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Abstract—The first-generation of the Internet-of-
Things (IoT) was developed and deployed all over the
world by connecting devices with common functionalities
that were not sufficiently efficient or reliable for use
in dynamic situations that require adaptive solutions.
However, these fundamental IoT functions and services
mainly targeted stable environments; there is consequently
a strong need for the next generation of IoT services to
be smarter, faster, and more reliable. We believe that
the hyper-connected IoT ecosystem on Fog platforms
with contextual AI technologies is a promising solution.
In this work, we introduce the Elastic-IoT-Fog (EiF),
a flexible Fog computing framework that runs on IoT
gateways with adaptive AI services fostered on the Cloud.
Our approach can be viewed as an integration of three
emerging technologies, namely IoT, Fog, and AI. Generally,
EiF virtualizes an IoT service layer platform for fog nodes
and provides functions to manage and orchestrate various
fog nodes; upon service virtualization and orchestration,
AI services are fostered within both the federated Cloud
and distributed edge side and are deployed on fog nodes.
We demonstrate the feasibility of EiF via the example of
intelligent traffic flow monitoring and management.

Index Terms—IoT, Cloud, Follow-up fog, Distributed AI,
Softwarized IoT platforms.

INTRODUCTION

While cloud computing has laid a foundation
for providing computing resources to end users
and Internet-of-Things (IoT) service providers, fog
computing is taking its first steps toward making
IoT Clouds more elastic (“Elastic IoT”) by leverag-
ing the computation capabilities at the Cloud and
edge level. Nevertheless, the current fog computing
paradigm still faces challenges, particularly when
dealing with situations that require context aware-
ness and autonomous decision-making under real-
time constraints. Artificial Intelligence (AI) tech-

nologies, as largely adopted by industry, promise
to boost fog computing by providing distributed AI
services in fog nodes. IoT, Fog Computing, and AI
are the three most important technologies to drive
the next-generation computing ecosystem. Each
technology has been developed independently [1],
[2], [3].

IoT is currently re-drawing our daily lives by
enabling access to basically every physical object
around the world. These things can deliver infor-
mation and make the services of those physical
objects available on the Cloud [4]. However, many
IoT platforms, supporting basic functions, do not
satisfy the requirements of many industries and
domains that are searching for smarter, faster, and
more reliable IoT services. Many IoT manufacturers
and service providers are paying more attention
to Fog Computing because of its advantages, i.e.,
its greater computational power, knowledge, and
analytics placed as close to users as possible [5], [6],
[7]. Fog Computing typically virtualizes network
resources and places them at Fog nodes. However,
network resources and IoT platforms, services, and
knowledge are all expected to be located at Fog
nodes when using IoT. AI technologies are rapidly
progressing and have recently accelerated in a man-
ner that could not have been anticipated a few
years ago. For example, deep learning technology
is taking the task of processing unstructured data
such as video or audio out of the hands of highly
experienced experts and has enabled a larger work-
force of programmers to use AI-provided cognitive
services [8].

However, these technologies are only useful in
specific fields. The efforts and research put into
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integrating these key technologies is currently still
in its early stages. This paper intends to find the
synergy path through integrating IoT, Fog Comput-
ing, and AI to tackle the current limitations. We
propose the concept of Elastic Intelligent Fog (EiF),
an enhanced IoT service layer platform for Fog
nodes with advanced features such as semantics en-
ablement, the virtualization of common IoT service
functions, and the enablement of machine learning.
This enhanced platform can be dynamically instan-
tiated at the fog nodes and filter unnecessary data
to make quick decisions. In addition, since the fog
node is embedded with a lightweight AI engine
that can derive context and operational information
through managing sensors and adjacent intelligent
fog nodes, many value-added IoT services can be
introduced to users such as an intelligent traffic flow
monitoring service.

The main contributions of this article are as
follows:

• Define a framework for a global AI-enabled
fog computing paradigm and IoT-fostered AI
services.

• Define AI and IoT interactions in a distributed
architecture along with the technology interop-
erability in fog computing environments.

