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Abstract. Gaze gestures bear potential for user input with mobile de-
vices, especially smart glasses, due to being always available and hands-
free. So far, gaze gesture recognition approaches have utilized open-eye
movements only and disregarded closed-eye movements. This paper is a
first investigation of the feasibility of detecting and recognizing closed-
eye gaze gestures from close-up optical sources, e.g. eye-facing cameras
embedded in smart glasses. We propose four different closed-eye gaze
gesture protocols, which extend the alphabet of existing open-eye gaze
gesture approaches. We further propose a methodology for detecting and
extracting the corresponding closed-eye movements with full optical flow,
time series processing, and machine learning. In the evaluation of the four
protocols we find closed-eye gaze gestures to be detected 82.8%-91.6%
of the time, and extracted gestures to be recognized correctly with an
accuracy of 92.9%-99.2%.

Keywords: Closed eyes · Gaze gestures · Machine learning · Mobile
computing · Recognition · Smart glasses · Time series analysis.

1 Introduction

Users interact with their mobile devices frequently and throughout their daily
routines. Smart phones and tablets have an average of 60 and 23 interactions
per day, respectively, with a total usage duration of on average 221 minutes
per day [7]. For this reason, user input across mobile devices should be fast,
easy, reliable, and convenient. Gaze gestures have been demonstrated feasible
for input to mobile devices [4]. They bear potential as being conceptually both
hands free and allow to perform quick input. However, gaze gestures with smart
phones and tablets are usually done when users are holding them/looking at them.
In contrast, smart glasses with embedded eye-facing cameras allow hands-free
gaze gesture recognition, which does not require additional preparation time
(i.e. taking devices out of a trousers pocket) or users to look at a device screen.
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So far, mobile gaze gesture sensing has utilized movements from opened
eyes only and disregarded closed eyes. With gaze gesture alphabets in general
being limited (e.g. 4 to 8 easily performable gaze gestures [4, 6]), sensing and
recognizing also closed-eye gaze gestures would allow for an extended alphabet
that combines movements of both opened and closed eyes. Eyes being open or
closed could thereby be distinguished by the presence or absence of pupils in
recordings. The major challenge with recognizing closed-eye gaze gestures from
optical sources is that prior work has mostly utilized pupil movements, which
renders them inapplicable for detecting closed-eye movements. In this paper
we therefore investigate whether detection and recognition of closed-eye gaze
gestures from close-up optical sensors, e.g. from eye-facing cameras embedded in
smart glasses, is feasible. Our contributions are:

– We propose a processing methodology to detect and recognize closed-eye
gaze gestures from recordings of cameras embedded in smart glasses.

– We propose three basic closed-eye gaze gesture protocols for smart glasses,
which contain different sets of gaze gestures, and which all effectively extend
existing open-eye gaze gesture alphabets with closed-eye movements.

– We comparatively evaluate the proposed protocols for their gesture detection
and confusion rates using different machine learning approaches.

2 Related Work

While there has been numerous prior work on open-eye gaze gestures (cf. [6]),
closed-eye gaze gestures have so far not been investigated. EyeWrite [13] uses
gaze gesture input for text composition. The concept is based on EdgeWrite [12],
in which each character is replaced by a gesture. The alphabet therefore contains
26+10 gestures for numeric characters and further gestures for punctuation and
text control. The approach is designed to work with a stationary Tobii ET-1750
eye tracker in the form factor of a computer monitor. A set of 12 gaze gestures
is used in [10]. Each gaze gesture in their alphabet consists of left, right, up,
down, and optional diagonal movements. They evaluate their approach with
a PC setup, and compare it to dwell-based gaze input in subsequent work [8].
In [5] an alphabet of 8 gaze gestures is used. Each gesture is an unidirectional
stroke into a certain direction (left, right, up, down, and the four diagonals in
between). The authors utilize a setup with a computer monitor and a camera
with attached infrared light to perform pupil tracking and extract gaze gestures.
The same alphabet is used in [4] for gaze gesture input to mobile devices. All
those approaches have in common that they rely on optical pupil tracking, hence
on opened eyes, for gaze gesture extraction. While cameras can be built into
smart glasses frames [11], pupils are not visible with closed eyes, which prevents
those approaches from being applied to closed-eye gaze gestures.

