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THE CONJUGATE FUNCTION METHOD AND CONFORMAL
MAPPINGS IN MULTIPLY CONNECTED DOMAINS\ast 

HARRI HAKULA\dagger , TRI QUACH\dagger , AND ANTTI RASILA\ddagger 

Abstract. The conjugate function method is an algorithm for numerical computation of con-
formal mappings for simply and doubly connected domains. In this paper the conjugate function
method is generalized for multiply connected domains. The key challenge addressed here is the con-
struction of the conjugate domain and the associated conjugate problem. All variants of the method
preserve the so-called reciprocal relation of the moduli. An implementation of the algorithm is given
along with several examples and illustrations.
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1. Introduction. Conformal mappings play an important role in theoretical
complex analysis and in certain engineering applications, such as electrostatics, aero-
dynamics, and fluid mechanics. Existence of conformal mappings of simply connected
domains onto the upper half-plane or the unit disk follows from the Riemann map-
ping theorem, and there are generalizations of this result for doubly and multiply
connected domains [2]. However, constructing such mappings analytically is usually
very difficult, and numerical methods are required.

There exists an extensive literature on numerical construction of conformal map-
pings for simply and doubly connected domains [26]. One popular method is based
on the Schwarz--Christoffel formula [13], and its implementation SC Toolbox is due
to Driscoll [11, 12]. SC Toolbox itself is based on an earlier FORTRAN package by
Trefethen [29]. A new algorithm involving a finite element method and the harmonic
conjugate function was presented by the authors in [15].

While the study of numerical conformal mappings in multiply connected do-
mains dates back to the 1980s [24, 27], recently there has been significant interest
in the subject. DeLillo, Elcrat, and Pfaltzgraff [9] were the first to give a Schwarz--
Christoffel formula for unbounded multiply connected domains. Their method relies
on the Schwarzian reflection principle. Crowdy [4] was the first to derive a Schwarz--
Christoffel formula for bounded multiply connected domains, which was based on the
use of the Schottky--Klein prime function. In a very recent paper [28] conformal maps
from multiply connected domains onto lemniscatic domains have been discussed. The
natural extension of this result to unbounded multiply connected domains is given in
[5]. It should be noted that a MATLAB implementation of the Schottky--Klein prime
function is freely available [7], and the algorithm is described in [8]. A method involv-
ing the harmonic conjugate function is given in [23], but the approach there differs
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A1754 HARRI HAKULA, TRI QUACH, AND ANTTI RASILA

from ours. Still another approach is given by Zeng and et al. [32], where Koebe's
conventional method for multiply connected planar surfaces is generalized.

The foundation of conjugate function methods for simply and doubly connected
domains lies on properties of the (conformal) modulus, which originates from the the-
ory of quasiconformal mappings [1, 22, 26]. Here we investigate conformal mappings
onto two types of canonical domains, and the associated boundary value problems
that are, respectively, intended to generalize the concepts of the canonical quadrilat-
eral and the ring domain, conformal mappings of which were investigated in [15]. In
the following, for convenience we refer to these two classes of problems as Q-type and
R-type, respectively.

Heuristically, the Q-type configuration refers to the situation where the ideal fluid
flows from one arc on the exterior component of the boundary to another, and the
interior components of the boundary are understood as nonabsorbing. In this case,
the canonical domain is a rectangle where the width is normalized to be one, the
height is a number d > 0 that can be understood as the modulus of the curve family
connecting the above-mentioned boundary arcs, and the interior components of the
boundary are mapped onto horizontal slits. The R-type configurations generalize the
concept of the ring domain, where ideal fluid flows from interior boundary components
to the exterior boundary. In this case, the canonical domain is the spherical annulus
AlogR = \{ z : 1 < | z| < R\} with radial slits. For simplicity, we investigate only
the case of a Denjoy domain, where the canonical domain can be chosen so that the
boundary components map onto line segments on the positive real axis. In particular,
this is true for all triply connected domains (cf. [14, pp. 128--130]).

In terms of partial differential equations (PDEs), the conformal mapping is defined
by a harmonic potential u and its harmonic conjugate v. One has to first find the
potential u by solving the Laplace equation \Delta u = 0 in the domain \Omega , with boundary
conditions

(1.1) 1N
\partial u

\partial n
+ 1Du = f(x, y) on \partial \Omega ,

where the indicator functions refer to Neumann and Dirichlet boundary parts, respec-
tively. These boundary conditions can be defined by the application, thus determining
the type of the problem, or alternatively the choice of the preferred mapping deter-
mines the boundary conditions. In the cases considered here, from the solution u one
can formulate a conjugate problem with a solution v, the harmonic conjugate of u,
and together u and v define the conformal mapping. Crucially, when the conjugate
problem is formulated, it is possible that cuts are introduced into the domain, and
therefore the computational domain is not necessarily the same in both solution steps.

Our two classes of problems are not exhaustive; however, the fundamental ideas
presented here can be applied to configurations not directly addressed by this paper.
In Figure 1.1 two representative mappings of the same domain are constructed. In
both cases the canonical domains are slit domains, first catalogued by Koebe [21].

Our method is suitable for a very general class of domains, allowing curved bound-
aries and even cusps. The implementation of the algorithm is based on the hp-finite
element method (hp-FEM) described in [16], and in [17] it is generalized to cover un-
bounded domains. In [18], the method has been used to compute moduli of domains
with strong singularities.

The accuracy of the method has been evaluated by solving three benchmark
problems: one computing resistances [10] and two on capacities [3]. In each case the
results agree with those obtained with either special-purpose methods or adaptive
h-FEM.
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CONJUGATE FUNCTION METHOD AND CONFORMAL MAPPINGS A1755

(a) R-type. Contour plot of u.
Dirichlet on all boundaries. Inte-
rior u = 1, exterior u = 0. Saddle
point and cuts are indicated.

(b) Q-type. Contour plot of u.
Dirichlet on left (u = 0) and
right (u = 1). Neumann zero-
condition on other boundaries.
Locations of maxima and minima
on the interior boundaries are in-
dicated.

(c) R-type. Contour plot of u and
v. Cuts are equipotential lines in
v.

(d) Q-type. Contour plot of u
and v.

0 1

d

3d/4

d/4

(e) R-type. Canonical domain in
(u, v). Image scaled to d = 1.
Saddle point lies on two oriented
cuts. Width of the slit is deter-
mined by the potential of u at the
saddle point. This domain can be
further mapped to annulus Ad.

0 1

d

d/2

(f) Q-type. Canonical domain in
(u, v). Image scaled to d = 1.
Width of the slit is determined
by the potential difference of u
at the local maximum and min-
imum.

Fig. 1.1. Conjugate function method and conformal mappings: Two circles in rectangle.

The rest of the paper is organized as follows. In section 2 the necessary concepts
from function theory are introduced. The new algorithms for multiply connected
domains are described in sections 3 and 4 for types of R and Q, respectively. After
the numerical implementation is discussed, an extensive set of numerical experiments
is analyzed before brief conclusions are given.