• Provide network user and user mobility-aware
technologies located in the terminal to reduce
network overhead and round-trip time.

The next section describes the challenges and mo-
tivation of the EiF framework, and then presents an
overview of the EiF reference architecture, followed
by detailing essential techniques. The next section
discusses the feasibility of EiF through introducing
detailed procedures of EiF migration and simulation
results. The last section summarizes this paper and
suggests future work.

CHALLENGES AND MOTIVATION

In this section, we discuss five challenges (C1-C5)
of IoT, Cloud, and AI to motivate the need for
an adaptive IoT service layer platform with the
intelligence to run on fog IoT nodes (see Fig. 1)

C1. No architecture framework: The huge amount
of data and knowledge from the IoT world is
the most promising field to drive cross-domain AI
research and enable machine learning to create
highly developed AI services [9]. However, existing

Internet-of-Things Devices

IoT Platforms
(Managing IoT devices and data)

Cloud Platforms

AI Platforms

Networks (3GPP Core Network, NFV/SDN)

C1: Not interoperable

C2: PerformanceLong
RTT

C3: Real-time service

C4: Lack of meaning

C5: Data availability

Cloud

Fig. 1: Challenges for three trendy technologies.

IoT platforms require the intelligence to improve
resource management and support cross-domain in-
teractions. Defining common reference architecture
for the Cloud, IoT, and AI interactions helps us
understand the behaviors of future IoT platforms
and AI services.

C2. Virtualization and Softwarization: Many re-
search activities focus on the virtualization of net-
work access and core networks [10]. However, the
network functions for IoT service layers and AI
engines that execute AI algorithms can also be
virtualized, bringing similar benefits such as opti-
mization and Quality-of-Service (QoS) mediation.
This limits the flexibility and on-demand ability,
but the processing capability is close to the target
objects. Having a flexible and self-optimizing soft-
ware layer at the IoT fog nodes will greatly extend
the applicability of AI/IoT services for different
execution environments.

C3. Real-time dynamic configuration: Fog IoT
systems are still mostly manually configured and run
in a static configuration [11]. Only a few systems
have an explicit programming model that makes
programming Cloud/fog systems more effective and
easier. In addition, neither the current cloud com-
puting nor the IoT service layer platform supports
dynamic configuration, which would be required
to migrate software instances that run on a fog
node between data centers following their respective
users.

C4. Semantics and Context for Operation: Mod-
ern AI technology is severely limited by two factors:
(a) domain information models without semantic de-
scriptions, and (b) lack of understanding of the op-
erational conditions under which AI-based services
operate. The former problem severely increases the
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effort of using available information by introducing
labor-intensive manual tasks for data scientists. The
latter limits the use of AI to well-prepared and
understood contexts, which contradicts the idea of
using AI in real-world operational systems. Au-
tomatically incorporating domain models into AI
engines and training AI engines for an exploding
set of contexts greatly increases the computational
load and complexity of AI engines.
C5. Data Availability and Integration: AI engines
are built into traditional applications, spanning a
wide range from banking to home automation. In
such cases, the AI uses predefined datasets that are
typically trained while being designed and that only
support a specific information model. However, AI
will increasingly be deployed in dynamic environ-
ments with previously unknown sets of available
information. AI/IoT systems will need to continu-
ally adapt and learn new skills as their environments
change. Unfortunately, integrating various data from
different information systems that have not been
designed for integration necessitates the handling of
subtle differences in the information model.

TECHNICAL APPROACH

This section provides a summary of the technical
approach to build an EiF framework.
Fog Clouds following Users. The concept of
Follow-Me Cloud (FMC) was proposed to support
the smooth migration of ongoing Internet Proto-
col (IP) services between data centers to follow their
respective users [12]. While several works have ad-
dressed service migration, EiF aims to consider this
principle for Mobile Fog Computing (MFC) [13].
Pushing computation processes to edge server, in
the vicinity of end-users, reduces delays and enables
applications that require millisecond-range response
times. Similar in spirit to FMC, the concept of
Follow-Me-Fog (FMF) ensures that IoT applica-
tions/services follow the mobility of users through
Multi-access Edge Computing (MEC). A smooth
implementation of FMF requires a full consideration
of the MEC architecture. In addition, EiF uses AI to
perform decisions about service migrations. Based
on monitoring data related to user movement pat-
terns, preferences, and requested services, efficient
decisions can be made that improve the quality of
experience.
Semantic and Context for AI. AI needs to solve

