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Abstract. Sports and workout activities have become important parts
of modern life. Nowadays, many people track characteristics about their
sport activities with their mobile devices, which feature inertial measure-
ment unit (IMU) sensors. In this paper we present a methodology to
detect and recognize workout, as well as to count repetitions done in a
recognized type of workout, from a single 3D accelerometer worn at the
chest. We consider four different types of workout (pushups, situps, squats
and jumping jacks). Our technical approach to workout type recognition
and repetition counting is based on machine learning with a convolutional
neural network. Our evaluation utilizes data of 10 subjects, which wear a
Movesense sensors on their chest during their workout. We thereby find
that workouts are recognized correctly on average 89.9% of the time, and
the workout repetition counting yields an average detection accuracy of
97.9% over all types of workout.

Keywords: Acceleration · Activity Recognition · CNN · Deep Learning
· Movesense · Neural Networks · Workout · Sensors

1 Introduction

In recent years the ability to track sports and workout activities with has broadly
become available with off-the-shelf mobile devices. Those devices, including fitness
trackers, smart phones, and alike, usually feature positioning sensors such as
GPS as well as IMU sensors, such as accelerometers and gyroscopes. Tracking
characteristics for sports thereby range from tracking distance with positioning
sensors to step detection and counting when walking [4, 5]. While extracting
certain characteristics about a given sport by those sensors has previously been
investigated, automatically extracting information for workout sessions with
mixed workout types is more sparse [10]. It would be desirable for body-worn
mobile devices to at first automatically recognize the type of workout done,
and subsequently to analyze characteristics about the workout. Since nearly all
mobile devices nowadays feature IMU sensors such as accelerometers, but due to
their size and energy constraints not all devices feature position sensors such as
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GPS, the automatic recognition should ideally work with IMU sensor data only.
Towards this goal, one aspect that has not yet been investigated is the suitability
of using a single body-worn 3D accelerometer for automatically detecting workout,
recognizing the workout type, and counting repetitions in a given workout type.

In this paper we therefore present a methodology to automatically detect
and recognize workout in mixed workout type sessions, and to count repetitions
once a workout type has been determined. Our methodology uses a single 3D
accelerometer only, worn at the chest. The contributions of this paper are:

– We propose a deep learning based methodology to recognize exercise being
performed and to distinguish between four different exercise types: pushups,
situps, squats, and jumping jacks. For this we utilize only a single 3D ac-
celerometer worn at the chest.

– Based on the predicted workout, we utilize PCA and peak detection to count
repetitions within different workout types.

– We record a data set containing the four exercise types with 10 subjects and
in between 2-3 exercise recordings per subject, which contains a total of 55
workouts and a total of 583 workout repetitions. We evaluate our approach
with this data.

2 Related Work

Wearable mobile devices with IMU sensors have become prevalent, since they
enable a wide range of applications for their users. Examples for such devices
include the Nike FuelBand and FitBit Flex [10], which can be used to give
activity and workout feedback. An exemplary study for workout feedback is the
RecoFit study [10]. RecoFit aims to give real-time and post-work feedback to
sport trainees. The system bases its information extraction on data gathered with
embedded IMU sensors with 50 Hz sampling rate. RecoFit encompasses three
stages: automatically segmenting exercise periods, recognizing the exercise type,
and counting the repetitions done in a given exercise. They at first smooth data
with a Butterworth Lowpass filter (-60 dB damping at 20 Hz). Then a sliding
window (width of 5 s, overlapping between windows of 96%) is applied to achieve
windows of uniform length for subsequent processing. Based on this data they
extract 24 features (auto correlation, RMS, mean, standart deviation, variance,
integrated RMS, and frequency power bands). To distinguish between workout
and no-workout, they use those windows and features to train a L2 linear support
vector machine (L2-SVM). To subsequently differentiate between the 26 different
types of possible workout, they train a multiclass SVM classifier. Once the
workout type is defined, they apply principal component analysis (PCA) on only
acceleration data to reduce it to one dimension, then employ a repetition counting
algorithm on that data. In their evaluation they use data of 114 participants and
146 sport sessions. Their results indicate precision and recall bigger than 95%
in the detection phase. For exercise recognition, they used circuits of 4, 7, and
13 exercises and achieved an accuracy of 99%, 98%, and 96% respectively. The
counting with ±1 accuracy reached a precision of 93%.
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Javed [7] proposed a method for arm and elbow workout exercise recognition.
They use the accelerometers embedded in a Samsung Galaxy S4 smartphone.
The exercises they investigated were arm based, that means workouts such
as Bicep Curl, Active Pronator, Active Supinator, Assisted Biceps, Isometric
Biceps, and triceps workout. Their data recording uses raw accelerometer data,
then apply a class conditional probabilities filter. The filtered data is classified
with different classifiers from the Waikato Environment for Knowledge Analysis
(WEKA) toolkit [13]. Their findings indicate that Random Forest and LMT
classifiers yield better performance for their setup, with an accuracy of 99,5%
and 99,83%, respectively.