2. Preliminaries. In this section we introduce concepts from function theory
and review the algorithm for simply or doubly connected domains. For details and
references, see [15].
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Definition 2.1 (modulus of a quadrilateral). A Jordan domain \Omega in \BbbC with
marked (positively ordered) points z1, z2, z3, z4 \in \partial \Omega is called a quadrilateral and de-
noted by Q = (\Omega ; z1, z2, z3, z4). Then there is a canonical conformal map of the quadri-
lateral Q onto a rectangle Rd = (\Omega \prime ; 1+ id, id, 0, 1), with the vertices corresponding to
where the quantity d defines the modulus of a quadrilateral Q. We write

M(Q) = d.

Notice that the modulus d is unique.

Lemma 2.2 (reciprocal identity). The reciprocal identity

(2.1) M(Q)M( \~Q) = 1

holds, where \~Q = (\Omega ; z2, z3, z4, z1) is called the conjugate quadrilateral of Q.

2.1. Dirichlet--Neumann problem. It is well known that one can express the
modulus of a quadrilateral Q in terms of the solution of the Dirichlet--Neumann mixed
boundary value problem.

Let \Omega be a domain in the complex plane whose boundary \partial \Omega consists of a finite
number of piecewise regular Jordan curves, so that at every point, except possibly at
finitely many points of the boundary, an exterior normal is defined. Let \partial \Omega = A\cup B,
where both A,B are unions of regular Jordan arcs such that A \cap B is finite. Let \psi A,
\psi B be real-valued continuous functions defined on A,B, respectively. Find a function
u satisfying the following conditions:

1. u is continuous and differentiable in \Omega .
2. u(t) = \psi A(t) for all t \in A.
3. If \partial /\partial n denotes differentiation in the direction of the exterior normal, then

\partial 

\partial n
u(t) = \psi B(t) for all t \in B.

The problem associated with the conjugate quadrilateral \~Q is called the conjugate
Dirichlet--Neumann problem.

Let \gamma j , j = 1, 2, 3, 4, be the arcs of \partial \Omega between (z1, z2), (z2, z3), (z3, z4), (z4, z1),
respectively. Suppose that u is the (unique) harmonic solution of the Dirichlet--
Neumann problem with mixed boundary values of u equal to 0 on \gamma 2 and to 1 on
\gamma 4, and \partial u/\partial n = 0 on \gamma 1, \gamma 3. Then

(2.2) M(Q) =

\int \int 
\Omega 

| \nabla u| 2 dx dy.

Suppose that Q is a quadrilateral and u is the harmonic solution of the Dirichlet--
Neumann problem, and let v be a conjugate harmonic function of u, v(Re z3, Im z3) = 0.
Then f = u+ iv is an analytic function, and it maps \Omega onto a rectangle Rh such that
the images of the points z1, z2, z3, z4 are 1 + id, id, 0, 1, respectively. Furthermore,
by Carath\'eodory's theorem, f has a continuous boundary extension which maps the
boundary curves \gamma 1, \gamma 2, \gamma 3, \gamma 4 onto the line segments \gamma \prime 1, \gamma 

\prime 
2, \gamma 

\prime 
3, \gamma 

\prime 
4.

Lemma 2.3. Let Q be a quadrilateral with modulus d, and let u be the harmonic
solution of the Dirichlet--Neumann problem. Suppose that v is the harmonic conjugate
function of u, with v(Re z3, Im z3) = 0. If \~u is the harmonic solution of the Dirichlet--
Neumann problem associated with the conjugate quadrilateral \~Q, then v = d\~u.
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2.2. Ring domains. Let E0 and E1 be two disjoint and connected compact sets
in the extended complex plane \BbbC \infty = \BbbC \cup \{ \infty \} . Then one of the sets E0 or E1 is
bounded, and without loss of generality we may assume that it is E1. Then a set
R = \BbbC \infty \setminus (E0 \cup E1) is connected and is called a ring domain. The capacity of R is
defined by

cap(R) = inf
u

\int \int 
R

| \nabla u| 2 dx dy,

where the infimum is taken over all nonnegative, piecewise differentiable functions u
with compact support in R \cup E0 such that u = 1 on E0 and u = 0 on E1. Suppose
that a function u is defined on R with 1 on E0 and 0 on E1. Then if u is harmonic, it
is unique and minimizes the integral above. The conformal modulus of a ring domain
R is defined by M(R) = 2\pi /cap(R). The ring domain R can be mapped conformally
onto the annulus Ar, where r = M(R).

2.3. Conjugate function method. For simply connected domains the conju-
gate function method can be defined in three steps.

Algorithm 2.4 (conjugate function method).
1. Solve the Dirichlet--Neumann problem to obtain u and compute the modulus d.
2. Solve the Dirichlet--Neumann problem associated with \~Q to obtain v.
3. Then f = u + idv is the conformal mapping from Q onto Rd such that the

vertices (z1, z2, z3, z4) are mapped onto the corners (1 + id, id, 0, 1).

For ring domains the algorithm has to be modified of course, and here the fun-
damental step is the cutting of the domain along the path of steepest descent, which
enables us to return the problem to settings similar to those for the simply connected
case.

Algorithm 2.5 (conjugate function method for ring domains).
1. Solve the Dirichlet problem to obtain the potential function u and the modulus

M(R).
2. Cut the ring domain through the steepest descent curve which is given by the

gradient of the potential function u and obtain a quadrilateral where the Neu-
mann condition is on the steepest descent curve and the Dirichlet boundaries
remain as before.

3. Use the method for simply connected domains (Algorithm 2.4).

Notice that the choice of the steepest descent curve is not unique due to the
implicit orthogonality condition. In Figure 2.1 an example of the ring domain case
is given. The key observation is that d =

\int 
\Gamma 
| \nabla u| ds, where \Gamma is any of the contour

lines of the solution v. In Figure 2.1b the Dirichlet boundary conditions are set to be
0 and d instead of usual choices of 0 and 1. This choice does not have any effect on
Figure 2.1c but is of paramount interest in the generalization of the algorithm.

Definition 2.6 (cut). A cut \gamma is a curve in the domain \Omega , which introduces
two boundary segments denoted by \gamma + and \gamma  - to the conjugate domain \~\Omega . Along the
oriented boundary \partial \~\Omega , the segments \gamma + and \gamma  - are traversed in opposite directions.

For the sake of discussion, below we define the conjugate problem directly. The
cut \gamma (Definition 2.6) has its end points on \partial E0 and \partial E1. One choice for the (oriented)
boundary of conjugate domain \~\Omega starting from the end point of \gamma on \partial E1 is given by
the set \{ \gamma +, \partial E0, \gamma 

 - , \partial E1\} as shown in Figure 2.1b. The boundary conditions are set
as u = 0 on \gamma +, u = d on \gamma  - , and \partial v/\partial n = 0 on \partial Ej , j = 1, 2.
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1

Γ

0

(a) Ring domain with bound-
ary conditions. \Gamma is one of
the contours, i.e., equipoten-
tial curves of the solution u.

d0

∂u
∂n
=0

∂u
∂n
=0

(b) Conjugate domain \~\Omega with
boundary conditions. Here
the Dirichlet boundary condi-
tions are taken to be 0 and
d =

\int 
\Gamma | \nabla u| ds.