Electrooculography (EOG) recognition, while technically different in the
sensing, is conceptually able to overcome this limitation, as it does not rely on
pupil tracking. However, employing EOG gaze gestures with closed eyes too has
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not been investigated yet. Related work on EOG based gaze gestures with opened
eyes [2] used a basic alphabet related to the one in [5], consisting of 8 gestures
(left, right, up, down, and four diagonals). In subsequent work they expand user
input to have either small or big eye movements in left, right, up, and down [1]. By
combining two movements they thereby encode a total of 16 different characters
for user input. When considering smart glasses, EOG sensors bring a significant
drawback. While EOG should in general allow for sensing closed-eye movements,
embedding those sensors into smart glasses impacts the usability of the devices
as glasses. Firstly, in contrast optical sensors, EOG sensors need to touch the
skin, which limits possible sensor positions to around the nose and close to the
ears (similar e.g. to the Jins Meme device [9]). Those locations cause sensors to
be positioned horizontally, but not vertically. While this allows for horizontal
eye movement sensing, vertical eye movement sensing would require additional
sensors above and below the eye (similar to the goggles utilized in [3]). Adding
such sensor positions would make the device significantly more cumbersome due
to increased size and weight. Secondly, for good EOG signal quality, sensors
need to be connected well to the skin. This would require either wet electrodes,
arguably reducing comfort and usability, or firm skin contact. The latter seems
possible when utilizing the weight of common glasses, but only on positions where
glasses abut on skin (nose, ears), which again disregards vertical sensing.

To summarize, while there is prior work on optical sensing for gaze gestures,
the employed approaches are not applicable with closed eyes due to pupils being
hidden. EOG sensors should conceptually allow for sensing closed-eye movements,
but embedding them in smart glasses seems cumbersome. It would either limit
vertical sensing capabilities or cause the device to become goggles instead of
glasses, with drawbacks in size and weight. This paper addresses the remaining
gap: it provides a methodology to detect and recognize closed-eye gaze gestures
with close-up cameras, and thereby is a first step towards utilizing both open-
and closed-eye gaze gestures with smart glasses, thereby allowing and extension
of the restricted alphabet of gaze-interfaces.

3 Our Approach to Closed-Eye Gaze Gestures

Our approach enables recognition of closed-eye gaze gestures from cameras
embedded in smart glasses. In this section we propose four closed-eye gaze
gesture protocols, together with a technical methodology to detect and extract
those from sensed data. From a technical perspective, our approach relies on
machine learning for recognizing optically sensed closed-eye gaze gestures. Our
recognition consists of a training part to enroll individual users, and a recognition
part to utilize users’ eye movements as input. Both training and recognition
internally perform optical closed-eye gaze gesture detection and extraction from
video data (Fig. 1). The details for the individual steps in those parts are discussed
in the sections below.
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Fig. 1. Overview of processing in our approach to recognize closed-eye gaze gestures.
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Fig. 2. Graphical depiction of possible gaze gestures with different protocols. While
(a) the LRUDS protocol contains bidirectional gaze gestures only, all other protocols
contain a set of small (e.g. ”r”) and/or big (e.g. ”R”) unidirectional gaze gestures, in
both (b) horizontal and/or (c) vertical direction.

3.1 Closed-Eye Gaze Gesture Protocols

We propose 4 closed-eye gaze gesture protocols, which are related to protocols
from prior work on open-eye gaze gestures (cf. [4, 5, 8, 10]). With all protocols,
users look straight on and close their eyes to begin user input, and they open
their eyes to end user input. Each user input can contain multiple individual
gaze gestures (Fig. 2). The alphabet of possible gaze gestures is defined by the
respective protocol.