two problems: meaning and context. EiF solves
these using semantic and AI techniques. For the
semantic task, EiF adopts a mechanism to translate
natural language mechanically into data through
word generation-based logic to understand language
through understandable principles and thus express
language structure and thoughts [14]. For context,
EiF fully understands the meaning of text and
extends existing automated knowledge discovery
functions by supplementing the text of a document
with a repository containing global knowledge that
can be retrieved from the context.

Virtualization and Slicing. In addition to basic
network slicing features such as isolation and cus-
tomization, EiF also introduces an AI-based pre-
dictive network resource allocation mechanism that
can tremendously impact the scalability and per-
formance of network slices. Moreover, EiF enables
greater intelligence and network slicing capabilities,
particularly in the service mobility aspect by using
smart algorithms to determine and trigger network
slice mobility and its implementation. In addition,
network functions for IoT service layers are virtu-
alized in EiF [15], which means that only necessary
common IoT service functions, such as device man-
agement, group data handling, and discovery, that
can be dynamically deployed to a fog cloud node.

Orchestration and Management. Orchestration
functions in EiF helps in managing all dependencies
and relationships between services that comprise
a particular application, similar to typical Cloud
Services. In addition to this basic orchestration
function, EiF applies machine learning to benefit
coordinated Fog and Cloud service orchestration,
focusing on proactive QoS enactment and service
adaptation mechanisms. For this, EiF provides pre-
emptive service management to predict the failure
and QoS degradation of services based on the
monitoring data that the monitoring system makes
available, and can reconfigure or replace services
that are predicted to fail before their failure occurs,
which improves the availability and overall QoS.

Distributed AI and AI Reasoning. EiF benefits
from existing AI technologies and provides Ma-
chine Learning techniques for distributed AI that
can run on Fog nodes. Adaptive and federated
algorithms that can offer cognitive functions are
developed for this with increased performance and
efficiency, including characteristics from the feder-
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Fig. 2: Conceptual view of EiF

ated learning approach, by implementing and ex-
panding the techniques used in Automated Machine
Learning (https://automl.info/). Distributed AIs ex-
change data with each other through the fog cloud
and the central IoT cloud develops a federation
of machine-learning and deep-learning models. In
addition, both deductive and inductive reasoning are
addressed to extract critical information from large
sets of structured and unstructured data. This allows
EiF to visualize and examine problems that need
solving from different perspectives.

EIF SYSTEM OVERVIEW

This section provides an overview of the EiF archi-
tecture. EiF’s main goal is to provide cross-border
AI services using highly distributed, reliable, and
precise fog cloud-based IoT systems.

Fig. 2 shows the conceptual view of the EiF
system. Traditional cloud and IoT platforms are
not designed to support recent emerging needs
for intelligent real-time applications. However, EiF
enhances existing cloud and IoT platforms with a
framework that enables dynamically extending the
smart things managed by IoT with AI capabilities to
intelligent things. Modern software methodologies
such as virtualization and intention-driven software
composition can help combine AI and IoT into a
single system. The central cloud is designed to ac-
commodate various functions that enable intelligent
AI services using IoT data management and seman-
tic technologies. This central cloud also provides the
APIs used by AI applications to utilize pre-defined
AI and IoT components provided by a Platform-as-
a-Service (PaaS) layer with a home in various data
hubs. The fog Cloud virtualizes network functions,
IoT functions, and AI functions to provide required
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Fig. 3: Detailed EiF functional architecture

services to places that are close to users. As this fog
Cloud for services requires real-time feedback and
processing, it has management function orchestra-
tion and manages required virtual functions in real-
time. Both layers communicate via a standardized
interface to synchronize services and data, manage
virtual resources, provision security and trust, train
AI algorithms from distributed knowledge, etc. AI
engines such as face recognition, anomaly detection,
and real-time situation analysis are integrated into
the data-stream analysis process.