(c) Conformal map. Contour
lines of u and v.

Fig. 2.1. Introduction to the conjugate function method for ring domains.

2.4. Canonical domains. The so-called canonical domains play a crucial role
in the theory of quasiconformal mappings (cf. [22]). These domains have a simple
geometric structure. Let us consider a conformal mapping f : \Omega \rightarrow D, where D is a
canonical domain and \Omega is the domain of interest. The choice of the canonical domain
depends on the connectivity of the domain \Omega , and both domains D and \Omega have the
same connectivity. It should be noted that in simply and doubly connected cases,
domains can be mapped conformally onto each other if and only if their moduli agree.
In this sense, moduli divide domains into conformal equivalence classes. For simply
connected domains, natural choices for canonical domains are the unit disk, the upper
half-plane, and a rectangle. In the case of doubly connected domains an annulus is
used as the canonical domain. For m-connected domains, m > 2, we have 3m  - 6
different moduli, which leads to various choices of canonical domains. These domains
have been studied in [14, 25]. The generalization of the Riemann mapping theorem
onto multiply connected domains is based on these moduli; see [14, Theorems 3.9.12
and 3.9.14].

3. Conjugate function method for multiply connected domains of type
\bfitR . Let us first formally define the multiply connected domains of type R and their
capacities. Let m > 2 and E0, E1, . . . , Em be disjoint and nondegenerate continua in
the extended complex plane \BbbC \infty = \BbbC \cup \{ \infty \} . Suppose that Ej , j = 1, 2, . . . ,m are
bounded; then a set \Omega m+1 = \BbbC \infty \setminus 

\bigcup m
j=0Ej is an (m + 1)-connected domain, and its

(conformal) capacity is defined by

cap (\Omega m+1) = inf
u

\int \int 
\Omega m+1

| \nabla u| 2 dx dy,

where the infimum is taken over all nonnegative, piecewise differentiable functions u
with compact support in

\bigcup m
j=1Ej \cup \Omega m+1 such that u = 1 on Ej , j = 1, 2, . . . ,m and

0 on E0. Suppose that a function u is defined on \Omega m+1 with 1 on Ej , j = 1, 2, . . . ,m
and 0 on E0. Then if u is harmonic, it is unique, and it minimizes the integral above.
The modulus of \Omega m+1 is defined by M(\Omega m+1) = 2\pi /cap (\Omega m+1). If the degree of
connectivity does not play an important role, the subscript will be omitted, and we
simply write \Omega .
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In contrast with the ring problem there is no immediate way to define a conjugate
problem. Indeed, it is clear that the conjugate domain cannot be a quadrilateral in
the sense of the definitions above. However, there exists a contour line \Gamma 0 such that
it encloses the sets Ej , j = 1, 2, . . . , and

(3.1) d = M(\Omega m+1) =

\int 
\Gamma 0

| \nabla u| ds.

Thus, there is an analogue for the cutting of the domain along the curve of
steepest descent. It can be assumed without loss of generality that the cut \gamma 0 (and
the Dirichlet conditions) is/are between E0 and E1. Then the immediate question is
how to cut the domain further between Ej , j = 1, 2, . . . ,m, in such a way that the
conjugate domain is simply connected, and set the boundary conditions so that the
Cauchy--Riemann equations are satisfied.

There is one additional property of the solution u that we can utilize. Namely,
for every Ej , j = 1, 2, . . . , there exists an enclosing contour line \Gamma j . The capacity has
a natural decomposition

(3.2) d =
\sum 
j

\^dj , \^dj =

\int 
\Gamma j

| \nabla u| ds =
\sum 
k

dk =
\sum 
k

\int 
\Gamma j,k

| \nabla u| ds,

where \Gamma j,k denotes a segment from discretization of the contour line \Gamma j = \cup k\Gamma j,k.

3.1. Saddle points. The saddle points of the solution u are of special interest.
Notice that for simply and doubly connected domains they do not exist, and thus
any generalization of Algorithm 2.4 must address them specifically. First, there are
two steepest descent curves emanating from every saddle point. This means that in
the conformal mapping of the domain, slits will emerge since the potential at the
saddle point must be less than one. Second, analogously there are two steepest ascent
curves reaching some boundary points zi, zj at boundaries \partial Ei, \partial Ej , respectively. In
addition, we say that Ei and Ej are conformally visible to each other.

Remark. For symmetric configurations there may be more than two steepest
descent and steepest ascent curves at the saddle point.

3.2. Cutting process. The orthogonality requirement implies that the curve
formed by joining two curves of steepest descent from Ei and Ej meeting at the saddle
point must be a contour line of the conjugate solution, that is, an equipotential curve.
It follows that as in the doubly connected case, both boundary segments induced by a
cut have a different Dirichlet condition. Therefore the cutting process can be outlined
as follows.

Algorithm 3.1 (cutting process).
1. Identify the saddle points sk, k = 1, 2, . . . .
2. Join the two curves of steepest descent from \partial Ei and \partial Ej meeting at the point
sk into cut \gamma m, m \geq 1.

3. Starting from the first cut, form an oriented boundary of a simply connected
domain by alternately traversing cuts \gamma m and segments of \partial Ej induced by the
cuts. Once the boundary is completed, every cut has been traversed twice (in
opposite directions) and every \partial Ej has been traversed once.

In Figure 3.1 two configurations are shown.

Remark. The symmetric case is covered if we allow for overlapping or partially
overlapping cuts.
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\gamma 2\gamma 1

\gamma 0

E1

E3E2

\Gamma 1,1

\Gamma 2

\Gamma 1,2

\Gamma 3

\Gamma 1,3

(a) Nonsymmetric case. Two saddle
points, five jumps.

\gamma 0

\Gamma 1,1

\Gamma 2 \Gamma 3

\Gamma 1,2

(b) Symmetric case. One saddle point,
four jumps.

Fig. 3.1. Examples of nonsymmetric and symmetric domains with cuts \gamma and decomposition
of jumping curves \Gamma i,k.

3.3. Dirichlet conditions over cuts. Once the domain \Omega has been cut and
the oriented boundary of the conjugate domain \~\Omega has been set up, it remains to set
the Dirichlet conditions over the cuts. Given that the first cut leads to boundary
conditions of 0 and d, it is sufficient to simply trace the oriented boundary of \~\Omega and
maintain the cumulative sum of jumps in modules computed over the segments \Gamma j,k

connecting two consecutive cuts. Referring to Figure 3.1, notice that the identity
(3.2) holds over the segments \Gamma j,k.

Algorithm 3.2 (Dirichlet conditions over cuts).
1. Set the Dirichlet boundary conditions of the boundary conditions induced by

the first cut to 0 and d.
2. Trace the boundary starting from the zero boundary and update the cumulative

sum of

dm =

\int 
\Gamma j,k

| \nabla u| ds,

where the \Gamma j,k are included in the order given by the boundary orientation.
3. At every cut, set the Dirichlet condition to the cumulative sum reached at that

point.