The alphabet of the LRUDS protocol contains a total of 5 possible gaze gestures: 4
horizontal or vertical bidirectional gaze gestures (LRUD) and a squint movement
(S). All gaze gestures start and end in the center. The bidirectional gaze gestures
go either left, right, up, or down, and backwards in the same gesture. The squint
movement results from shortly squinting eyes. It therefore is equal to blinking
except that users do not open their eyes during the process.

The alphabet of the LlRrUuDdS protocol contains a total of 9 possible gaze
gestures: 8 horizontal or vertical unidirectional gaze gestures (LlRrUuDd) and a
squint movement (S). The gaze gestures are either small (e.g. ”r”) or big (e.g.
”R”) eye movements, and they do not go back to the start of the gesture after
that movement. Hence, they do not need to start or end in the center.
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(a) Unprocessed (b) Preprocessed

Fig. 3. Sample frame of a recording of a user performing a closed-eye gaze gesture with
(a) the unprocessed and (b) the preprocessed frame. The black spot in the upper right
is a dust particle on the camera lens, which does not negatively effect our approach.

The alphabet of the lrudS protocol contains a total of 5 possible gaze gestures:
4 horizontal or vertical unidirectional gaze gestures (lrud) and a squint movement
(S). This protocols only allows for small eye movements, and gaze gestures do
not go back to the start of the gesture after that movement. Hence, they do not
need to start or end in the center.

The alphabet of the LlRrS protocol contains a total of 5 possible gaze gestures:
4 horizontal unidirectional gaze gestures (LlRr) and a squint movement (S). This
protocol utilizes only horizontal eye movements. The gaze gestures are either
small (e.g. ”r”) or big (e.g. ”R”) eye movements, and they do not go back to the
start of the gesture after that movement. Hence, they do not need to start or
end in the center.

3.2 Data Recording and Preprocessing

Data is recorded with eye-facing cameras embedded in smart glasses. If open-eye
gaze gestures should be utilized alongside closed-eye gaze gestures, approaches
from related work can be used. We therefore declare open-eye gaze gestures out
of scope for our approach. With all closed-eye gaze gesture protocols, users close
their eyes to start closed-eye user input, and open them to end the input. The
system detects that eyes are closed by pupils not being visible anymore. If the
duration of eyes being closed is longer than a predefined threshold (1.5 s in our
configuration) the system treats eye movements in between closing and opening
eyes as potential closed-eye gaze gestures. The video captured from this input
is then processed further once eyes are opened. For preprocessing, we apply
frame-wise histogram equalization and image sharpening (Fig. 3). For the latter,
with the 320x240 pixel resolution we employed in our evaluation, a 5x5 pixel
luma matrix with a luma effect strength of 1.5 pixel was utilized.

3.3 Closed-Eye Gaze Gesture Detection and Extraction

On a preprocessed closed-eye movement video we employ frame-wise full optical
flow to extract movements. For a pair of two subsequent MxN pixel frames, the
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Fig. 4. Filtered optical flow in pixels between frame pairs, for an LRUDS video sample,
containing ”SDLRU” closed-eye gaze gestures, with detected gestures marked red.

optical flow yields two MxN matrices containing the horizontal and the vertical
optical flow, respectively. Hence, a video consisting of F frames results in F-1
pairs of optical flow matrices. With that series of matrices, we compute the 10%,
25%, 50%, 75%, and 90% quantiles of optical flow per matrix. Those effectively
capture both major positive and major negative closed-eye movements in optical
flow. Each of them can therefore be understood as a one-dimensional time series,
capturing closed-eye movements over time in either horizontal or vertical direction.
To reduce noise in each of those time series, we employ a Savitzky–Golay filter.
For subsequent closed-eye gaze gesture detection, the filter configuration is a
window length of 0.5 s and polynomial grade of 4. For feature extraction used in
subsequent model training and prediction, we further utilize all permutations of
window length {0.3 s, 0.4 s, 0.5 s} and polynomial grade {2, 3, 4}.

