: feature name
(signal/wavelet coefficient). The first nine features of both
columns are described by Figuera et al [7]. Features from
10 to 15 in the left column and from 10 to 12 in the right
column were introduced by Rad et al [8]. Fuzzy Entropy
(FuzzEn), the Signal Integral parameter (SignInt), the Peak
Power Frequency (PPF), the Smoothed Nonlinear Energy
Operator (SNEO) and the Hjorth Mobility parameter are
described in [9, 12], [13], [14], [15] and [16], respectively.
The remaining features were designed for this work: the
number of QRS-like peaks (Npeak) and the Euclidean
distance between the Hjorth Mobility and the Hjorth
Mobility of the second degree (Mx2).

4. Discussion

This work introduces a double-stage SAA for a reliable
rhythm analysis during CPR inspired by two solutions
proposed in the literature to increase the Sp for rhythm
analysis during CCs [5, 6]. Our proposed SAA algorithm
consists of a double-stage RLS filtering, multiresolution
analysis for feature extraction, and two RF classifiers.

A single filtering stage followed by a commercial SAA
yielded a Se and a Sp of 96.3% and 81.3% respectively.
Using an ad-hoc SAA designed to diagnose filtered ECGs

ŝcor(n)

Filtering

RLS1

RLS2

Multiresolution analysis

Extraction of 244
DWT features

Extraction of 244
DWT features

Selection of
25 features

Selection of
25 features

ŝecgλ1
(n)

ŝecgλ2
(n)

Classification

RF1

RF2

p1+p2
2 ≥ 0.5

25 feat

25 feat

p1

p2

Yes

No

Shock

No-Shock

Figure 2. Arquitecture of the proposed double-stage SAA.
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Feature ŝecgλ1 Feature ŝecgλ2

1 x1 (s(n)) 1 x1 (s(n))
2 x4 (s(n)) 2 x4 (s(n))
3 SamEn (d3) 3 SamEn (d3)
4 SamEn (s3(n)) 4 SamEn (s3(n))
5 SamEn (s4(n)) 5 SamEn (s4(n))
6 vfleak(s(n)) 6 vfleak(s(n))
7 count2 (s(n)) 7 count2 (s(n))
8 count3 (s(n)) 8 x3 (s(n))
9 bCP (s(n)) 9 bCP (s(n))
10 IQR (ḋ(5)) 10 First Quartile(d5)
11 IQR (d7) 11 Positive Area(s(n))
12 IQR (ḋ7) 12 Negative Area(s(n)
13 IQR (d̈5) 13 Mean(ḋ4)
14 Var (d5) 14 Mx(d6)
15 µ2(d7) 15 PPF(s(n))
16 FuzzEn(s(n)) 16 FuzzEn(s(n))
17 FuzzEn(s3(n)) 17 FuzzEn(s3(n))
18 Mx2(ŝecgλ1

) 18 FuzzEn(s4(n))
19 SNEO(s(n)) 19 SNEO(s(n))
20 SignInt(d7) 20 SignInt(d7)
21 SignInt(d5) 21 Mean(s(n))
22 Std(ḋ3) 22 Std(ḋ3)
23 Mean(d3) 23 Mean(d3)
24 Mean(ḋ3) 24 Mean(ḋ3)
25 Npeak(s(n)) 25 Npeak(s(n))

Table 1. The 25 features selected by the two RF classifiers.

the Sp was increased in 15.2 points although the Se was
reduced in 3.5 points. This significant increase in Sp
allowed the AHA requirements to be met with an overall
BAC of 94.7%. The results were further increased with the
addition of the double stage filtering, obtaining a BAC of
95.0%.

In conclusion, this study confirms that ad-hoc decision
algorithms for the filtered ECGs provide a reliable rhythm
analysis during CPR and that the results would be further
improved if the SAA combined the information derived
from differently filtered ECG signals.
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