3.4. Reciprocal identity. Suppose that u is the (unique) harmonic solution of
the Dirichlet--Neumann problem given in the beginning of section 3. Let v be a con-
jugate harmonic function of u such that v(Re \~z, Im \~z) = 0, where \~z is the intersection
point of E0 and \gamma +0 .

Then \varphi = u + iv is an analytic function, and it maps \Omega onto a rectangle Rd =
\{ z \in \BbbC : 0 < Re z < 1, 0 < Im z < d\} minus n  - 2 line-segments, parallel to the
real axis, between points (u(\~zj), dj) and (1, dj), where \~zj is the saddle point of the
corresponding jth jump. In the process we have a total of n jumps. See Figure 3.2
for an illustration of a triply connected example.

Let v be the harmonic solution satisfying the boundary values v equal to 0 on \gamma +0
and equal to 1 on \gamma  - 0 , and Neumann conditions \partial v/\partial n = 0 on \partial Ej , j = 0, 1, . . . ,m.
For the cutting curves \gamma j , j = 1, 2, . . . ,m, we have Dirichlet conditions, and the value
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\gamma +0 \gamma  - 0

\gamma +1

\gamma  - 1
\varphi scaling

exp \circ rot
\varphi (\gamma +1 )

\varphi (\gamma  - 1 )

\varphi (\gamma +0 )

\varphi (\gamma  - 0 )

Fig. 3.2. Construction of the conformal mapping from the domain of interest onto a canonical
domain. In the first part, we use Algorithm 3.5, which creates the orange cut \gamma 0 and the dashed red
cut \gamma 1. In the algorithm these cuts are traversed twice, which leads to two separated line-segments
\varphi (\gamma +

k ) and \varphi (\gamma  - 
k ) on the rectangle. The latter part consist of a rotation, a scaling, and finally

mapping with the exponential function. See online figure for color.

is the cumulative sum
\sum m

j=0 dj . On the nth jump, we have on the corresponding
cutting curve \gamma j

v =

\sum n
j=0 dj

d
,

where dj are given by (3.2). Note that if \Gamma 0 is an equipotential curve from \gamma +0 to \gamma  - 0 ,
then we have

M(\~\Omega ) =

\int 
\Gamma 0

| \nabla v| ds = 1

d
.

Thus we have the following proposition, which has the same nature as the reciprocal
identity given in [16].

Proposition 3.3 (reciprocal identity). Suppose u and v are the solutions to
problems on \Omega and \~\Omega , respectively. If M(\Omega ) denotes the integral of the absolute value
of the gradient of v over the equipotential curve from \gamma +0 to \gamma  - 0 , and M(\~\Omega ) denotes
the same integral for v, then we have a normalized reciprocal identity

(3.3) M(\Omega )M(\~\Omega ) = 1.

This reciprocal identity can be used in measuring the relative error of the confor-
mal mapping. It should be noted that the mapping depends on 3m - 6 moduli. Thus,
theoretically it is possible to have an incorrect result for some of the moduli such
that the reciprocal identity holds. However, the probability of consistently having
incorrect moduli for significant applications is extremely low.

Lemma 3.4. Let \Omega be a multiply connected domain, and let u be the harmonic
solution of the Dirichlet--Neumann problem. Suppose that v is the harmonic conjugate
function of u such that v(Re \~z, Im \~z) = 0, where \~z is the intersection point of E0 and
\gamma +0 , and d is a real constant given by (3.1). If \~u is the harmonic solution of the
Dirichlet--Neumann problem associated with the conjugate problem of \Omega , then v = d\~u.

Proof. It is clear that v, \~u are harmonic. By the Cauchy--Riemann equations,
we have \langle \nabla u,\nabla v\rangle = 0. We may assume that the gradient of u does not vanish
on \partial Ej , j = 0, 1, . . . ,m. Then on \partial E0, we have n =  - \nabla u/| \nabla u| , where n denotes
the exterior normal of the boundary. Likewise, we have n = \nabla u/| \nabla u| on \partial Ej , j =
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1, 2, . . . ,m. Therefore

\partial v

\partial n
= \langle \nabla v, n\rangle = \pm 1

| \nabla u| 
\langle \nabla v,\nabla u\rangle = 0.

On the cutting curves, from the Cauchy--Riemann equations we have that | \nabla u| =
| \nabla v| , and from the jumping between cutting curves that d =

\sum n
j=0 dj . These results

together imply that on the nth jump, we have on the corresponding cutting curve \gamma k

v =

n\sum 
j=0

dj .

Then by the uniqueness theorem for harmonic functions [2, p. 166], we conclude that
v = d\~u.

Lastly, the proof of univalency of \varphi = u+ iv follows from the proof of univalency
of f in [15, Lemma 2.3].

3.5. Outline of the algorithm. For convenience we use \{ \gamma \} and \{ \partial E\} to
denote the sets of all cuts and boundaries, respectively.

Algorithm 3.5 (conjugate function method for multiply connected domains of
type R).

1. Solve the Dirichlet problem to obtain the potential function u and the modulus
d = M(\Omega ).

2. Choose one path of steepest descent reaching the outer boundary E0, \gamma 0.
3. Identify the saddle points sm.
4. For every saddle point: Find paths \gamma k, k > 1, joining two conformally visible

boundaries \partial Ei and \partial Ej by finding the paths of steepest descent meeting at
the point sm.

5. For every Ei: Choose a corresponding contour \Gamma i, compute its subdivision \Gamma i,k

induced by the paths \{ \gamma \} , and the corresponding jumps dk =
\int 
\Gamma i,k

| \nabla u| ds.
6. Construct the conjugate domain \~\Omega by forming an oriented boundary using

paths \{ \gamma \} and \{ \partial E\} .
7. Set the boundary conditions along paths \{ \gamma \} by accumulating jumps in the

order of traversal.
8. Solve the Dirichlet--Neumann problem on \~\Omega for v.
9. Construct the conformal mapping \varphi = u+ idv.
10. (Optional) Adjust the cuts and repeat the construction for the conjugate do-

main \~\Omega .

3.6. Moduli and degrees of freedom. For m+1 connected domains, we have
3m - 3 different moduli, or degrees of freedom. In general, we have 2m - 1 jumps and
m - 1 saddle points. This sums up to 3m - 2. However, the cut \gamma 0 can be chosen so
that the first and last jumps, d1 and d2m - 1, respectively, are equal. Thus the number
of degrees of freedom is reduced by one, and we obtain 3m - 3.

4. Conjugate function method for multiply connected domains of type
\bfitQ . Let us next focus on the quadrilateral-like case, i.e., type Q. Conceptually the
construction is much simpler than that of type R. Let the exterior boundary \partial E0

be composed of four arcs \zeta i, i = 1, 2, 3, 4, in the sense of section 2.1, and the inte-
rior boundaries \partial Ej , j = 1, . . . ,m, have Neumann boundary conditions \partial u/\partial n = 0.
Intuitively it is clear that the definition of the conjugate problem has to involve a
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(a) Local maxima and min-
ima of the interior boundaries.
Equipotential curves.