Another study [3] also used accelerometers embedded in Android smartphones,
but focused on activities such as walking (fast, slow, upstairs, downstairs), running,
and aerobic dancing. They utilized mobile phones in two different postures: in-
hand phone position and in-pocket phone position. They applied a digital low
pass filter to separate the gravity component. Subsequently, data is handed to a
robust supervised classifier. For their evaluation, they tested multiple classifiers
and found Multilayer Perceptron (MLP) and SVM to yield best accuracies with
89.48% and 88.76% in the in-hand case, and MLP and RF to yield best accuracies
with 89.72% and 72.27% in the in-pocket case. Finally, the combination of multiple
classifier with fusion was evaluated. Accuracy thereby was enhanced to 91.15%
with combining MLP, LogitBoost, and SVM for the in-hand case, and to 90.34%
for in-pocket with combining MLP, RF, and SimpleLogistic.

In another study [6], several machine learning models, including KNN, SVM,
and RF were utilized to classify transportation ways such as driving a car, riding
a bicycle, riding a bus, walking, and running. The study utilizes data from
accelerometers, gyroscope, and rotation sensors. To achieve uniform sampling
rates across those sensors, upsampling with linear interpolation to a uniform
sampling rate of 100 Hz was used, similar to [9]. A sliding window with length
1 s was applied to achieve uniform sample sizes. The best results were generally
obtained with RF (overall accuracy 95,1%), although SVM (overall accuracy
94,41%) was better for walking and running.

Liang and Wang [8] utilized Convolutional Neural Networks (CNN) to enhance
the accuracy of classification of transportation modes over traditional machine
learning methods. In their approach, a sliding window is applied to acceleration
sensor data recorded with 50 Hz using smartphones. Subsequently each window
is processed by a CNN to differentiate between seven classes: stationary, walking,
cycling, driving, taking a bus, subway or train. The data is smoothed with a
Savitzky-Golay filter to reduce noise in mobile phone movements. From the 3D
acceleration values they then computed the magnitude. In the sliding window
they extracted a 512 value long window with window overlapping by 12.5%.
Those windows are used as input for the CNN model, which after convolutional
and pooling layers uses a fully connected layer to predict the transportation type
target. Their system was able to obtain an accuracy of 94.48%.
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(a) (b)

Fig. 1. Position of sensors for (a) most data gathering driven solution and (b) the setup
evaluated to be best in literature [2, 12]. Figure adapted from [1].

3 Method

Our goal is to automatically detect, recognize, and count repetitions in four
different types of workout. In this section we describe the workout types, data
source and sensor position, as well as technical details of the detection, recognition,
and repetition counting.

3.1 Workout Types and Sensor Position

The workout types we consider are four-fold:

– Pushups

– Situps

– Squats

– Jumping jacks

As our approach automatically detects if one of those types of workout is
done, we also consider a fifth type, named no-workout, which covers all other
types of workout or no workout being done at all.

Our goal is to recognize workout from 3D accelerometer data of a single sensor
only. The reason for using only one sensor is usability: using more than one
sensor would be cumbersome for users who want their workout to automatically
be recognized and counted. In a preliminary study we evaluated five different
sensor positions on the human body that have been shown to be useful for human
activity recognition in previous studies [2, 12] (Fig. 1). This preliminary study
yielded the chest to be the sensor position best suited to detect, recognize, and
count repetitions from 3D acceleration sensor data only. For this reason we use
an accelerometer on the chest in our approach.
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Fig. 2. The CNN architecture utilized for recognizing workout types.

3.2 Sensing Workout

We sense workouts with one 52 Hz 3D accelerometer on the chest. We use this
sampling frequency due to related work with similar goals and good results
utilizing similar frequencies [8, 10]. On the continuous 3D time series we apply a
sliding window to split the stream into fixed length samples. Our window length
is 1 s, and windows overlap for 1

4 of their lengths, which corresponds to a 13
52 s

overlap. Each window position thereby yields a sample that consists of 52 ·3 = 156
features.