For detecting segments of active eye movements in the filtered optical flow
time series, we at first compute the sum of the filtered 10% and 90% quantile
time series per axis, then the piecewise L2-norm over both axis. The variance of
the resulting time series shows closed-eye movements in the video as non-zero
periods. To automatically detect those periods we utilize a Schmitt-Trigger with
a window length and a high and low trigger of 1

2 s, 1.5, and 1 for the LRUDS
protocol, and 1

3 s, 2, and 1.5 for other protocols (Fig. 4). Each detected period
of activity is segmented at its center with a fixed size window. The window
length is 1.3 s for the LRDUS protocol and 1 s for other protocols. The reason
for the LRUDS protocol utilizing different setting and longer windows is that its
movements are bidirectional, hence take slightly longer. The segmented periods
of activity become closed-eye gaze gestures (see example in Fig. 5), which we
subsequently utilize for both training and user input recognition.

3.4 Closed-Eye Gaze Gesture Recognition: Training and Prediction

Users enroll by performing closed-eye gaze gestures according to instructions of
the selected protocol. All possible gaze gestures of the corresponding protocol
are thereby recorded multiple times together with ground truth. Gaze gestures
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(a) horizontal (b) vertical

Fig. 5. Human understandable representation of multiple automatically extracted
closed-eye gaze gesture samples, for the ”U” movement from the LRUDS protocol. (a)
and (b) show closed-eye movement in pixels in between frame pairs, in horizontal and
vertical direction. While each sample contains multiple time series, this representation
only shown the sum of the 10% and 90% quantile of the extracted 2D optical flow over
time.

are detected and segmented, and together with the ground truth form the basis
for training a user specific closed-eye gaze gesture recognition model.

As with our approach gaze gestures manifest as one positive or negative peak
in optical flow over time in horizontal and/or vertical direction, we believe that
those peaks can be represented with a few main components using Principal
Component Analysis (PCA). To avoid individual features dominating PCA, we
scale them to mean=0 and std=1 before applying PCA. The strongest principal
components (PCs), which together explain 80% of the variance of the training
data, will be used for subsequent training and prediction with the model. Note
that the parameters for centering, scaling, and PCA transformation are derived
from training data only and applied to recognition-case data likewise (cf. figure 1).

4 Evaluation

To evaluate our approach we compare the gesture detection and classification
rates of all proposed closed-eye gaze gesture protocols. For this we record test
data, perform gaze gesture detection and extraction, and use extracted gaze
gestures to comparatively evaluate the performance of different machine learning
approaches on recognizing gaze gestures.

4.1 Evaluation Dataset

Data recording was done with a first generation Pupil Eye Tracker [11], which
has the form factor of smart glasses. The device has a right-eye-facing camera
to record videos of gaze gesture input with 60 Hz and a resolution of 320x240
pixels. We recorded data of one subject over a total of 8 sessions (2 per protocol),
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Table 1. The utilized dataset: amount of recordings per protocol with their total
contained closed-eye gaze gestures. The last two columns depict results of applying our
gaze gesture extraction approach to this dataset (Sec. 5.1).

Protocol Recordings Gaze gestures Gaze gestures extracted Extraction rate

LRUDS 60 290 240 82.8%
LlRrUuDdS 16 204 182 89.2%

lrudS 16 148 126 85.1%
LlRrS 89 382 350 91.6%

indoors, in office spaces. Over all protocols, the dataset thereby contains a total
of 181 closed-eye gaze gesture video recordings, which together contain a total of
1024 closed-eye gaze gestures (Tab. 1).

4.2 Evaluation Procedure

Gaze gesture detection rates are quantified from the amount of correctly detected
and extracted gaze gestures. With extracted gaze gestures, we then analyze
components contained in gaze gestures. Further, we train and apply different
machine learning models to perform gaze gesture classification, which will be
quantified based on the amount of (in-)correctly classified gaze gestures.