(b) Geometric setting of po-
tentials. Curves of steepest
descent and ascent \rho m.

(c) Map.

Fig. 4.1. Q-type. Dirichlet conditions for the conjugate problem. Initially, conditions along
the left-hand edge are u = 0 and along the right-hand edge are u = 1.

Dirichlet--Neumann map and that there is no need for any cutting process. Once the
potentials over \partial Ej , j = 1, . . . ,m, have been defined for the conjugate problem, the
reciprocal identity follows immediately.

4.1. Dirichlet conditions over interior boundaries. Let us consider the
configuration of Figure 4.1. In the initial problem the Dirichlet boundary conditions
are u = 0 and u = 1 along the left- and right-hand edges (or \zeta 1 and \zeta 3, say), respec-
tively. On every interior boundary \partial Ej , j = 1, . . . ,m, there are exactly two points
with unique potentials that correspond to local maxima and minima, Figure 4.1a.
Let us consider \partial Ej and denote the point with maximum potential x. Point x is
connected with a point s on either one of the Dirichlet boundaries via a curve of
steepest ascent \rho , Figure 4.1b. In the conjugate problem, the Dirichlet boundaries
become Neumann. Along the Neumann edges the solution will be linear and have all
values in the interval [0, 1]. Thus, the potential at the point s, and by construction
at x since \rho is an equipotential curve in the conjugate problem, can be found using
simple interpolation. The same procedure can be applied to the point of local mini-
mum on \partial Ej . The resulting map is given in Figure 4.1c. If the potentials obtained
by the interpolation procedure are not exact, they can be improved by constrained
minimization of the reciprocal error | 1 - M(\Omega )M(\~\Omega )| . We have used the interior point
method as implemented in Mathematica. This is computationally efficient, since only
the right-hand sides of the linear systems are modified during optimization.

4.2. Outline of the algorithm. Let us assume that in the initial Dirichlet--
Neumann problem, along the boundary segment \zeta 1 the Dirichlet boundary condition
is u = 0, and along \zeta 3 is u = 1.

Algorithm 4.1 (conjugate function method for multiply connected domains of
type Q).

1. Solve the Dirichlet--Neumann problem to obtain the potential function u and
the modulus d = M(\Omega ).

2. Locate the local maxima and minima on the interior boundaries \partial Ej, j =
1, . . . ,m.

3. For every local maximum xm: Find paths of steepest descent \rho m, m > 1,
connecting xm on \partial Ei with the point sm on \zeta 1. (Or, for every local mimima
xm: Find paths of steepest ascent \rho m, m > 1, connecting xm on \partial Ei with the
point sm on \zeta 3.)
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4. Interpolate the potential on sm on \zeta 1 when \zeta 1 is interpreted as a Neumann
edge of the conjugate problem. (Or, similarly on \zeta 3.)

5. Construct the conjugate domain \~\Omega by performing the Dirichlet--Neumann map
on \partial E0 and setting the Dirichlet boundary conditions on \partial Ej, j = 1, . . . ,m,
to values obtained in the previous step.

6. Solve the Dirichlet--Neumann problem on \~\Omega for v.
7. Construct the conformal mapping \varphi = u+ idv.
8. (Optional) Improve the conjugate domain \~\Omega by refining the Dirichlet boundary

conditions via constrained minimization of the reciprocal error | 1 - M(\Omega )M(\~\Omega )| .

5. Numerical implementation of the algorithms. We use the implementa-
tion of the hp-FEM method described in detail in [16]. The strategy for computing
the equipotential lines from the canonical domain onto the domain of interest can be
found in [15].

The main difference between the two algorithms lies in the cuts between the sets
Ej , j = 1, 2, . . . ,m, in the case of type R, especially when locating the saddle point
between sets. We use the Mathematica built-in constrained optimizer to locate the
saddle points [31]. To find the actual cutting curve, we bisect \partial Ej , j = 1, . . . ,m, and
move against the gradient of u. By doing so, we search for a point on \partial Ej such that
we end up within a tolerance from the saddle point.

If the cut can be computed analytically, the cut line can be embedded in the a
priori mesh, and thus the same mesh can be used in both problems. In this situation
it is sufficient to perform elemental integration once. The common blocks in the
assembled linear systems can be eliminated as in [15, section 4.2]. In the general case,
where the cutting has to be computed numerically, the meshes may vary over large
regions, and the positive bias from reusing the mesh is lost.

For the Q-type, a similar iteration can be used to refine the potential values. In
this case it may be necessary to refine the geometric search for the potential values.

Our algorithms involve computations that are not usually provided by standard
FEM solvers. This is reflected in the relative computation times of the different
parts of the algorithms. The relative maturity and level of implementation vary a
lot over the solution process. In particular constrained triangulation with possibly
large curved edges is not available in robust form and in path finding; for instance, in
determining the cuts, the current data structures are not optimal.

6. Numerical experiments. In this section we discuss a series of benchmark
problems and experiments carefully designed to illustrate different aspects of the al-
gorithms. In electrostatics the Q-type refers to resistor design problems with multiple
voltage domains, and the R-type refers to capacitor (electrical condenser) design do-
mains. In practice, designing integrated circuits for multiple voltage domains is labor
intensive, and there is a need for advanced design systems [20]. We have selected
problems of both types from the literature and designed the experiments for the R-
type. With two exceptions the examples involve multiply connected polycircular-arc
domains. For an alternative solution method for this class of domains, see [6].

The use of the reciprocal relation as an error measure is formalized in the following
definition.

Definition 6.1 (reciprocal error). Using Proposition 3.3 we can define two
versions of the reciprocal error. First, for nonnormalized jumps,

(6.1) edr = | 1 - M(\Omega )/M(\~\Omega )| ,
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and second, for the normalized jumps,

(6.2) enr = | 1 - M(\Omega )M(\~\Omega )| .

For convenience we define an associated error order.

Definition 6.2 (error order). Given a reciprocal error e \star r, the positive integer ei,

(6.3) ei = | \lceil log(e \star r)\rceil | ,

is referred to as the error order.

For the general case of R-type, the use of reciprocal error is not straightforward.
The cuts must be approximated numerically, and the related approximation error leads
to inevitable consistency error since the jumps depend on the chosen cuts. Thus, in
order to have confidence in the general case as we do for the symmetric cases, one
should consider a sequence of approximations for the cuts. Here, however, we are
content to show via the conformal map that the chosen cut is a reasonable one,
and the resulting map has the desired characteristics. For the Q-type consistency,
error arises from locating the minima and maxima on the interior boundaries and
subsequent determination of the Dirichlet data for the conjugate problems.

Of course, the exact potential functions are not known in general. However, we
can always compute contour plots of the quantities of interest, that is, the absolute
values of the derivatives, and get a qualitative idea of the overall performance of the
algorithm. Naturally, this also measures the pointwise convergence of the Cauchy--
Riemann problem.