3.3 Workout Detection and Recognition

From labeled samples, each having 156 features and representing 1 s of sensed
workout, we train a model to distinguish between our five workout types (the
four target workout types and the no-workout type). This model will be able to
automatically distinguish for new samples if workout is done, and if yes, which
type of workout it is. The chosen model type is a convolutional neural network
(CNN) with 3 hidden layers (Fig. 2). The network thereby has an input layer
(156 neurons), three hidden fully connected convolutional layers, and a Softmax
classification output layer (5 neurons) after GlobalAveragePooling1D. The first
convolution is performed with 2 filters and kernel size 15, the second one with
100 filters and size 10, and the third one features 8 filers with size 2.

3.4 Workout Repetition Counting

After the type of workout has been determined for a given workout recording,
our approach automatically detects the amount of repetitions in this workout. In
contrast to workout type recognition this requires a longer window. We therefore
only count repetitions once the workout type recognition yields that workout for
a certain workout type has finished (with either another or no workout being
started afterwards). With the data of one such continuous workout that contains
3D accelerometer data, we at first apply PCA and extract only the strongest
PC dimension. This transforms the 3D time series into a 1D time series. To
the resulting time series we then apply a peak detection to detect repetitions.
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Table 1. Peak detection parameters for detecting repetitions in workout sessions.

Workout dmin hmin

Pushups 15
52

s 0.5
Situps 15

52
s 0.5

Squats 15
52

s 0.5
Jumping jacks 5

52
s 0.2

(a) Movesense sensor (b) Sensor worn on the chest

Fig. 3. (a) The utilized Movesense sensor with a 2 EUR coin for size comparison, and
(b) the sensor being worn on the chest during workout.

The peak detection has two parameters: the minimum distance dmin between
peaks, as well as the minimum height hmin of the peak. For the latter we set
an adaptive threshold α (Eq. 1). Once we surpass α, the distance between this
new candidate and the previous peak is calculated. If said distance is bigger than
dmin, the candidate is counted as a peak.

α = mean(data) + (max(data) −mean(data)) · hmin (1)

We utilize different configuration of our peak detection for different workout
types (Tab. 1). The amount of peaks corresponds to the amount of repetitions
done in the workout, with exception of jumping jacks, for which the amount of
repetitions is half the amount of peaks detected.

4 Evaluation

4.1 Utilized Sensor

For our study we utilize accelerometer values from a Movesense sensor [11]
(Fig. 3). We selected the Movesense sensor due to its relatively compact hardware,
with diameter of 36.6 mm and the thickness of 10.6 mm. The controlling unit is
Nordic Semiconductor nRF52832 comprising a 32 –bit ARM Cortex-M4 with
64kB on-chip RAM and 512kB on-chip FLASH. The communication of the sensor
is based on Low Energy Bluetooth 4.0. Movesense is able to measure linear
and angular acceleration, magnetic field intensity, temperature, heart rate and
ECG. The sensors for this research were provided by the sensor manufacturer,
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Fig. 4. Acceleration [ m
s2

] for an exercise set recorded on the chest. Contained exercises,
from the left: jumping jacks, squats, pushups, and situps.

MoveSensor, which is part of the Suunto coorporation. As our study aims to
use accelerometer data only, we utilize only the accelerometer embedded in
the movesense sensor. This accelerometer is a 3D accelerometer and provides a
sampling frequency of 12.5/26/52/104/208 Hz. For our evaluation we configured
the sensor to sample with 52 Hz as a trade-of between energy sampling accuracy
and energy consumption, similar to sampling frequencies used in related work
for similar purposes [8, 10]. Participants wear the sensor on their chest using an
attachment strap which is part of Movesense Developer Kit.