The EiF system is characterized by (a) dynamic
loading of virtual AI/IoT functions from trusted
Cloud servers, (b) the use of virtualization tech-
niques for function shipping (such as data transfor-
mation routines) from trusted repositories or Cloud
servers and isolating different applications and pro-
cessing flows as slices, (c) smart-object orchestra-
tion with intelligent AI functions to form Intelligent
Things, and (d) dynamic utilization of fog gateways
and Cloud servers based on the interpretation of
abstract descriptions of processing flows while also
profiling components and flows to achieve AI-based
optimization. The predicted deployment of billions
of devices and the global access required by cross-
border AI services necessitate a layered real-time
management approach, from fog-computing models
to Cloud computing, and the ability to cope with
common service functions such as discovery mech-
anisms and end-to-end security.

REALIZATION OF EIF

EiF provides a management system for AI services
via an adaptive federation learning process as de-
picted in Fig. 3. EiF provides a management system
for AI services via an adaptive federation learn-
ing process and collects data from infrastructure
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resources, application components, data functions,
and AI operations. Furthermore, the framework
supports the dynamic provisioning of slicing units
and respective resource elasticity. A scale-in/out
model for slicing units permits the reservation of
only necessary resources to deployed slices. In that
framework, slicing algorithms are triggered together
to support the aforementioned technique.

Additionally, the monitoring framework is de-
signed to be adaptive as per the metrics be-
ing collected, which allows the incorporation of
application-specific monitoring probes that follow
identified metrics and AI operations specific metrics
based on stakeholder-defined parameters. AI reason-
ing is used to discover additional knowledge from
federated data in the central Cloud, while inference
is applied to the edge Cloud for local knowledge
discovery. In particular, interactions between fog
inference and Cloud reasoning enables mutual en-
richment and knowledge sharing.

In our previous FME work [12], an average
downtime was experienced for lightweight service
migration (e.g., around two seconds) and launching
new services took some time, which can affect ser-
vice functionality and Quality of Experience (QoE).
EiF overcomes this problem by leveraging AI to an-
ticipate user mobility patterns and traffic generation,
and then accordingly customize services so that the
QoE is not jeopardized and the service interruption
can be prevented. Thanks to EiF, if a user’s mobility
pattern can be predicted, the times and locations
(i.e., fog or Cloud) at which the services should
be placed can be optimally determined, which can
reduce the service relocation frequency (i.e., migra-
tion) while ensuring QoE.

EiF adopts a distributed AI with a two-layer struc-
ture to analyze the relationship between situations
that occur in environments that require distributed
AI. At the lowest layer, the components are detected
in each environment. The relationships between the
fog results obtained from the bottom layer are
analyzed in the upper Cloud layer. The system
collects video images of the target situation to be
analyzed from each environment to learn about the
lowest layer of distributed AI. Through classifying
objects’ appearances and positions that constitute
video images, the system analyzes them into a
learnable AI dataset from which the system can start
to advance its AI using deep learning architectures.

Fog DFog C Central
CloudFog A

Smart City
Environment sensors

1. Collect data 

Fog B
Pedestrian

Virtualize service function for fine dust level analysis to Fog nodes

2. Process input data and 
collaborate with adjacent Fogs

3. Exchange info 
with adjacent Fogs

4. Send fine dust and relevant info

5. Analyze available resources 
and nearby pedestrians

6. Send warning information

Fig. 4: Procedure for fine dust warning service

In the upper layer, a probability graph model is used
to judge the situation in real time by considering the
relationships between generated results. The system
returns results as formatted metadata.

USE CASE AND SIMULATION RESULTS

This section describes a use case and presents
simulation results to show the feasibility of the EiF
concept.