One of the advantages of p- and hp-FEM is that exponential convergence in
capacity can be achieved even in the case of singularities on the boundary if the
mesh is graded geometrically. In our implementation the mesh refinement is done via
recursive replacement rules in exact arithmetic, allowing for infinitesimal elements [19].
This allows us to generate nearly optimal a priori meshes followed by p refinement.

Data on benchmarks and basic experiments, including representative numbers
for degrees of freedom assuming constant p = 12, is given in Tables 6.1 and 6.2b,
respectively. In all cases the setup of the geometry is the most expensive part in
terms of human effort and time. As usual in p- and hp-FEM, the computational cost
in these relatively small systems is in integration and handling of the sparse systems.
The actual computation times over the set of examples vary from seconds to minutes
on standard desktop hardware using our implementation of the algorithms (Apple
Mac Pro 2009 Edition 2.26 GHz, Mathematica 11.3).

6.1. Benchmarks. In [30] Trefethen gives an excellent introduction to the con-
nection between conformal maps and computation of resistances of idealized planar
resistors. In our setting the quantity of interest, the resistance of the resistor, is
equal to the modulus of the conjugate domain. It should be mentioned that these
benchmarks could be solved analytically using techniques described in [4].

6.1.1. Computation of resistances for quadrilaterals. Our first benchmark
is of type Q (see Figure 6.1), a resistor first computed in [10]. The domain is enclosed
by B = [ - 3/2, 3/2]\times [ - 3/4, 3/4]. There are two square holes (rotated by \pi /4),

H1 = \{ ( - 1/2, 0), ( - 3/4, 1/5), ( - 1, 0), ( - 3/4, - 1/5)\} ,
H2 = \{ (1/2, 0), (3/4, - 1/5), (1, 0), (3/4, 1/5)\} ,
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Table 6.1
Data on benchmarks.

(a) Computed resistance.

Experiment Capacity Error order (Reference)
Resistor 2.841998463680 11 (2.8419984)

(b) Computed capacity. (Error) refers to the reported
estimated error of the reference.

Experiment Capacity (Reference) (Error)
Capacitor A 9.49308124 (9.4930811) (4e-7)
Capacitor B 8.47016014 (8.4701600) (5e-7)

(c) FEM-data. Mesh (nodes, edges, triangles,
quads). Degrees of freedom given at p = 12.

Experiment Mesh DOF
Resistor (667,1236,16,552) 81935
Capacitor A (509,946,8,428) 63143
Capacitor B (1013,1910,0,896) 130439

Table 6.2
R-type. Data on experiments.

(a) Computed capacities.

Experiment Capacity Error order
Three disks in circle 9.67475429123 12
Two disks in rectangle 13.922976299110 12
Disk and Pacman in rectangle 13.3376294414 11

(b) FEM-data. Mesh (nodes, edges, triangles, quads). De-
grees of freedom given at p = 12.

Experiment Mesh DOF
Three disks in circle (35, 52, 0, 18) 2785
Two disks in rectangle (34,49,0,16) 2509
Disk and Pacman in rectangle (181,320,4,136) 20377

(a) Domain. (b) Mesh. (c) Map.

Fig. 6.1. Resistor.

and indentations

I1 = [ - 3/2, 1/2]\times [ - 3/4, - 1/2], I2 = [ - 1/2, 3/2]\times [1/2, 3/4].

The domain \Omega = B \setminus (H1 \cup H2 \cup I1 \cup I2), with \zeta 1 = along y = 3/4, \zeta 3 = along
y =  - 3/4, \zeta 2 = path from ( - 3/2, 3/4) to (1/2, - 3/4), and \zeta 4 = path from (3/2, - 3/4)
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(a) Capacitor A. (b) Capacitor B.

Fig. 6.2. Capacitors.

to ( - 1/2, 3/4). Formally the problems can be stated as
(6.4)\left\{     

\Delta u = 0 in \Omega ,

u = 0 on \zeta 1,

u = 1 on \zeta 3,

leading to

\left\{     
\Delta v = 0 in \~\Omega ,

v = 1 on \zeta 2, v = 0.712841455, on H1,

v = 0 on \zeta 4, v = 0.287158545, on H2.

The computed value of resistance cap(\~\Omega ) = 2.841998463680 is equal to that reported
in [10]. Here we have adopted a convention used throughout in the experiments that
Neumann zero boundary conditions are not defined separately but are implied unless
otherwise specified.

6.1.2. Computation of capacities. We consider two cases, Capacitors A and
B, Examples 7 and 10 from [3], respectively (see Figure 6.2). We compute only the
capacities and do not treat these benchmarks as belonging to type R. In both cases
the domain \Omega is enclosed within D = [ - 1, 1]\times [ - 1, 1]. For Capacitor A, the plates are
defined as the union of an equilateral triangle T and its reflection T \prime in the real axis.
The vertices of T are the points (a, 0), (b, b  - a)/

\surd 
3), and (b, - (b  - a)/

\surd 
3), where

0 < a < b < 1. For Capacitor B, the plates are two slits AsBs and CsDs, defined
by points As = ( - 2/3, - 1/2), Bs = ( - 2/3, 1/2), Cs = (1/2, - 1/4), Ds = (1/2, 1/4).
The computational domains are \Omega A = D \setminus (T \cup T \prime ) and \Omega B = D \setminus (AsBs \cup CsDs).
Thus, the corresponding problems are

(6.5) (A)

\left\{     
\Delta u = 0 in \Omega A,

u = 0 on \partial D,

u = 1 on \partial T and \partial T \prime ,

(B)

\left\{     
\Delta u = 0 in \Omega B ,

u = 0 on \partial D,

u = 1 on AsBs and CsDs.

Choosing a = 1/5 and b = 7/10, we see that the computed capacity cap(A) =
9.49308124 is within the estimated error of the reference value. The computed capacity
cap(B) = 8.47016014 is also within the estimated error of the reference value.

6.2. Symmetric case: Three disks in a circle. Consider a unit circle D0

with three disks Di, i = 1, 2, 3, of radius r = 1/6 placed symmetrically so that their
origins lie on a circle of radius r = 1/2. We set \Omega = D0 \setminus (\cup 3

i=1Di), and \~\Omega contains
five oriented cuts \gamma k enumerated in the order of disks, starting from the outer circle
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(a) Domain. (b) Mesh. (c) Map.

(d) Cauchy--Riemann. Contour
lines of | \partial u/\partial x| and | \partial v/\partial y| .

2 3 4 5 6 7 8 9 10 11 12 13 14

10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1

(e) Reciprocal identity. Conver-
gence in p; log-plot, error versus
p.

Fig. 6.3. R-type. Fully symmetric case.

D0, D0D1D2D3D1D0. Using symmetry for the jumps, the problems can be written
as
(6.6)\left\{     

\Delta u = 0 in \Omega ,

u = 0 on \partial D0,

u = 1 on \cup 3
i=1 \partial Di,

leading to

\left\{         
\Delta v = 0 in \~\Omega ,

v = 0 on \gamma 1,

v = R/6 + (k  - 2)R/3 on \gamma k, k = 2, 3, 4,

v = R = 9.67475429123 on \gamma 5.