4.2 Evaluation Data

We recorded workout data of 10 different subjects with 2-3 workout sessions per
subject, each performing the four workout types, and with no-workout phases
in between workouts. Thereby, 11 workouts per workout type were recorded,
resulting in a total of 44 workouts. Each workout thereby contains 10, 20 or
40 repetitions of the workout, depending on the workout type and the person.
An example workout recording that contains jumping jacks, squats, pushups,
and situps, in this order, is shown in Fig. 4. The no-workout parts of those
samples contain diverse resting related activities (uncontrolled and individual
for each participant), including sitting, standing, walking, drinking water, and
the transition from one workout type to another one, like getting from push-ups.
After data was recorded, the periods corresponding to the four target workout
types, as well as all no-workout periods were annotated in the data. This resulted
in a total of 55 workout samples (11 being no-workout). Examples for workout
containing jumping jacks, situps, and squats, are shown in Fig. 5. Those extracted
samples thereby form the basis for training and evaluating the workout type
recognition and repetition counting.



8 Kacper Skawinski et al.

(a) Jumping jacks

(b) Situps

(c) Squats

Fig. 5. Acceleration [ m
s2

] for samples with different workout types recorded on the chest.
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(a) Accuracy (b) Loss

Fig. 6. Accuracy (a) and loss (b) over training and validation data.

4.3 Evaluation Setup

To train and evaluate our approach, we utilize a training-validation test set
data partitioning approach on the recorded evaluation data set. The training,
validation, and test set contain 75%, 17.5%, and 7.5% of all samples, respectively.
The CNN model is trained with the training data and a batch size of 512. The
validation data is used to monitor the training progress and to stop training when
the accuracy over the validation set does not improve anymore, within a small
tolerance, for four consecutive epochs. The test data is used to report the final
workout detection and type recognition rates once the model has been trained.

5 Results

5.1 Exercise Type Recognition Results

Results for workout type recognition in general indicate good recognition results.
The overall accuracy is 90.6% for the validation set and 89.9% for the test set,
with a final loss over test data of 0.206 (Fig 6). The confusion matrix (Fig. 7)
indicates only minor confusion between certain types of workout/no workout.
Confusion is most frequent between no pushups and no exercise (10% of no
pushups recognized as no exercise, 4% of no exercise recognized as pushups), and
between situps and squats (10% of situps recognized as squats, and 7% of squats
recognized as situps).

With the ready trained model, the time required to predict the workout type
for one 1 s long workout sample was measured to be on average 39.74µs, with
a standard deviation of 6.79µs (1000 predictions from test set samples). Those
measurements were done on a Lenovo ThinkPad X1 Carbon with Intel Core
i7-8550U 1.80GHz×8 processor and 16 GB of memory.

5.2 Workout Repetition Counting Results

Once the workout type has been recognized, the workout repetition counting
yields accuracies in between 97.4%-98.7% (Tab. 2). While errors with pushups
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Fig. 7. Normalized confusion matrix.

Table 2. Repetition counting results per type of workout, with the total contained
repetition, the repetitions detected by our approach, the amount of false positives and
false negatives, and the accuracy resulting thereof.

Workout Contained Detected False negatives False positives Accuracy

Pushups 116 113 3 0 97.4%
Situps 159 161 0 2 98.7%
Squats 136 139 0 3 97.8%

Jumping jacks 172 168 4 0 97.7%

and jumping jacks were caused by false negatives (repetitions not being detected),
errors with situps and squats were caused by false positives (falsely detecting a
repetition where there is none). The average detection accuracy of repetitions
over the four workout types thereby is 97.9%. Examples for repetitions being
detected in a continuous workout for doing pushups, situps, and jumping jacks
are shown in Fig. 8.

6 Conclusions

This paper has presented a methodology to recognize four different workout types
and count workout repetitions from 3D acceleration sensor data of the chest area.
Our approach at first detects the type of workout, or, if no workout is performed,
using a 5 layered CNN model. Once the workout types has been determined we
utilize a PCA and peak detection based algorithm to count the repetitions inside
a workout session of one workout type. For evaluating our approach we utilize
a self-recorded data set of 10 subjects with a total of 55 continuous workout
periods and a total of 583 workout repetitions. Results indicate our workout
type recognition to detect the workout type, or no workout being performed,
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(a) Pushups

(b) Situps

(c) Jumping jacks

Fig. 8. Peak counting based on the acceleration [ m
s2

] sensed for samples with (a) pushups,
(b) situps, and (c) jumping jacks.
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correctly with an average accuracy of 89.9%. Once the workout type has been
determined by our approach, results for workout repetition counting indicate an
average counting accuracy of 97.9%. One limitation of our study is the limited
insight into the suitability of different sensor positions on the human body for
detecting those workout types and counting repetitions in them. Future work
could therefore investigate and compare the suitability of different positions on
the human body to wear the sensor on.
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