Use Case. One example for utilizing EiF is warning
pedestrians about fine dust levels and providing
environment information based on machine learning
executed on a fog device. Unlike a traditional fine-
dust warning forecast, the forecast service on EiF is
focused on fine dust and other relevant information
(e.g., temperature and humidity) at 20 meters from
where the sample should be collected to analyze the
air pollution at the ground and is available for any
point or route around the globe thanks to the EiF’s
dynamicity and FMC. The forecast is created from a
network of observational road Edge/Fog nodes, fine-
dust models, and machine-learning algorithms. The
service can provide hyper-local insights into current
and forecasted road/ground fine dust conditions,
pavement temperatures, and relevant information at
a geo-location-level granularity.

Procedures. Fig. 4 shows the procedures of how
EiF supports the fine-dust warning service through
orchestrating various network entities. In this proce-
dure, we assume that a virtualized IoT platform and
distributed AI engine are deployed at fog nodes.

In our scenario, various input data that are helpful
for analyzing the fine-dust level from distributed
sensors are analyzed by Fog node A (Fog-A). The
set of input data includes the temperature, humidity,
local weather conditions, wind, and surveillance
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cameras deployed on the road. A distributed AI
engine in Fog-A processes collected data, and if
Fog-A’s processing capability is insufficient, pool-
based capability sharing/scaling with other nearby
Fog nodes can be utilized. If Fog-B, that is adjacent
to Fog-A, knows the weather conditions but does not
have other information required to analyze the fine-
dust level, Fog-B tries to get these information from
Fog-A and/or the central IoT server platform. Then,
Fog-B analyzes all the information and retrieves
the fine-dust level for its local area. Fog-B also
performs analysis on its video input streams to send
the appropriate fine dust level (whether high- or low-
quality) to pedestrians who are heading towards its
locality.

Simulation Results. This section presents prelimi-
nary simulation results regarding the performance of
EiF. We used the scenario addressed in Fig. 4 in the
simulation with a real IoT dataset collected from the
Santander Smart City in Spain and portrait image
dataset from Google. We showed the feasibility of
EiF by measuring the Round Trip Time (RTT) of
IoT data and machine learning results exchange.
Here, we consider no congestion in the used links
between entities. We compare EiF against the case
where all processing was performed at the central

Cloud server.
Fig. 5 shows how IoT sensor data (i.e., tem-

perature, humidity and fine-dust concentration) can
be exchanged and processed in both the EiF and
the central Cloud environment. The central Cloud
server receives all the measured data information
directly from the sensors. In case of EiF, Fog-1
and 2 share measured data information with each
other so that even if one of them encounters a
problem, the service can work through the other
nodes. This result clearly shows that EiF achieves
lower data latency than the central Cloud envi-
ronment as the service and processing are always
placed at the nearest fog entities. In contrast, if no
elastic edge/fog concept is used, the data latency
and IoT data processing time obviously increase
as the central Cloud is only reachable via long
communication paths. Fig. 6 shows RTT for high-
volume image data. Regarding data exchange time
for machine learning, EiF is 1.5 times better than
the conventional Cloud environment.

These experimental results clearly show that EiF
is more efficient than the central Cloud system for
both general IoT sensor data processing and high-
volume data processing. However, the gain of EiF
has a cost associated with signaling and coordi-
nation between the number of Fog entities, which
is obviously higher than the central system. This
observation clearly indicates a need for more so-
phisticated distributed machine learning algorithms.

CONCLUSIONS

This article introduces EiF, a novel architectural
framework that integrates recent trendy technolo-
gies, namely AI, IoT, and the Cloud, to support
cross-border AI services that use highly distributed,
reliable, and precise cloud-based IoT systems and
technologies. EiF virtualizes an IoT service layer
platform such that only necessary functions can be
sent to fog nodes in the vicinity of end-users. Both
lightweight IoT service functions and AI engines
can be placed at fog nodes. The orchestration and
management of various fog nodes are also key
features of EiF. Finally, distributed AI technologies
are deployed at fog nodes to train machine-learning
models and make decisions as rapidly as possible.
We validated the EiF concept through simulations
and the results clearly show the benefit of using
EiF compared to a conventional centralized Cloud
platform. For future work, we plan to apply EiF in



7

various AI environments, such as recommendation
models, which usually involve embedding tables
requiring distributed inference.
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