As indicated in Figure 6.3a the cut can be computed analytically. The blending
function approach used to compute higher order curved elements is very accurate if
the element edges meet the curved edges at right angles. This is the reason for the
mesh in Figure 6.3b where all edges adjacent to disks have been set optimally.

Notice that due to symmetry, the scaled jumps could also be computed analyt-
ically. However, in the numerical experiments, only computed values of Table 6.2a
are used. Since the cuts are embedded in the mesh lines, both problems (the original
and the conjugate) can be solved using the same mesh. In this optimal configuration,
convergence in reciprocal relation is exponential in p, which is a remarkable result;
see Figure 6.3e. Similarly, in Figure 6.3d, it is clear that the derivatives also have
converged over the whole domain.

6.3. Axisymmetric cases. In the next three cases we maintain axial symmetry
and thus analytic cuts. In the first two cases the enclosing rectangle R = [ - 1, 3] \times 
[ - 1, 1], and in the third case RP = [ - 2, 1]\times [ - 1, 1].
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-1 0 1 2 3

-1.0

-0.5

0.0

0.5

1.0

(a) Cauchy--Riemann. Contour
lines of | \partial u/\partial x| and | \partial v/\partial y| .

-1 0 1 2 3
-1.0

-0.5

0.0

0.5

1.0

(b) Cauchy--Riemann. Contour
lines of | \partial u/\partial x| and | \partial v/\partial y| .

2 3 4 5 6 7 8 9 10 11 12 13

10-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2

(c) Two disks in rectangle. Re-
ciprocal identity. Convergence in
p; log-plot, error versus p.

2 3 4 5 6 7 8 9 10 11 12 13

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

(d) Disk and Pacman in rectan-
gle. Reciprocal identity. Conver-
gence in p; log-plot, error versus
p.

Fig. 6.4. R-type. Axially symmetric cases.

6.3.1. Two disks in a rectangle. Consider two disks D1 and D2 of radius
= 1/2 with centers at (0, 0) and (2, 0), respectively. Here \Omega = R \setminus (\cup 2

i=1Di) and \~\Omega 
contains four oriented cuts \gamma k enumerated in the order of regions starting from R,
RD1D2D1R, and the problems can be stated as
(6.7)\left\{     

\Delta u = 0 in \Omega ,

u = 0 on \partial R,

u = 1 on \cup 2
i=1 \partial Di,

leading to

\left\{         
\Delta v = 0 in \~\Omega ,

v = 0 on \gamma 1,

v =M/4 + (k  - 2)M/2 on \gamma k, k = 2, 3,

v =M = 13.922976299110 on \gamma 4.

The scaled jumps can be computed analytically, of course. The location of the saddle
point is xs = (1, 0) and the corresponding value of u(xs) = 0.747496. Once again, the
reciprocal convergence in p is exponential (see Figure 6.4c). Similarly, the derivatives
show convergence (see Figure 6.4a).

6.3.2. Disk and Pacman in rectangle. Next, the disk D2 above is replaced
by a disk with one quarter cut, C1, the so-called Pacman. Now \Omega = R \setminus (D1 \cup C1),
and \~\Omega contains four oriented cuts \gamma k enumerated in the order of regions starting from
R, RD1C1D1R,

(6.8)

\left\{     
\Delta u = 0 in \Omega ,

u = 0 on \partial R,

u = 1 on \partial D1 \cup \partial C1,

leading to

\left\{     
\Delta v = 0 in \~\Omega ,

v = 0 on \gamma 1,

v =
\sum k - 1

j=1 dj on \gamma k, k = 2, 3, 4.

In this case we intentionally break the symmetry between meshes for the two
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problems. The geometric refinement at the re-entrant corners is done in slightly
different ways. The reciprocal convergence in p is exponential but with different rates
at lower and higher values of p. Also, the difference in the number of refinement levels
leads to a mild consistency error which appears as a loss of further convergence and
accuracy at high p (see Figure 6.4d).

Here the jumps must be computed numerically (and tested against the computed
capacity). Jumps have four decimals,

d1 = 3.4808, d2 = 6.3761, d3 = 3.4808,

with cap(\Omega ) = 13.3376294414. The location of the saddle point is xs = (1, 0), and the
corresponding value of u(xs) = 0.747475, which does differ from the value observed
for two circles. Again, the derivatives show convergence despite the re-entrant corners
(see Figure 6.4b).

6.3.3. Pacman and droplet: Domain with cusp. Now the interior regions
are a Pacman C at (0, 0), and a domain B bounded by a Bezier curve,

r(t) =
1

640

\bigl( 
45t6 + 75t4  - 525t2 + 469

\bigr) 
+

15

32
t
\bigl( 
t2  - 1

\bigr) 2
, t \in [ - 1, 1].

Let us first consider a corresponding problem of R-type. Let \Omega = RP \setminus (C \cup B),
and \~\Omega contains four oriented cuts \gamma i enumerated in the order of regions starting from
RP , RPCBCRP ,

(6.9)

\left\{     
\Delta u = 0 in \Omega ,

u = 0 on \partial D0,

u = 1 on \partial D1,2,3,

leading to

\left\{     
\Delta v = 0 in \~\Omega ,

v = 0 on \gamma 1,

v =
\sum k - 1

j=1 dj on \gamma k, k = 2, 3, 4.

In [15] a ring domain with the same curve was considered up to very high accuracy.
Notice that the ``droplet"" is designed so that also the tangents are aligned for param-
eter values t = \pm 1, and thus the opening angle is 2\pi requiring strong grading of the
mesh. The resulting map is shown in Figure 6.5d. Letting p = 16 and using 14 levels
of refinement at the three singularities, we see that the computed jumps are

d1 = 3.3449, d2 = 4.08337, d3 = 3.3449,

with cap(\Omega ) = 10.7732. The location of the saddle point is xs = ( - 0.199, 0), and the
corresponding value of u(xs) = 0.7540. The error order = 6.

Next we set up a corresponding problem of Q-type as follows: \zeta 1 = along x =  - 1,
\zeta 2 = along y =  - 1, \zeta 3 = along x = 3, \zeta 4 = along y = 1,

(6.10)

\left\{     
\Delta u = 0 in \Omega ,

u = 0 on \zeta 1,

u = 1 on \zeta 3,

leading to

\left\{     
\Delta v = 0 in \~\Omega ,

v = 0 on \zeta 2, v = 1/2, on C,

v = 1 on \zeta 4, v = 1/2, on B.

Again letting p = 16 and using 14 levels of refinement at the three singularities, we
get cap(\Omega ) = 0.496668 and cap(\~\Omega ) = 2.01353, resulting in error order = 7. The map
is shown in Figure 6.5e. The corresponding horizontal or u-coordinates of the slits
are

\{ (0.0643908, 0.640592), (0.75947, 0.962074)\} .
Interestingly, in the R-type problem the error order decreases only slightly in

comparison despite the numerical estimation of the jumps.
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(a) R-type. Disk and Pacman. (b) Mesh. (c) Map.