For model tuning, selection, and reporting final performances, we utilize
nested cross validation for data partitioning. We select models using the highest
accuracies from the inner loop and report final results with gaze gesture confusion
matrices for each protocol from the outer loop. The hyperparameter search for
model tuning relies on logarithmic parameter grids. Data specific preprocessing
(such as PCA) is done inside cross validation to not bias results.

5 Results

5.1 Closed-Eye Gaze Gesture Detection and Extraction Results

We found our closed-eye gaze gesture extraction to correctly detect and extract
gestures for 82.8%-91.6% of all samples (Tab. 1). The threshold to accept a
movement as gaze gesture has been configured to avoid false positives, which
would be gaze gestures extracted from noise or small, unintended eye movements.
This causes a trade-off, enabling low false positives by accepting certain false
negatives. While with our data all intended gaze gestures, together with false
positives, would initially have been recognized, the threshold was set too high for
certain movements, which, as a consequence, were not recognized.

5.2 Closed-Eye Gaze Gesture Decomposition Results

Applying PCA with extracted closed-eye gaze gestures indicates dominance of
few PCs, which aligns with our expectations. To explain 80%, 90%, and 95%
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Fig. 6. Distribution of samples in PC space for the LlRrUuDdS protocol. While there
is some overlap visible with certain classes, other classes seem clearly distinguishable.

of the variance in the data, 9, 13, and 17 components are required for the
LRUDS protocol, 7, 11, and 15 for the LlRrUuDdS protocol, 7, 11, and 14 for
the lrudS protocol, and 5, 7, and 11 for the LlRrS protocol. An interesting
detail thereby is that the protocol LRUDS, in which all gaze gestures contain
bidirectional movements, requires the most components (9). In contrast, protocol
LlRrUuDdS, which consists of more gaze gestures, but in which each gaze gesture
only contains unidirectional movements, requires fewer components (7). Protocol
LlRrS requiring the fewest components (5), as all of its gaze gestures only contain
horizontal movements. Further, with all protocols, the distribution of samples
in PC space indicates that some classes are easily separable, while others show
stronger amounts of overlap (see LlRrUuDdS protocol example, Fig. 6).
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Table 2. Mean/standard deviation of gaze recognition accuracy per protocol and model,
over all gaze gestures in that protocol and all inner CV repetitions. For each protocol,
the result is emphasized for the model that was selected for the outer CV loop evaluation
from those results, and its hyperparameters are stated in the bottom row.

Model\Protocol LRUDS LlRrUuDdS lrudS LlRrS

KNN 0.988/0.020 0.945/0.067 0.992/0.023 0.926/0.020
LDA 0.979/0.021 0.940/0.073 0.984/0.031 0.900/0.024
CART 0.958/0.037 0.857/0.089 0.944/0.049 0.906/0.044
SVM Linear 0.983/0.021 0.940/0.049 0.992/0.023 0.937/0.020
SVM Radial 0.988/0.020 0.961/0.049 0.992/0.023 0.937/0.034
ANN 0.992/0.017 0.912/0.064 0.992/0.023 0.920/0.033
Hyperparam. hidden=(50), α = 3−10 C = 32, γ = 3−6 C = 3−4 C = 34

5.3 Closed-Eye Gaze Gesture Recognition: Model Tuning Results

Evaluation results from tuning different models in the inner CV loop of our
evaluation in general indicate good closed-eye gaze gesture recognition rates for
all protocols (Tab. 2). Even simple models, such as a linear SVM, are able to
achieve good results. Nevertheless, recognition accuracies over protocols vary in
between 99.2%-93.7%, which indicates that gaze gestures of different protocols
might be differently hard to distinguish.

5.4 Closed-Eye Gaze Gesture Recognition: Protocol Results

From applying the selected model types and hyperparameter configurations
(Tab. 2) to the corresponding protocols in the outer CV loop of our evaluation,
we obtain final gaze gesture confusion matrices (Fig. 7).
Gaze gestures in all except the LlRrS protocols seem well distinguishable. Overall
closed-eye gaze gesture recognition accuracy is 99.2% with the LRUDS protocol,
95.6% with the LlRrUuDdS protocol, 97.6% with the lrudS protocol, and 92.9%
with the LlRrS protocol. Most gaze gesture prediction errors confuse movements
which are into the same direction but of different size. This is strongly visible
with the LlRrS protocol, where 36% of ”R” movements are wrongly predicted to
be ”r”, and 19% of ”L” as ”l”. It is also visible with the LlRrUuDdS protocol,
which confuses 17% of ”R” movements as ”r”, 6% of ”D” as ”d”, 6% of ”U” as
”u”, and 7% of ”u” as ”U”.

To summarize: while the LlRrUuDdS and LlRrS protocols yield higher closed-
eye gaze gesture detection and extraction rates (89.2% and 91.6%), gaze gesture
recognition results seem to be in favor of the LRUDS and lrudS protocols (99.2%
and 97.6%). While the LlRrU protocol does not require vertical and relies purely
on horizontal eye movements, the LlRrUuDdS protocol provides the biggest
alphabet of gaze gestures. In combination with the noticeably better gaze gesture
recognition results, the LlRrUuDdS protocol (89.2% gesture detection rate, 95.6%
gesture classification accuracy) hence seems to be the most robust option within
the evaluated protocols for closed-eye gaze gestures with cameras in smart glasses.
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(a) LRUDS, ANN (b) LlRrUuDdS, SVM Radial

(c) lrudS, SVM Linear (d) LlRrS, SVM Linear

Fig. 7. Symbol confusion per protocol from the outer CV evaluation.

6 Conclusion

In this paper we investigated the feasibility of detecting and recognizing closed-
eye gaze gestures from close-up optical sources, such as cameras embedded
in smart glasses. We proposed four basic closed-eye gaze gesture protocols,
consisting of different horizontal and vertical eye movements. We further proposed
a methodology to detect, extract, and classify the corresponding gaze gestures,
based on full optical flow extraction, time series processing, and machine learning.
For our evaluation we utilized data from an eye tracker in the form factor of smart
glasses, which records closed-eye movement videos with an embedded camera.
For each closed-eye gaze gesture protocol, in the evaluation we investigated
the detection rate of gestures, the amount of components required to represent
extracted gestures, as well as gaze gesture confusion during classification. Results
indicate gaze gesture detection rates of 82.8%-91.6% and average gaze gesture
classification accuracies of 92.9%-99.2%. Further, with PCA, 80%, 90%, and
95% of variance in extracted closed-eye gaze gestures can be explained with a
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maximum of 9, 13, and 17 principal components, respectively, for all protocols.
While those numeric results are based on limited amounts of data, our work has
demonstrated the technical feasibility of detecting and recognizing closed-eye
movements from optical sensors. It therefore is a first step towards utilizing
closed-eye user input with cameras embedded in smart glasses, and extending
gaze gesture alphabets with closed-eye gestures. Future work could investigate
closed-eye gaze gestures across users with and without enrollment phases. Further,
it could investigate the feasibility of combining open- and closed-eye gaze gestures
in a single protocol. The feasibility and applicability of employing other sensors
for closed-eye gaze gestures, such as EOG sensors embedded in the frame of
smart glasses, would too be an interesting field of investigation for future work.
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3. Bulling, A., Roggen, D., Tröster, G.: Wearable EOG goggles: Eye-based interaction
in everyday environments. In: CHI’09 Extended Abstracts on Human Factors in
Computing Systems. pp. 3259–3264. ACM, New York, NY, USA (2009)

4. Drewes, H., De Luca, A., Schmidt, A.: Eye-gaze interaction for mobile phones. In:
Proc. Mobility’07. pp. 364–371. ACM, New York, NY, USA (2007)

5. Drewes, H., Schmidt, A.: Interacting with the computer using gaze gestures. In:
Human-Computer Interaction (INTERACT). pp. 475–488. Springer (2007)
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