(d) R-type. Pacman and droplet. (e) Q-type. Pacman and droplet.

Fig. 6.5. Axially symmetric cases.

7. Advanced examples. Our last two examples illustrate the versatility of our
approach in problems where the cuts have to be computed numerically or the domains
are not polycircular-arc.

7.1. \bfitR -type with multiple regions. Let us consider a case with seven regions,
five circles Ci, and two triangles Tj (Figure 7.1) scattered in the unit square. There
are six saddle points sk. The exact locations are given in Table 7.1. In this case also
the cuts have to be computed numerically, and thus finding the saddle points is the
crucial first step. Once the cuts have been identified, they must be embedded into
the conjugate mesh. In contrast with the previous cases, the mesh lines cannot be
enforced a priori. In this case we have chosen to approximate the cuts with linear
segments rather than curves, which would be more natural in the p-version setting.
This is due to maturity of the tools available for constrained triangulation.

Since the geometric complexity is greater, the algorithm naturally does more
geometric computations and consequently operates outside the fast kernels, such as
linear algebra routines. In this particular case, locating the saddle points took one
minute and finding cuts an additional four minutes, in contrast to two minutes spent
in integration, which is the typical bottleneck in p-version computations.

The derived results are summarized in Figures 7.1 and 7.2. We get cap(\Omega ) =
14.2324 with error order = 2. The error order is slightly disappointing, especially
in comparison with our other experiments. In addition to errors from geometric
approximation, there is also an additional source of error, namely the integration
of the jumps when one contour line intersects multiple jumps, since one has to rely
on pointwise evaluation of both the potentials and their derivatives. Convergence
in capacity does not imply the same pointwise convergence rates. For instance, for
the largest region there are four cuts emanating from it. Thus, the resolution of the
contour lines is also something one should consider.
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0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) The initial mesh.

0.0 0.2 0.4 0.6 0.8 1.0
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0.8

1.0

(b) Contour plot of u with cuts
and saddle points indicated.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(c) The conjugate mesh.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(d) Map.

Fig. 7.1. R-type. Multiple regions. The boundary of the conjugate mesh can be traced by
starting from the bottom and keeping the interior to the left.

Table 7.1
R-type. Multiple regions. There are five circles ci defined by their centers and radii, two

triangles Tj by their corner points (A,B,C), and six saddle points sk by their locations (x, y).

C (x, y) r
c1 (0.3, 0.5) 1/10
c2 (0.6, 0.25) 1/15
c3 (0.75, 0.6) 1/15
c4 (0.3, 0.75) 1/20
c5 (0.2, 0.2) 1/20

T1 T2

A (3/4, 3/4) (17/20, 3/20)
B (17/20, 3/4) (9/10, 3/20)
C (4/5, 4/5) (9/10, 1/5)

S (x, y)
s1 (0.51, 0.40)
s2 (0.27, 0.29)
s3 (0.32, 0.66)
s4 (0.60, 0.51)
s5 (0.79, 0.22)
s6 (0.77, 0.71)

7.2. \bfitQ -type with nonsymmetric configuration. Let us consider a Q-type
problem where the domain B0 is enclosed by a parametrized curve,

r(t) =
1

5
(4 + cos(5t))(cos(t)i+ sin(t)j),

with three scaled copies Bi = 1
10r(t) + bi scattered within it, where the offsets are

b1 =  - (1/10, 1/5), b2 = (1/20, 2/5), b3 = (2/5, 1/15). The computational domain
\Omega = B0 \setminus (\cup 3

i=1Bi). The boundary curve r(t) is divided into four oriented arcs \zeta i with
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1 2 3 4 5 6 7 8 9 10 11 12 13 14
u \ast 0.90 0.97 0.97 0.93 0.96 0.96 0.93 0.95 0.74 0.74 0.95 0.90 \ast 
v 0 0.17 0.23 0.36 0.38 0.40 0.53 0.62 0.62 0.64 0.82 0.93 0.94 1

(a) Data over the cuts. u is the potential at the saddle point; v is the Dirichlet boundary data.

1

d

0

(b) Canonical domain in (u, v).
Slit domain scaled to d = 1.

Fig. 7.2. R-type. Multiple regions. Canonical domain and configuration data.

points

qi = \{ (0.997045, 0.0313334), ( - 0.0241459, 0.768334),

( - 0.602165, - 0.0189238), (0.0261114, - 0.830877)\} .

So, the problem can be stated as

(7.1)

\left\{     
\Delta u = 0 in \Omega ,

u = 0 on \zeta 1,

u = 1 on \zeta 3,

leading to

\left\{         
\Delta v = 0 in \~\Omega ,

v = 0 on \zeta 2, v = v1, on B1,

v = 1 on \zeta 4, v = v2, on B2,

v = v3 on B3.

The initial mesh is piecewise linear and thus not exact in the sense of the examples
above. In Figure 7.3d we let p = 2, . . . , 16 and show the convergence graph of the
reciprocal error (loglog). The observed rate is 1.87, indicating algebraic convergence.
The initial computed Dirichlet boundary conditions for the conjugate problem are

v1 = 0.403375, v2 = 0.592293, v3 = 0.323098,

and after five steps of the interior point method, are corrected to

v1 = 0.501596, v2 = 0.736346, v3 = 0.358485,

and the corresponding horizontal or u-coordinates of the slits are

\{ (0.588018, 0.831274), (0.1605, 0.43309), (0.128553, 0.416906)\} .

We get cap(\Omega ) = 0.908799, cap(\~\Omega ) = 1.101067, and error order = 4. The mesh
has 2689 nodes, 7273 edges, and 4582 triangles. In this case, when p = 4 the time
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(a) Domain with the four corners
of the quadrilateral and the local
maxima and minima indicated.
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(b) Mesh.
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(c) Map.

●

●

●

●
●

●
●

●
●

●
●●●●●

100 101

10-3

10-2

100 101

10-3

10-2

p

R
ec
ip
ro
ca
l
er
ro
r

(d) Convergence of the reciprocal error in p \in 
[2, 16]; loglog-plot, rate = 1.87.

Fig. 7.3. Q-type. Domain enclosed by a parametrized curve r(t) = 1
5
(4 + cos(5t))(cos(t)i +

sin(t)j).

to determine the Dirichlet boundary conditions for the conjugate problem was only
four seconds, whereas the integration took 11 seconds, with the initial linear solution
taking an additional two seconds, and five steps of the interior point method took 20
seconds.

8. Conclusions. We have introduced algorithms for computation of conformal
mappings in multiply connected domains for two specific classes of problems. However,
the fundamental ideas can be applied to address a much wider class of problems.
Our method relies on numerical solution of PDEs and therefore can be applied to
general domains using standard tools with the addition of geometric operations, such
as finding paths of steepest descent. In terms of computational cost, the method is
competitive, especially in cases where the p-version of FEM can be applied directly.
In our current implementation the geometric operations become expensive as the
complexity of the configuration increases.
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